フェムトスコピーで探る 強い相互作用の世界 兵藤 哲雄 東京都立大学 ### 目次 導入:強い相互作用とハドロン - ハドロン物理の難しさ/面白さ ハドロン物理とフェムトスコピー - ハドロン間相互作用の解明 ジ フェムトスコピーの応用 - K⁻p 相互作用と A(1405) 共鳴 まとめ K中間子原子核の物理 31 参考:永江知文、兵藤哲雄「K中間子原子核の物理」(共立出版) ### 原子、原子核、ハドロン、クォーク ハドロン:陽子、中性子など、スケールはフェムトメートル ### クォークとは クォークはカラー(色電荷)を持つ <- 南部さん - カラー: (スピンのような) 内部自由度 - クォーク: 赤、青、緑 ● ● - 反クォーク:反赤、反青、反緑 🔘 🔘 🔾 #### クォークはフレーバーを持つ - クォークの種類 (u, d, s, c, b, t) - フレーバー毎に質量が大きく異なる - トップ (t) クォークはハドロンを作らない ### ハドロンとは #### ハドロン:クォーク、グルーオンの自己束縛系(複合状態) - 現在までに約380種が観測されている ### 原子核と強い相互作用 原子核:陽子、中性子の自己束縛系(勝手に分解しない) - 例)¹²C(炭素) - 陽子(proton):電荷 Q=+1 - 中性子(neutron):電荷 Q=0 #### 陽子間の電磁気力は斥力 - 強い相互作用:電磁気力に打ち勝って原子核を束縛させる力 ### 核力のメカニズム 核力は π 中間子の交換で媒介される (1949年) https://www.nobelprize.org $$\Rightarrow F \sim \frac{g^2}{4\pi} \frac{\exp\{-\mu r\}}{r^2}$$ - 短距離力:距離 ~ 1 fm 以上ではほとんどゼロ(指数関数的) - 非中心力:距離rだけでなく角度などに依存する 重力、電磁気力とは全く性質が異なる 導入:強い相互作<u>用とハドロン</u> ### 4つの相互作用と素粒子標準理論 自然界には4つの基本相互作用が存在 - 重力:ニュートン力学 -> 一般相対性理論 標準理論 - 電磁気力:マクスウェル方程式 -> 量子電磁力学(QED) (1965年) - 強い相互作用:量子色力学 (QCD) (2004年) - 弱い相互作用:電弱統一理論 (1979年) https://www.nobelprize.org ### 核力とQCDの相互作用 核力:核子間の強い引力 #### 強い相互作用:クォーク・グルーオン間のQCD相互作用 - 核子や中間子もクォーク・グルーオンからできている - 強い核力の起源もQCDの相互作用 導入:強い相互作用とハ<u>ドロン</u> ### 電磁相互作用の基礎理論 #### 量子電磁力学 Quantum Electrodynamics, QED $$\mathcal{L}_{\text{QED}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{e} (i \gamma^{\mu} D_{\mu} - m) e$$ - -電子eと光子 γ の理論 - 量子効果を含めて電磁相互作用の全てを記述 - 光子は電荷を持たない:光子間は相互作用しない - 電子間の相互作用:クーロンカ(+量子効果) 導入:強い相互作用とハ<u>ドロン</u> ### 強い相互作用の基礎理論 #### 量子色力学 Quantum Chromodynamics, QCD $$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} G^{a}_{\mu\nu} G^{a}^{\mu\nu} + \bar{q}_{ij} (i\gamma^{\mu} (\mathbf{D}_{\mu})_{ij} - m_f \delta_{ij}) q_{jf}$$ - クォーク *q* とグルーオン *g* の理論 - 量子効果を含めて強い相互作用の全てを記述 - クォークとグルーオンはカラー電荷(a, i, j)を持つ - グルーオン間も相互作用する ### 量子効果の計算 同じ始状態・終状態のファインマン図を足す (無限個) - 電磁相互作用:量子効果が小さい(有限個の計算でOK) - 強い相互作用:量子効果が"強い" ### "強い"ので無視できない! - 理論が分かっているのに解けない(標準理論でQCDだけ) ### 分かっているのに解けないとは? #### 漸近自由性 - 高エネルギー: 結合定数小(計算可能) - 低エネルギー:結合定数大(計算不可能) http://pdg.lbl.gov/ #### 深非弾性散乱(高エネルギー電子陽子散乱) - スケーリングの破れがQCDで説明される - QCDは高エネルギー実験で検証されている F.D. Aaron et al. (H1 collaboration), PLB 654, 148 (2007) #### ハドロン物理 - 低エネルギーなので計算できない ### 目次 導入:強い相互作用とハドロン - ハドロン物理の難しさ/面白さ バドロン物理とフェムトスコピー - ハドロン間相互作用の解明 ♥ フェムトスコピーの応用 - K⁻p 相互作用と A(1405) 共鳴 まとめ 参考:永江知文、兵藤哲雄「K中間子原子核の物理」(共立出版) ### 観測されているハドロン(2020) #### Particle Data Group (PDG) 2020版 http://pdg.lbl.gov/ | р | 1/2+ **** | ∆(1232) | 3/2+ **** | Σ^+ | 1/2+ **** | <u>=</u> 0 | 1/2+ | **** | =++ | | *** | |--------------------|--|-----------------|----------------------|----------------------------------|--|---|--|-----------------|---------------------------------|-----------|------| | n | 1/2+ **** | $\Delta(1600)$ | 3/2+ **** | Σ^0 | 1/2+ **** | Ē- | 1/2+ | **** | - cc | | | | N(1440) | 1/2+ *** | Δ (1620) | 1/2- **** | Σ- | 1/2+ **** | Ξ(1530) | 3/2+ | **** | 100 | 1/2+ | *** | | N(1520) | 3/2- **** | $\Delta(1700)$ | 3/2- **** | Σ(1385) | 3/2+ **** | Ξ(1620) | -/- | * | $\Lambda_b(5912)^0$ | 1/2- | *** | | N(1535) | 1/2- **** | $\Delta(1750)$ | 1/2+ * | $\Sigma(1580)$ | 3/2- * | Ξ(1690) | | *** | $\Lambda_b(5920)^0$ | 3/2- | *** | | N(1650) | 1/2- **** | Δ(1900) | 1/2- *** | Σ(1620) | 1/2- * | Ξ(1820) | $3/2^{-}$ | *** | | 3/2+ | *** | | N(1675) | 5/2- **** | ∆(1905) | 5/2+ **** | Σ(1660) | 1/2+ *** | <i>Ξ</i> (1950) | | *** | $A_b(6152)^0$ | 5/2+ | *** | | N(1680) | 5/2+ **** | ∆(1910) | 1/2+ **** | Σ(1670) | 3/2- **** | <i>Ξ</i> (2030) | $\geq \frac{5}{2}$? | *** | Σ_{b} | 1/2+ | *** | | N(1700) | 3/2- *** | $\Delta(1920)$ | 3/2+ *** | $\Sigma(1750)$ | 1/2- *** | <i>Ξ</i> (2120) | - | * | Σ_b^* | 3/2+ | *** | | N(1710) | 1/2+ **** | $\Delta(1930)$ | 5/2- *** | $\Sigma(1775)$ | 5/2- **** | <i>Ξ</i> (2250) | | ** | $\Sigma_b(6097)^+$ | | *** | | N(1720) | 3/2+ **** | $\Delta(1940)$ | 3/2- ** | $\Sigma(1780)$ | 3/2+ * | <i>Ξ</i> (2370) | | ** | $\Sigma_b(6097)^-$ | | *** | | N(1860) | 5/2 ⁺ ** | $\Delta(1950)$ | 7/2+ **** | $\Sigma(1880)$ | 1/2+ ** | $\Xi(2500)$ | | * | | $1/2^{+}$ | *** | | N(1875) | 3/2- *** | Δ (2000) | 5/2+ ** | $\Sigma(1900)$ | 1/2- ** | | | | $\equiv_{b}^{\prime}(5935)^{-}$ | $1/2^{+}$ | *** | | N(1880) | 1/2+ *** | Δ (2150) | 1/2- * | $\Sigma(1910)$ | 3/2" *** | Ω^{-} | $3/2^{+}$ | **** | $\equiv_b (5945)^0$ | $3/2^{+}$ | *** | | N(1895) | 1/2- **** | $\Delta(2200)$ | 7/2" *** | $\Sigma(1915)$ | 5/2+ **** | $\Omega(2012)^{-}$ | ?- | *** | $\equiv_b (5955)^-$ | $3/2^{+}$ | *** | | N(1900) | 3/2+ **** | $\Delta(2300)$ | 9/2+ ** | $\Sigma(1940)$ | 3/2+ * | $\Omega(2250)^{-}$ | | *** | $\Xi_b(6227)$ | | *** | | N(1990) | 7/2+ ** | Δ (2350) | 5/2- * | $\Sigma(2010)$ | 3/2- * | $\Omega(2380)^{-}$ | | ** | Ω_b^- | $1/2^{+}$ | *** | | N(2000) | 5/2+ ** | $\Delta(2390)$ | 7/2+ * | $\Sigma(2030)$ | 7/2+ **** | $\Omega(2470)^{-}$ | | ** | _ | | | | N(2040) | 3/2+ * | $\Delta(2400)$ | 9/2- ** | $\Sigma(2070)$ | 5/2+ * | | بر مــــــــــــــــــــــــــــــــــــ | at at a to a to | $P_c(4312)^+$ | | * | | N(2060) | 5/2- *** | $\Delta(2420)$ | 11/2+ **** | $\Sigma(2080)$ | 3/2+ * | Λ_c^+ | 1/2+ | | $P_{c}(4380)^{+}$ | | * | | N(2100) | 1/2+ *** | ∆(2750) | 13/2** | $\Sigma(2100)$ | 7/2- * | $\Lambda_c(2595)^+$ | | *** | $P_c(4440)^+$ | | * | | N(2120) | 3/2- *** | Δ (2950) | 15/2 ⁺ ** | Σ(2160) | 1/2 ⁻ * | $\Lambda_c(2625)^+$ | 3/2- | *** | $P_c(4457)^+$ | | * | | N(2190) | 7/2- **** | , | 1/2+ **** | Σ(2230) | 3/2 ⁺ * | $\Lambda_c(2765)^+$ | 2 /0+ | *** | | | | | N(2220) | 9/2 ⁺ ****
9/2 ⁻ **** | 1 | 1/2 ** | Σ(2250) | ** | $\Lambda_c(2860)^+$ | | *** | | | | | N(2250) | 9/2 ⁻ ****
1/2 ⁺ ** | Λ
Λ(1405) | 1/2 **** | Σ(2455) | ** | $\Lambda_c(2880)^+$ | , | *** | | | | | N(2300) | , | Λ(1520) | 3/2- **** | Σ(2620) | * | $\Lambda_c(2940)^+$
$\Sigma_c(2455)$ | 3/2
1/2 ⁺ | **** | | | | | N(2570) | 5/2 ⁻ **
11/2 ⁻ *** | Λ(1600) | 1/2+ **** | $\Sigma(3000)$
$\Sigma(3170)$ | * | $\Sigma_c(2520)$ | 3/2+ | *** | | | | | N(2600)
N(2700) | 13/2+ ** | Λ(1670) | 1/2 **** | 2(3170) | | $\Sigma_c(2320)$
$\Sigma_c(2800)$ | 3/2' | *** | | | | | 10(2100) | 13/2 | Λ(1690) | 3/2- **** | | | =+
-c | 1/2+ | *** | | | | | | | Λ(1710) | 1/2+ * | | | =c
=0 | 1/2+ | **** | | | | | | | Λ(1800) | 1/2- *** | | | = c
= c
= c
= c | 1/2+ | *** | | | | | | | Λ(1810) | 1/2+ *** | | | - c
='0
= c | 1/2+ | *** | | | | | | | Λ(1820) | 5/2+ **** | | | $\frac{-c}{\Xi_c(2645)}$ | 3/2+ | *** | | | | | | | A(1830) | 5/2- **** | | | $\Xi_c(2790)$ | 1/2- | *** | | | | | | | A(1890) | 3/2+ **** | | | $\Xi_c(2815)$ | 3/2- | * | | | | | | | A(2000) | 1/2- * | | | $\Xi_c(2930)$ | 3/2 | | | | | | | | A(2050) | 3/2- * | | | $\Xi_c(2970)$ | | | | | | | | | A(2070) | 3/2+ * | | | $\Xi_c(3055)$ | | | | | | | | | A(2080) | 5/2- * | | | $\Xi_c(3080)$ | | | | | 7 | | | | A(2085) | 7/2 ⁺ ** | | | $\Xi_c(3123)$ | | * | | | ' II | | | | Λ(2100) | 7/2" **** | | | υς
υς
 | $1/2^{+}$ | *** | | | | | | | Λ(2110) | 5/2+ *** | | | 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 2/2+ | *** | | | | | | | A(2325) | 3/2- * | | 11 - | | | | _ | | | | | | Λ(2350) | 9/2+ *** | | <i> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</i> | | | | _1 C | | 抽 | | | | Λ(2585) | ** | 4 | バし | | | | ~ 0 | U | 7军 | | | | | |] | | | | | | | | | | | | | | | 140(3120)~ | | nement. | I | | 1 | | | | | | • | | | | | | | _ | | | | STRAN | | | | | | |--|---|---|---|--|--|--|---| | | LIGHT UNFLAVORED $(S = C = B = 0)$ | | | CHARMED, STRANGE
$(C = S = \pm 1)$ | | c7 continued
√G(JPC) | | | $\rho(\hat{P}^{C})$ | $\wp(\mathcal{P}^{\zeta})$ | | <i>I(P)</i> | | I (P) | ψ(3770) | 0-(1) | | $\bullet \pi^{\pm}$ 1 ⁻ (0 ⁻)
$\bullet \pi^{0}$ 1 ⁻ (0 ⁻⁺) | • π ₂ (1670) 1 ⁻ (2 ⁻ +)
• φ(1680) 0 ⁻ (1 ⁻ -) | • K [±]
• K ⁰ | 1/2(0 ⁻)
1/2(0 ⁻) | • D_s^{\pm}
• $D_s^{*\pm}$ | 0(0)
0(? [?]) | ψ₂(3823) ψ₃(3842) | 0-(2) | | • η 0+(0-+) | • ρ ₃ (1690) 1 ⁺ (3 ⁻ ⁻) | • K ⁰ ₅ | 1/2(0") | • D_s
• $D_{s0}^*(2317)^{\pm}$ | 0(:)
0(0 ⁺) | $\chi_{c0}(3860)$ | 0+(0++) | | • f ₀ (500) 0 ⁺ (0 ⁺⁺) | ρ(1700) 1⁺(1 [−] [−]) | • K₹ | $1/2(0^{-})$ | • D _{s1} (2460) [±] | 0(1+) | χ_C1(3872) | 0+(1++) | | • ρ(770) 1 ⁺ (1)
• ω(782) 0 ⁻ (1) | • $a_2(1700)$ 1 ⁻ (2 ⁺⁺)
• $f_0(1710)$ 0 ⁺ (0 ⁺⁺) | • K ₀ *(700) | 1/2(0+) | • D _{s1} (2536)± | 0(1+) | • Z _c (3900)
• X(3915) | $0^{+}(1^{+})$
$0^{+}(0/2^{+})$ | | • η'(958) 0+(0-+) | | • K*(892)
• K ₁ (1270) | 1/2(1 ⁻)
1/2(1 ⁺) | • D ₅₂ (2573)
• D ₅₁ (2700) [±] | 0(2 ⁺)
0(1 ⁻) | • χ _Q (3930) | 0+(2++) | | • f ₀ (980) 0+(0++) | • π(1800) 1-(0 -+) | • K ₁ (1400) | 1/2(1+) | $D_{s1}^*(2860)^{\pm}$ | | X(3940) | 0 ⁺ (2 ⁺ +) [']
? [?] (? [?] ?) | | • a ₀ (980) 1 ⁻ (0++) | | • K*(1410) | 1/2(1-) | D ₅₃ (2860)± | 0(3_) | • X(4020)± | 1 ⁺ (? [?] -)
0 ⁻ (1 ₋) | | • φ(1020) 0 ⁻ (1 ⁻)
• h ₁ (1170) 0 ⁻ (1 ⁺) | X(1835) ? ² (0 - +)
• φ ₃ (1850) 0 - (3) | • K ₀ *(1430)
• K ₂ *(1430) | 1/2(0+) | $D_{sJ}(3040)^{\pm}$ | 0(??) | • ψ(4040)
X(4050) [±] | 1-(??+) | | • b ₁ (1235) 1 ⁺ (1 ^{+ -}) | • η ₂ (1870) 0 ⁺ (2 ^{- +}) | K(1460) | 1/2(2 ⁺)
1/2(0 ⁻) | BOTT | | X(4055)± | 1+(??-) | | • a ₁ (1260) 1 ⁻ (1++) | | K ₂ (1580) | 1/2(2-) | (B = : | | X(4100)± | 1-(???) | | • f ₂ (1270) 0 ⁺ (2 ⁺⁺)
• f ₁ (1285) 0 ⁺ (1 ⁺⁺) | | K(1630) | 1/2(??) | • B [±]
• B ⁰ | 1/2(0-) | χ_{C1}(4140) ψ(4160) | 0 ⁺ (1 ⁺ +)
0 ⁻ (1 ⁻ -) | | •η(1295) 0+(0-+) | | K₁(1650) | 1/2(1 ⁺)
1/2(1 ⁻) | • B [±] / B ⁰ ADI | 1/2(0 ⁻)
MIXTURE | X(4160) | ??(???) | | • π(1300) 1 ⁻ (0 ⁻ +) | • f ₂ (1950) 0 ⁺ (2 ⁺⁺) | • K ₂ (1770) | 1/2(2-) | $\bullet B^{\pm}/B^{0}/B_{s}^{0}$ | b-baryon | Z _c (4200) | 1+(1+-) | | • a ₂ (1320) 1 ⁻ (2 ⁺⁺)
• f ₀ (1370) 0 ⁺ (0 ⁺⁺) | | • K ₃ (1780) | 1/2(3-) | ADMIXTUR
V_{cb} and V_{ub} | | • $\psi(4230)$
$R_{c0}(4240)$ | 0 ⁻ (1 ⁻ -)
1 ⁺ (0 ⁻ -) | | • π ₁ (1400) 1 ⁻ (1 ⁻⁺) | | • K ₂ (1820) | 1/2(2-) | tnix ⊟ement | S | X(4250) [±] | 1-(??+) | | • η(1405) 0 ⁺ (0 ⁻ +) | • f ₂ (2010) 0+(2++) | K(1830)
$K_0^*(1950)$ | $1/2(0^{-})$
$1/2(0^{+})$ | • B*
• B ₁ (5721)+ | 1/2(1 ⁻)
1/2(1 ⁺) | ψ(4260) | 0-(1) | | • h ₁ (1415) 0 ⁻ (1 + -) | f ₀ (2020) 0 ⁺ (0 ⁺⁺) | $K_2^*(1980)$ | 1/2(2+) | • B ₁ (5721) ⁰ | 1/2(1+) | • χ _{C1} (4274) | $0^{+}(1^{+})$ | | a ₁ (1420) 1 ⁻ (1 ⁺⁺)
• f ₁ (1420) 0 ⁺ (1 ⁺⁺) | | • K ₄ (2045) | $1/2(4^+)$ | B* _J (5732) | ?(? [?]) | X(4350)
• ψ(4360) | 0 ⁺ (? ^{?+})
0 ⁻ (1 ⁻ -) | | • ω(1420) 0 (1) | | K ₂ (2250) | 1/2(2-) | • B ₂ (5747)+ | 1/2(2 ⁺)
1/2(2 ⁺) | ψ(4390) | 0-(1) | | f ₂ (1430) 0 ⁺ (2 ⁺⁺) | f ₂ (2150) 0 ⁺ (2 ⁺ ⁺) | $K_3(2320)$
$K_5^*(2380)$ | 1/2(3 ⁺)
1/2(5 ⁻) | • B ₂ (5747) ⁰
B ₁ (5840) ⁺ | 1/2(??) | ψ(4415) | 0-(1) | | • a ₀ (1450) 1 ⁻ (0 + +)
• ρ(1450) 1 ⁺ (1) | | N (2500) | | B _J (5840) ⁰ | 1/2(??) | • Z _c (4430) | 1 ⁺ (1 ⁺ -)
0 ⁺ (0 + +) | | • ρ(1450) 1 ⁺ (1)
• η(1475) 0 ⁺ (0 ^{- +}) | | K(3100) | 1/2(4 ⁻)
? [?] (? [?] ?) | • B _J (5970) ⁺ | 1/2(?!) | $\chi_{c0}(4500)$ • $\psi(4660)$ | 0-(1) | | • f ₀ (1500) 0+(0++) | f _J (2220) 0 ⁺ (2 ⁺⁺ | CHARN | /IED | • B _J (5970) ⁰ | 1/2(??) | χ _{c0} (4700) | 0+(0++) | | f ₁ (1510) 0 ⁺ (1 ^{+ +}) | | (C = ±1) | | BOTTOM, STRANGE
$(B = \pm 1, S = \mp 1)$ | | - | Б | | f ₂ (1525) 0 ⁺ (2 ⁺⁺)
f ₂ (1565) 0 ⁺ (2 ⁺⁺) | | • D [±]
• D ⁰ | 1/2(0 ⁻)
1/2(0 ⁻) | | 0(0-) | (+ possibly n | | | ρ(1570) 1+(1) | • f ₂ (2300) 0+(2++) | • D*(2007)0 | 1/2(1-) | • B _s ⁰
• B _s * | 0(1-) | η_b(1S) | 0+(0-+) | | h ₁ (1595) 0 ⁻ (1 ^{+ -}) | f ₄ (2300) 0 ⁺ (4 ^{+ +}) | D*(2010)[±] | $1/2(1^{-})$ | X(5568)± | ?(??) | • T(1S) | 0 ⁻ (1 ⁻ -)
0 ⁺ (0 ⁺ +) | | • π ₁ (1600) 1 ⁻ (1 ⁻⁺)
• α ₁ (1640) 1 ⁻ (1 ⁺⁺) | f ₀ (2330) 0 ⁺ (0 ⁺⁺)
•f ₂ (2340) 0 ⁺ (2 ⁺⁺) | • D ₀ *(2300) ⁰ | 1/2(0+) | • B _{s1} (5830) ⁰ | 0(1+) | χ_{b0}(1P) χ_{b1}(1P) | 0+(1++) | | f ₂ (1640) 0±(0±±) | ρ ₅ (2350) 1 ⁺ (5) | $D_0^*(2300)^{\pm}$
• $D_1(2420)^0$ | 1/2(0 ⁺)
1/2(1 ⁺) | $\bullet B_{52}^*(5840)^0$
$B_{sJ}^*(5850)$ | 0(2 ⁺)
?(? [?]) | • h _b (1P) | 0-(1+-) | | η₂(164^F) | f ₆ (2510) 0 ⁺ (6 ^{+ +}) | D ₁ (2420) [±] | 1/2(??) | | . , | • χ _{b2} (1P) | 0+(2++) | | • ω(16 | OTHER LIGHT | D ₁ (2430) ⁰ | $1/2(1^+)$ | BOTTOM, C | | $\eta_b(2S)$ • $\Upsilon(2S)$ | 0+(0-+) | | • ω3 | er States | • D*(2460)0 | 1/2(2+) | • B _c ⁺ | 0(0-) | • γ ₂ (1D) | 0-(2) | | | | • D ₂ *(2460) [±]
D(2550) ⁰ | 1/2(2 ⁺)
1/2(? [?]) | $B_c(2S)^{\pm}$ | 0(0-) | χ_{b0}(2P) | 0+(0++) | | | | D*/(2600) | 1/2(??) | cc | | • χ _{b1} (2P)
h _b (2P) | 0 ⁺ (1 ⁺ +)
0 ⁻ (1 ⁺ -) | | | | D*(2640)± | 1/2(??) | (+ possibly no | | • χ _{b2} (2P) | 0+(2++) | | | | D(2740) ⁰
D ₃ (2750) | 1/2(? ^f)
1/2(3 ⁻) | | 0+(0-+) | Υ(35) | 0-(1) | | | | D(3000) ⁰ | 1/2(3) | | 0-(1) | • χ _{b1} (3P) | 0 ⁺ (1 ⁺ +)
0 ⁺ (2 ⁺ +) | | | • | - () | -, -(-) | | 0 ⁺ (0 ⁺ ⁺)
0 ⁺ (1 ⁺ ⁺) | χ_{b2}(3P) Υ(4S) | 0-(1) | | ./ 1 | | 140 | 17 | c(1P) | $0^{-}(1+-)$ | • Z _b (10610) | 1+(1+-) | | X '. | ノン~2 | /1 (I | 不由 | △(1P) | 0+(2++) | • Z _b (10650) | | | | | | | (25)
(25) | 0+(0-+) | γ(10753)
• γ(10860) | ? [!] (1)
0-(1) | | | • | | | (43) | o (1) | • γ(1000) | 0-(1) | | | | <u> </u> | | | | L ` -7 | ` ′ | ### 観測されているハドロン(2022) #### Particle Data Group (PDG) 2022版 http://pdg.lbl.gov/ ### エキゾチックハドロン #### テトラクォーク粒子 Tcc の観測 LHCb collaboration, Nature Phys. 18, 7, 751 (2022); Nature Commun. 13, 1, 3351 (2022) - クォーク組成 ~ ccūd̄ - qq̄ で構成できないメソン - 内部構造は? ### ハドロン間相互作用 #### 核力の研究 - 散乱実験を行いデータを再現する相互作用を構築する N. Ishii, S. Aoki, T. Hatsuda, PRL99, 022001 (2007) #### 他のハドロン間の相互作用は? - 標的は安定粒子、ビームは電荷を持っている必要がある - -> 散乱では限られたハドロン対の相互作用しか調べられない ### 散乱実験とフェムトスコピー 従来の方法:散乱実験 Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011) - 統計精度が良くない (低エネルギー) - 限られた系:*NN*, Λ*N*, π*N*, *KN*, *K̄N*, ···· - ヘビー (c,b) ハドロン:ほぼ不可能 #### フェムトスコピー:相関関数 **ALICE collaboration, PRL 124, 092301 (2020)** - 高い精度 - 様々な系:ΛΛ, NΞ, NΩ, φN, K̄Λ, **DN**, ··· - ヘビーハドロン:可能! ### LHC@CERN #### 高エネルギー衝突実験LHC(Large Hadron Collider) https://www.home.cern/science/accelerators/large-hadron-collider - 光速の99.99999%に加速した陽子や原子核を衝突させる - 衝突エネルギーを転換し多数のハドロンを生成 ### 相関関数とハドロン相互作用 #### 高エネルギー衝突の統計的なハドロン生成 #### - 2粒子相関関数 $$C(q) = \frac{N_{K^{-}p}(p_{K^{-}}, p_{p})}{N_{K^{-}}(p_{K^{-}})N_{p}(p_{p})}$$ (相互作用/量子統計が無ければ = 1) - 計算方法: Koonin-Pratt 公式 S.E. Koonin PLB 70, 43 (1977); S. Pratt, PRD 33, 1314 (1986) $$C(q) \simeq \left[d^3 r \, S(r) \left| \Psi_q^{(-)}(r) \right|^2 \right]$$ ソース関数 S(r) (放出源)<-> 波動関数 $\Psi_q^{(-)}(r)$ (相互作用) ### 波動関数の振る舞いと相関関数 #### 球対称ソースでs波相互作用が支配的な場合 $$C(q) \simeq 1 + \int_0^\infty dr \, S(r) \{ |\chi_q(r)|^2 - \sin^2(qr) \}$$ 相関の定性的な振る舞いは相互作用の性質を反映 ### チャームセクターの実験データ #### 観測されたチャームを含む相関関数: $DN, D\pi, DK$ ALICE collaboration, PRD 106, 052010 (2022); Talk by F. Grosa @ Quark Matter 2022 チャーム系で散乱データを得る唯一の方法 (統計はまだ低い) ## 目次 導入:強い相互作用とハドロン - ハドロン物理の難しさ/面白さ ジ ハドロン物理とフェムトスコピー - ハドロン間相互作用の解明 ジフェムトスコピーの応用 - K⁻p 相互作用と A(1405) 共鳴 まとめ 参考:永江知文、兵藤哲雄「K中間子原子核の物理」(共立出版) フェムトスコピーの応用 ### π中間子とカイラル対称性 多数のハドロンの中で π中間子だけ有意に軽い - カイラル対称性の自発的破れ - 無質量のNambu-Goldstone粒子の出現 Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961); Phys. Rev. 124, 246 (1961) https://www.nobelprize.org フェムトスコピーの応<u>用</u> ### ハドロンの表記とK中間子 陽子pと中性子nのクォーク組成 $p \sim uud$, $n \sim udd$ まとめて N と表記 (核子) #### 3種の π 中間子とクォーク組成 $$\pi^+ \sim u \bar{d}, \quad \pi^0 \sim \frac{u \bar{u} - d d}{\sqrt{2}}, \quad \pi^- \sim d \bar{u}$$ まとめて π と表記(π 中間子) #### K中間子: π のu,dクォークをsクォークに置き換えた粒子 $$\bar{K}^0 \sim s\bar{d}, \quad K^- \sim s\bar{u}$$ $K^+ \sim u\bar{s}, \quad K^0 \sim d\bar{s}$ まとめて \bar{K} と表記、sを含む まとめてKと表記、 \bar{s} を含む \bar{K} 中間子(反 K 中間子) K 中間子 例) $ar{K}N$ は K^-p や $ar{K}^0n$ を意味する ### Λ(1405) と *RN* 散乱 #### **Λ(1405)** は標準的な描像で記述できない -> エキゾチック候補 N. Isgur and G. Karl, PRD18, 4187 (1978) - :理論 二:実験 #### チャンネル結合散乱での共鳴状態 - MB状態との結合:カイラルSU(3)動力学 永江知文、兵藤哲雄「K中間子原子核の物理」(共立出版) $\pi\Sigma$ 閾値 ### **K⁻p** 相関の実験データ #### **K⁻p** 散乱の全断面積 Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011) - 古い泡箱のデータ - 統計精度、解像度が良くない - $-\bar{K}^{0}n$ 閾値カスプは見えない #### K-p 相関関数 **ALICE collaboration, PRL 124, 092301 (2020)** - 高い精度 $(\bar{K}^{0}n$ カスプが見える) - \bar{K}^{0} n 閾値下のエネルギーでのデータ **->** Λ(1405) **の**理論に関する重要な制限 ### チャンネル結合効果 #### s波Schrödinger方程式 $$\begin{pmatrix} \frac{-1}{2\mu_{1}} \frac{d^{2}}{dr^{2}} + V_{11}(r) + V_{C}(r) & V_{12}(r) & \cdots \\ V_{21}(r) & \frac{-1}{2\mu_{2}} \frac{d^{2}}{dr^{2}} + V_{22}(r) + \Delta_{2} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} \chi_{K^{-}p}(r) \\ \chi_{\bar{K}^{0}n}(r) \\ \vdots \\ \gamma_{K^{0}n}(r) \end{pmatrix} = E \begin{pmatrix} \chi_{K^{-}p}(r) \\ \chi_{\bar{K}^{0}n}(r) \\ \vdots \\ \gamma_{K^{0}n}(r) \end{pmatrix}$$ $$\vdots & \vdots & \ddots \end{pmatrix}$$ $$\frac{\partial}{\partial L} \frac{\partial}{\partial L} + V_{11}(r) + V_{C}(r) & \cdots \\ V_{12}(r) V_{12}(r$$ #### 波動関数の漸近形 (r→∞) $$\begin{pmatrix} \chi_{K^-p}(r) \\ \chi_{\bar{K}^0n}(r) \\ \vdots \end{pmatrix} \propto \begin{pmatrix} \#e^{-iqr} + \#e^{iqr} \\ \#e^{-iq_2r} + \#e^{iq_2r} \\ \vdots \end{pmatrix}$$ 内向き + 外向き - $\bar{K}^0 n, \pi^+ \Sigma^-, \pi^0 \Sigma^0, \pi^- \Sigma^+, \pi^0 \Lambda$ からの遷移が $\chi_i(r)$ $i \neq K^- p$ に含まれる ### チャンネル結合と相関関数 #### チャンネル結合Koonin-Pratt公式 - R. Lednicky, V.V. Lyuboshitz, V.L. Lyuboshitz, Phys. Atom. Nucl. 61, 2950 (1998); - J. Haidenbauer, NPA 981, 1 (2019); - Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise, PRL124, 132501 (2020) $$C_{K^{-p}}(\boldsymbol{q}) \simeq \int d^3 \boldsymbol{r} \, S_{K^{-p}}(\boldsymbol{r}) |\Psi_{K^{-p},\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2 + \sum_{i \neq K^{-p}} \omega_i \int d^3 \boldsymbol{r} \, S_i(\boldsymbol{r}) |\Psi_{i,\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2$$ - \bar{K}^0 n, $\pi^+\Sigma^-$, $\pi^0\Sigma^0$, $\pi^-\Sigma^+$, π^0 Λ からの遷移 - ω_i : K^-p に対するチャンネル i の重み チャンネル結合効果は小さいソースで顕著 ### カイラルSU(3)動力学による相関関数 波動関数 $\Psi_{i,q}^{(-)}(r)$: チャンネル結合京都 $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ ポテンシャル K. Miyahara, T. Hyodo, W. Weise, PRC98, 025201 (2018) - ソース関数 S(r): ガウシアン, $R \sim 1$ fm <- K^+p データ - 重み $\omega_{\pi\Sigma} \sim 2$:統計模型による見積もり Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise, PRL124, 132501 (2020) ALICEの相関関数データをよく再現する ### ソースサイズ依存性 #### 5.02 TeV Pb-Pb 衝突のデータ **ALICE collaboration, PLB 822, 136708 (2021)** - 散乱長 $a_{K^-p} = -0.91 + 0.92i$ fm サイズ R の大きいソースで相関が抑制 <- 理論の予言 ### ソースサイズ依存性の体系的な研究 pp, p-Pb, Pb-Pb衝突での相関関数 ALICE collaboration, EPJC 83, 340 (2023) $$C_{K^{-p}}(\boldsymbol{q}) \simeq \int d^3 \boldsymbol{r} \, S_{K^{-p}}(\boldsymbol{r}) |\Psi_{K^{-p},\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2 + \sum_{i \neq K^{-p}} \omega_i \int d^3 \boldsymbol{r} \, S_i(\boldsymbol{r}) |\Psi_{i,\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2$$ データを説明するために 必要な増加因子 理論的に予想される ω_i の値 $\pi\Sigma$ 相互作用はOK \bar{K}^{0} _n チャンネルの相互作用を改善する余地がある? ### まとめ 強い相互作用: QCD (クォーク・ グルーオンの理論)から多様な ハドロンの性質が生じる ジ フェムトスコピー:従来不可能だった ハドロン間相互作用が検証可能に 新たな情報が得られている 参考:永江知文、兵藤哲雄「K中間子原子核の物理」(共立出版)