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Scattering experiments and femtoscopy
Introduction — femtoscopy

Traditional methods: scattering experiments

- Limited statistics (low-energy)
- Limited channels: NN, YN, πN, KN, K̄N, ⋯

Y. Ikeda et al. / Physics Letters B 706 (2011) 63–67 65

Fig. 2. Calculated K − p elastic, charge exchange and strangeness exchange cross sections as function of K − laboratory momentum, compared with experimental data [12].
The solid curves represent best fits of the full NLO calculations to the complete data base including threshold observables. The shaded uncertainty bands are explained in
the text.

with the K −p reduced mass, µr = mK M p/(mK + M p), and includ-
ing important second order corrections [6]. We use the accurate
SIDDHARTA measurements [10]:

!E = 283 ± 36(stat) ± 6(syst) eV,

Γ = 541 ± 89(stat) ± 22(syst) eV.

The available data base is completed by the collection of (less
accurate) scattering cross sections [12] (see Fig. 2). We do not in-
clude measured πΣ mass spectra in the fitting procedure itself but
rather generate them as “predictions” from our coupled-channels
calculations.

4. Results and discussion

Using the unitary coupled-channels method just described, the
basic aim of the present work is to establish a much improved
input set for chiral SU(3) dynamics, by systematic comparison
with a variety of empirical data and with special focus on the
new constraints provided by the recent kaonic hydrogen measure-
ments [10]. A detailed uncertainty analysis is performed. It will be

demonstrated that previous uncertainty measures [7,9] can be re-
duced considerably.

We have carried out χ2 fits to the empirical data set in several
consecutive steps: first starting with the leading order (TW) terms,
then adding direct and crossed Born terms, and finally using the
complete NLO effective Lagrangian. The results are summarized in
Table 1. All calculations have been performed using empirical me-
son and baryon masses. This implies in particular that those parts
of the NLO parameters b0,bD and bF responsible for shifting the
baryon octet masses from their chiral limit, M0, to their physi-
cal values, are already taken care of. The remaining renormalized
parameters, denoted by b̄0, b̄D and b̄F , are then expected to be
considerably smaller in magnitude than the ones usually quoted in
tree-level chiral perturbation theory. Similar renormalization argu-
ments imply that the pseudoscalar meson decay constants should
be chosen at or close to their physical values [13],

fπ = 92.4 MeV, f K = (1.19 ± 0.01) fπ ,

fη = (1.30 ± 0.05) fπ . (11)

It turns out that best fit results can indeed be achieved with these
physical decay constants as inputs. This is a non-trivial obser-

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011)

the transport code used in the simulation from GEANT3 [48]
to GEANT4 [49].
The effects related to momentum resolution effects are

accounted for by correcting the theoretical correlation
function, similarly to what shown in Refs. [33] and [41].
The theoretical correlation function Cðk"Þtheoretical depends
not only on the interaction between particles, but also on
the profile and the size of the particle emitting source.
Under the assumption that there is a common Gaussian
source for all particle pairs produced in pp collisions at a
fixed energy, the size of the source considered in the present
analysis is fixed from the baryon-baryon analyses described
in Refs. [33] and [41]. The impact of strongly decaying
resonances (mainly K" decaying into K and Δ decaying
into p) on the determination of the radius for Kp pairs was
studied using different Monte Carlo simulations [45,46]
and found to be 10%. This contribution was linearly added
to the systematic uncertainty associated with the radius.
The radii of the considered Gaussian sources are r0 ¼
1.13% 0.02þ0.17

−0.15 fm [33] for collisions at
ffiffiffi
s

p
¼ 5 and

7 TeV, and r0 ¼ 1.18% 0.01% 0.12 fm [41] for the
ffiffiffi
s

p
¼

13 TeV collisions.
The comparison of the measured Cðk"Þ for same-charge

Kp pairs with different models is shown in Fig. 1. Each
panel presents the results at different collision energy and
the comparison with two different scenarios. The blue band
represents the correlation function evaluated as described in
Eq. (1), assuming only the presence of the Coulomb
potential to evaluate the Cðk"Þtheoretical term. The red band
represents the correlation function assuming the strong
potential implemented in the Jülich model [50] in addition
to the Coulomb potential. The latter has been implemented

using the Gamow factor [51]. In the bottom panels, the
difference between data and model evaluated in the middle
of each k" interval, and divided by statistical error of data
for the three considered collision energies are shown. The
width of the bands represents the n-σ range associated to
the model variations. The reduced χ2 are also shown. This
comparison reveals that the Coulomb interaction is not able
to describe the data points, as expected, while the intro-
duction of a strong potential allows us to reproduce
consistently the data when the same source radius as for
baryon-baryon pairs is considered. Hence, the measured
correlation functions are sensitive to the strong interaction
and can be used to test different strong potentials for the
K−p system, assuming a common source for all the Kp
pairs produced in a collision.
Similar to Fig. 1 for like-sign pairs, Fig. 2 shows the

data-model comparison for unlike-sign pairs. The measured
Cðk"Þ is reported for the three different collision energies
and the Cðk"Þ distributions were compared with different
interaction models. Since all the models considered in this
Letter do not take the presence of Λð1520Þ into account,
only the region below 170 MeV=c is considered in the
comparison. The blue bands show results obtained using
CATS with a Coulomb potential only.
The remaining curves include, on top of the Coulomb

attraction, different descriptions of the K̄N strong inter-
action. The width of each band accounts for the uncer-
tainties in the λ parameters, the source radius and the
baseline. The light blue bands corresponds to the Kyoto
model calculations with approximate boundary conditions
on the K−p wave function which neglect the contributions
from Σπ and Λπ coupled channels [26,52–55]. Moreover,
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FIG. 2. (K−p ⊕ Kþp̄) correlation functions obtained (from left to right) from pp collisions at
ffiffiffi
s

p
¼ 5, 7, 13 TeV. The fourth panel

shows the combined results at the three colliding energies; the number of pairs in each data sample has been used as weight. The inset
shows the correlation function evaluated for pp collisions at

ffiffiffi
s

p
¼ 5 TeV in a wider k" interval. The measurement is presented by the

black markers; the vertical lines and the boxes represent the statistical and systematic uncertainties, respectively. Bottom panels
represent comparison with models as described in the text.

PHYSICAL REVIEW LETTERS 124, 092301 (2020)

092301-4

Femtoscopy: correlation function
ALICE collaboration, PRL 124, 092301 (2020) C K

−
p(

q)

|q |

- Excellent precision (  cusp)K̄0n

- Various systems: ΛΛ, NΩ, ϕN, K̄Λ, DN, ⋯

- Heavy hadrons: possible!

- Heavy ( ) hadrons: impossiblec, b

https://inspirehep.net/literature/927436
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Experimental data in charm sector
Observed correlation functions with charm: DN, Dπ, DK

ALICE collaboration, PRD 106, 052010 (2022);
ALICE collaboration, arXiv:2401.13541 [nucl-ex]

as previously mentioned, the systematic uncertainty on
Cexpðk"Þ is estimated by varying the proton and D−-
candidate selection criteria and ranges between 0.5% and
3% as a function of k". The uncertainties of the λi weights
are derived from the systematic uncertainties on the proton
and D− purities (Pp and PD−), fD"− , and fnonprompt reported
in Sec. III A. The systematic uncertainties of CpðKþπ−π−Þðk"Þ
are estimated following the same procedure adopted for
Cexpðk"Þ and, in addition, by varying the range of the fit of
the correlation function parametrized from the sidebands
regions of the invariant mass distribution. Additional
checks are performed by varying the invariant mass interval
used to define the sidebands region of up to 100 MeV=c2.
The resulting systematic uncertainty ranges from 1% to
5%. The systematic uncertainty of CpD"−ðk"Þ is due to the
uncertainty on the emitting source. Considering the small
λpD"−ðk"Þ this uncertainty results to be negligible compared
to the other sources of uncertainty. The overall relative
Systematic uncertainty on CpD−ðk"Þ resulting from the
different sources ranges between 3% and 10% and is
maximum in the lowest k" interval.

IV. RESULTS

The resulting genuine CpD−ðk"Þ correlation function can
be employed to study the pD− strong interaction that is
characterized by two isospin configurations and is coupled
to the nD̄0 channel. First of all, in order to assess the effect
of the strong interaction on the correlation function, a
reference calculation including only the Coulomb interac-
tion is considered. The corresponding correlation function is
obtained using CATS [71]. Second, various theoretical
approaches to describe the strong interaction are bench-
marked, including meson exchange (J. Haidenbauer et al.
[22]), meson exchange based on heavy quark symmetry
(Y. Yamaguchi et al. [25]), an SU(4) contact interaction
(J. Hoffmann and M. Lutz [23]), and a chiral quark model
(C. Fontoura et al. [24]). The relative wave functions for the
model of J. Haidenbauer et al. [22] are provided directly,
while for the other models [23–25] they are evaluated by
employing a Gaussian potential whose strength is adjusted
to describe the corresponding published I ¼ 0 and I ¼ 1
scattering lengths listed in Table I. The pD− correlation
function is computed within the Koonin-Pratt formalism,
taking into account explicitly the coupling between the pD−

and nD̄0 channels [73] and including the Coulomb inter-
action [74]. The finite experimental momentum resolution is
considered in the modeling of the correlation functions [39].
The outcome of these models is compared in Fig. 3 with

the measured genuine pD− correlation function. The degree
of consistency between data and models is quantified by the
p-value computed in the range k" < 200 MeV=c. It is
expressed by the number of standard deviations nσ reported
in Table I, where the nσ range accounts, at one standard
deviation level, for the total uncertainties of the data points
and the models. The values of the scattering lengths f0 for
the different models are also reported in Table I. Here, the
high-energy physics convention on the scattering-length
sign is adopted: a negative value corresponds to either a
repulsive interaction or to an attractive one with presence of
a bound state, while a positive value corresponds to an
attractive interaction. The data are compatible with the
Coulomb-only hypothesis within ð1.1–1.5Þ σ. Nevertheless,
the level of agreement slightly improves in case of the
models by J. Haidenbauer et al. (employing g2σ=4π ¼ 2.25)
which predicts an attractive interaction, and by Y.
Yamaguchi et al. which foresees the formation of a ND̄
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FIG. 3. Genuine pD− correlation function compared with
different theoretical models (see text for details). The null
hypothesis is represented by the curve corresponding to the
Coulomb interaction only.

TABLE I. Scattering parameters of the different theoretical models for the ND̄ interaction [22–25] and degree of
consistency with the experimental data computed in the range k" < 200 MeV=c.

Model f0ðI ¼ 0Þ f0ðI ¼ 1Þ nσ

Coulomb (1.1–1.5)
Haidenbauer et al. [22] (g2σ=4π ¼ 2.25) 0.67 0.04 (0.8–1.3)
Hofmann and Lutz [23] −0.16 −0.26 (1.3–1.6)
Yamaguchi et al. [25] −4.38 −0.07 (0.6–1.1)
Fontoura et al. [24] 0.16 −0.25 (1.1–1.5)

S. ACHARYA et al. PHYS. REV. D 106, 052010 (2022)

052010-6

D−p

Introduction — femtoscopy

Unique way to obtain data in charm sector (yet low statistics)

Studying the interaction between charm and light-flavor mesons ALICE Collaboration

modeled using the well-understood Coulomb potential, while the latter is parameterized with a Gaussian
potential of the form

V (r) =V0 exp(�m
2
⇢r

2), (7)

where V0 is the potential strength and m⇢ is the mass of the lightest exchangeable meson, the ⇢ meson,
which is the parameter that controls the potential range. The strength V0 is tuned to reproduce the
scattering lengths of the model [30].

The theoretical models provide the scattering parameters in the (strangenenss, isospin) basis, but in the
experiment, the interactions are accessible only in the charge basis. The same-charge pairs consist of
a pure isospin state. The opposite-charge pairs are a mixture of two isospin states, which can be ad-
dressed by solving the coupled-channel Schrödinger equation with two isospin interaction components.
In the case of D(⇤)⇡ pairs, the isospin channel I = 3/2 is shared between the same- and opposite-charge
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Figure 4: Genuine correlation functions with statistical (bars) and systematic uncertainties (boxes) compared to
theoretical model predictions (bands), listed in Tables 4 and 5. The width of the theoretical bands represents the
uncertainty related to the source. The number of standard deviations ns is reported for each model in the legend.
The results are shown for D⇡ (first row) and DK (second row) for the opposite- (left column) and same-charge
(right column) combinations.
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D+K− D+K+

D+π− D+π+

https://inspirehep.net/literature/2011222
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Correlation function and KP formula
High-energy collision: chaotic source  of hadron emissionS(r)

- Definition

C(q) =
NK−p( pK−, pp)

NK−( pK−)Np( pp)

pp

pK−

p

K−

S(r)

(= 1 in the absence of FSI/QS)

relative 
momentum q

Introduction — femtoscopy

S. Cho, et al., ExHIC collaboration, PPNP 95, 279 (2017)

interaction

Source function  <—> wave function  (interaction)S(r) Ψ(−)
q (r)

- Theory (Koonin-Pratt formula)

C(q) ≃ ∫ d3r S(r) |Ψ(−)
q (r) |2 , Ψ(−)

q (r) ∝ S†e−iqr − e+iqr (r → ∞)

S.E. Koonin, PLB 70, 43 (1977); S. Pratt, PRD 33, 1314 (1986)
incoming + outgoing

http://inspirehep.net/record/1511900
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Wave functions and correlations
Spherical source with s-wave interaction dominance

C(q) ≃ 1 + ∫
∞

0
dr S(r){ | χq(r) |2 − sin2(qr)}

attraction repulsion

Introduction — femtoscopy

r
sin(qr)

χq(r)

S(r)

r

q

C(q)

1
q

C(q)

1

enhancement suppression

Correlation function <—> nature of interaction
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LL formula
Introduction — femtoscopy

Correlation function <—> observables ( )a0, re, f(q)

- Gaussian (relative) source S(r) = exp(−r2/4R2)/(4πR2)3/2

R. Lednicky, V.L. Lyuboshits, Yad. Fiz. 35, 1316 (1981)

 -  : source size (gaussian width is )R 2R

C(q) = 1 +
| f(q) |2

2R2
F3(re /R) +

2Re f(q)

πR
F1(2qR) −

Im f(q)
R

F2(2qR)

- zero-range interaction :  (use asymptotic w.f.)R ≫ Rint

f(q) =
1

q cot δ − iq
≃

1

− 1
a0

+ re

2 q2 − iq

-  : known functions,   : s-wave scattering amplitudeFi(x) f(q)

- s-wave interaction only

S. Cho, et al., ExHIC collaboration, PPNP 95, 279 (2017)

http://inspirehep.net/record/1511900
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Introduction: femtoscopy

Resonance contributions

Other recent topics (not covered in this talk)  

Summary and future prospects

Contents

Contents

S, Watanabe, T. Hyodo, in preparation

- higher partial waves —> Murase san

- Validity of LL formula

-  correlations —> Jinno sanΛα, Ξα

- s-wave resonance in correlation function
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Higher partial waves and resonance contributions
Resonances in  and in  are seenℓ = 0 ℓ ≠ 0

Questions
- Contribution from higher partial waves?
- Is Breit-Wigner function fine for resonance?

 : d-waveΛ(1520)
 : p-wave (weak decay)Ω

: d-waveΞ(1820)

ALICE Collaboration Physics Letters B 845 (2023) 138145

Fig. 1. Upper: measured correlation function for !–K− pairs (empty points) with 
statistical (line) and systematic (gray boxes) uncertainties. Lower: invariant mass 
spectrum of !–K− pairs used to build the measured correlation function. Only the 
statistical uncertainties are shown. The upper x-axis indicates the energy at rest 
E =

√
(k∗)2 + m2

! +
√

(k∗)2 + m2
K of the pair written as a function of the relative 

momentum of the !–K− pair. The quantity E corresponds to the invariant mass 
M of the !–K− pairs. The colored vertical dashed lines indicate the values of the 
relative momentum k∗ (upper panel) and the value of the energy E at rest of each 
resonance (lower panel) corresponding to its nominal mass extracted in the final 
femtoscopic fit.

strong decay to !–K− . In order to help the convergence of the fi-
nal femtoscopic fit, a fit of the total Cbackground(k∗) correlation to 
the data is performed in the k∗ region of 190 − 600 MeV/c to es-
timate the weights α# , αi as well as the masses and widths of the 
resonances. A change of ±10% in the upper limit of the prefit range 
is included in the evaluation of the final systematic uncertainties. 
These parameters are then kept free in the final femtoscopic fit of 
Ctot(k∗) to the data and the values obtained for the masses and 
widths are found to be compatible with the available PDG val-
ues [31] and recent measurements [29,30]. The orange band in 
Figs. 2 and 3 shows the total Cbackground(k∗) correlation function 
extracted in the final femtoscopic fit, multiplied by the normaliza-
tion factor ND , for !–K+ and !–K− pairs, respectively.

The last ingredient needed to model the data is the strong in-
teraction of the !–K+ and !–K− pairs entering in the Cmodel(k∗)
in Eq. (2) via the genuine correlation function Cgen(k∗). This is 
modeled for both pairs using the Lednický–Lyuboshits analytical 
formula [70], following the approach used in Ref. [46],

C(k∗)LL = 1 +
[

1
2

∣∣∣∣∣
f (k∗)

R

∣∣∣∣∣

2(

1 − d0

2
√

π R

)

+ 2ℜ f (k∗)√
π R

F1(2k∗R)

− ℑ f (k∗)
R

F2(2k∗R)

]

. (4)

The scattering amplitude f (k∗) is the quantity embedding the scat-
tering parameters and providing information on the underlying 
interaction. Typically, f (k∗) is expressed via the effective-range 
expansion (ERE) f (k∗) =

(
1
f0

+ 1
2 d0k∗2 − ik∗

)−1
, in which f0 is 

the scattering length and d0 is the effective range. The parame-
ter R is the size of the emitting source with a Gaussian profile. 
In this work it was fixed using the core-resonance model taken 
from Ref. [53], already employed in several previous femtoscopic 
analyses performed in small colliding systems as pp collisions 
and anchored to p–p correlations. The core radius for !–K+ and 
!–K− pairs is rcore(⟨mT⟩ = 1.35 GeV/c2) = 1.11 ± 0.04 fm. In or-
der to use the core-resonance total source in Eq. (4), this must be 
parametrized with a Gaussian distribution. The presence of long-
lived strong resonances feeding to ! and kaons introduces a sig-
nificant exponential tail for large r∗ , which cannot be described 
with a single Gaussian [5,6,8,10,13]. The total source is hence mod-
eled with a weighted sum of two Gaussians, leading to an effective 
emitting source Seff(r∗) = λS [ωS S1(r∗) + (1 − ωS)S2(r∗)], in which 
r1 = 1.202+0.043

−0.042 fm, r2 = 2.330+0.050
−0.045 fm, λS = 0.9806+0.0006

−0.0008, and 
ωS = 0.7993+0.0037

−0.0027. As systematic variation of the source function, 
these values are varied within the uncertainties. Due to the addi-
tive property of correlation functions, the final genuine correlation 
is then taken as the sum of two correlations evaluated with the 
two properly weighted Gaussian sources. To preserve the correct 
normalization of the emitting source and the unitarity of the λ pa-
rameters [2] in Cmodel(k∗), a (1−λS ) contribution is added.

The understanding of the !K− interaction, particularly in the 
low k∗ region, is strictly connected to the '(1620) state. In prin-
ciple, since '(1620) shares the same quantum numbers as the 
!–K− pair, the two systems can couple strongly. The Belle collab-
oration recently published the observation of the '(1620) state in 
the 'π decay channel (Ethr.1 = mπ + m' = 1461.3 MeV/c2) [28]. 
The reported mass and widths in Ref. [28] are M'(1620) = 1610.4 ±
6.0 MeV/c2, ('(1620) = 60.0 ± 4.8 MeV, which indicates that the 
decay of '(1620) into !K− (Ethr.2 = mK− + m! = 1609.4 MeV/c2) 
is kinematically allowed. No experimental evidence of this decay 
channel has been observed so far. The presented work provides 
quantitative evidence of this process.

The '(1620) state can be clearly seen in the peak at k∗ ≈
80 MeV/c in the lower panel of Fig. 1. Hence, to model the !K−

interaction at low k∗ , the '(1620) must be taken into account 
in the Lednický–Lyuboshits approach. Similar scenarios, with res-
onances contributing to the signal in the low k∗ region, were 
observed in K0

S − K± correlations measured in pp and Pb–Pb colli-
sions, in which the interaction mainly goes through the formation 
of the a0 resonance. A way to properly include such a resonant in-
teraction is to write the scattering amplitude in Eq. (4) in terms of 
the probability distribution describing the state. Due to the vicin-
ity of the !K− decay-channel threshold, the '(1620) resonance 
must be described with a Flatté-like distribution [71] such as the 
Sill distribution used in Ref. [72]. The corresponding scattering am-
plitude can be written as

f (k∗) =
−2(̃!K−

E2 − M2 + i(̃'π

√
E2 − E2

thr.'π + i(̃!K−
√

E2 − Ethr.!K−
2

(5)

in which M is the mass of the '(1620) state, (̃i='π,!K− are the 
effective partial widths as defined in Ref. [72], and Ethr.i='π,!K−

are the threshold energies for the two channels, as defined above.

4

- Simple Breit-Wigner function has been used

Resonance contributions

the transport code used in the simulation from GEANT3 [48]
to GEANT4 [49].
The effects related to momentum resolution effects are

accounted for by correcting the theoretical correlation
function, similarly to what shown in Refs. [33] and [41].
The theoretical correlation function Cðk"Þtheoretical depends
not only on the interaction between particles, but also on
the profile and the size of the particle emitting source.
Under the assumption that there is a common Gaussian
source for all particle pairs produced in pp collisions at a
fixed energy, the size of the source considered in the present
analysis is fixed from the baryon-baryon analyses described
in Refs. [33] and [41]. The impact of strongly decaying
resonances (mainly K" decaying into K and Δ decaying
into p) on the determination of the radius for Kp pairs was
studied using different Monte Carlo simulations [45,46]
and found to be 10%. This contribution was linearly added
to the systematic uncertainty associated with the radius.
The radii of the considered Gaussian sources are r0 ¼
1.13% 0.02þ0.17

−0.15 fm [33] for collisions at
ffiffiffi
s

p
¼ 5 and

7 TeV, and r0 ¼ 1.18% 0.01% 0.12 fm [41] for the
ffiffiffi
s

p
¼

13 TeV collisions.
The comparison of the measured Cðk"Þ for same-charge

Kp pairs with different models is shown in Fig. 1. Each
panel presents the results at different collision energy and
the comparison with two different scenarios. The blue band
represents the correlation function evaluated as described in
Eq. (1), assuming only the presence of the Coulomb
potential to evaluate the Cðk"Þtheoretical term. The red band
represents the correlation function assuming the strong
potential implemented in the Jülich model [50] in addition
to the Coulomb potential. The latter has been implemented

using the Gamow factor [51]. In the bottom panels, the
difference between data and model evaluated in the middle
of each k" interval, and divided by statistical error of data
for the three considered collision energies are shown. The
width of the bands represents the n-σ range associated to
the model variations. The reduced χ2 are also shown. This
comparison reveals that the Coulomb interaction is not able
to describe the data points, as expected, while the intro-
duction of a strong potential allows us to reproduce
consistently the data when the same source radius as for
baryon-baryon pairs is considered. Hence, the measured
correlation functions are sensitive to the strong interaction
and can be used to test different strong potentials for the
K−p system, assuming a common source for all the Kp
pairs produced in a collision.
Similar to Fig. 1 for like-sign pairs, Fig. 2 shows the

data-model comparison for unlike-sign pairs. The measured
Cðk"Þ is reported for the three different collision energies
and the Cðk"Þ distributions were compared with different
interaction models. Since all the models considered in this
Letter do not take the presence of Λð1520Þ into account,
only the region below 170 MeV=c is considered in the
comparison. The blue bands show results obtained using
CATS with a Coulomb potential only.
The remaining curves include, on top of the Coulomb

attraction, different descriptions of the K̄N strong inter-
action. The width of each band accounts for the uncer-
tainties in the λ parameters, the source radius and the
baseline. The light blue bands corresponds to the Kyoto
model calculations with approximate boundary conditions
on the K−p wave function which neglect the contributions
from Σπ and Λπ coupled channels [26,52–55]. Moreover,
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FIG. 2. (K−p ⊕ Kþp̄) correlation functions obtained (from left to right) from pp collisions at
ffiffiffi
s

p
¼ 5, 7, 13 TeV. The fourth panel

shows the combined results at the three colliding energies; the number of pairs in each data sample has been used as weight. The inset
shows the correlation function evaluated for pp collisions at

ffiffiffi
s

p
¼ 5 TeV in a wider k" interval. The measurement is presented by the

black markers; the vertical lines and the boxes represent the statistical and systematic uncertainties, respectively. Bottom panels
represent comparison with models as described in the text.
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K−p
K−Λ

: s-waveΞ(1620), Ξ(1690)
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Resonance with effective range expansion
Pole in the effective range expansion (s-wave)

Resonance contributions

- condition to have resonance ( )−π/4 ≤ arg(k−) < 0

T. Hyodo, PRL 111, 132002 (2013),
T. Kinugawa, T. Hyodo, arXiv:2403.12635 [nucl-th]

re ≤ a0 < 0

f(q) =
1

− 1
a0

+ re

2 q2 − iq
, q± =

i
re

± 1
re

2re

a0
− 1 + i0+

Choosing a0 = − 0.18 fm, re = − 9.1 fm

 shows BW resonance shapef(E)

E− = 50 − 10i MeV

q− = 217 − 21i MeV
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Figure 1: Epole = 20− 10i[MeV]
E = MRで Im(f)にピークが見られる。またE = MRでRe(f)は 0をとる。
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Figure 2: Epole = 50− 10i[MeV]
Re(Epole)が変化すると、それに応じて Im(f)のピークやRe(f)が 0をとる点が移動する。

4.2 共鳴が相関関数CLL(q)に与える影響
4.2.1 様々な相互作用における相関関数
CLL(q, a0, re)として、横軸実数運動量 q[MeV]、有効レンジ re = 0fm、相互作用が弱い斥力 a0 =
0.3fm(赤)、弱い引力 a0 = −0.3fm(青)、束縛状態 a0 = 10fm(緑)、virtual state a0 = −10fm(黒)の場合の相関関数をプロット。
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Figure 3: a0 = 0.3[MeV]

6

—> cross section  : peakσ ∝ Im f(E)

https://inspirehep.net/literature/1232512
https://inspirehep.net/literature/2769909
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Resonance with effective range expansion
LL formula can be simplified by optical theorem

Resonance contributions

C(q) = 1 +
| f(q) |2

2R2
F3(re /R) +

2Re f(q)

πR
F1(2qR) −

Im f(q)
R

F2(2qR)

K. Murase, T. Hyodo, in preparation

Correlation function: Peak (Im) + Background (Re)

7.2.2 壁みたいなポテンシャル
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Figure 45: V1 = 50 MeVの時
−985.6 < V0 < −968.4
−160.4 < V0 < −146

8 LL公式の精度
8.1 相関関数の比較
手でEpoleを入れた場合。a0(Epole), re(Epole)、ERE散乱振幅を用いたCLL。
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Figure 46: Epole = 50− 10i MeV

44

With a0 = − 0.18 fm, re = − 9.1 fm

q− = 217 − 21i MeV
S. Watanabe, T. Hyodo, in preparation

= 1 +
2Re f(q)

πR
F1(2qR) +

Im f(q)
2qR2 (e−(2qR)2 −

re /R

2 π )
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Validity of LL formula
Square-well potential

V(r) = {V0 (0 ≤ r ≤ Rint)
0 (Rint < r)

μ = 470 MeV, Rint = 1 fm

- source size R = 1 fm

Resonance contributions

attraction V0 = − 27 MeV repulsion V0 = 58 MeV

LL formula works well even for R = Rint
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Figure 10: b = 1 fm,R = 0.2 fm,V0 = 58 MeV
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Figure 11: b = 1 fm,R = 1 fm,V0 = −27 MeV

17

=
1

6a0
{3b(a0 − b) + 2b2 +

b2

a0
(a0 − b)− 3

k2
0

1

a0 − b
(a0 − b)} (151)

=
1

6a0
{(3ba0 − 3b2) + 2b2 + b2 − b3

a0
− 3

k2
0

} (152)

=
1

6a0
{3ba0 −

b3

a0
− 3

k2
0

} (153)

=
b

2
(1− b2

3a20
− 1

k2
0a0b

) (154)

∴ re = b(1− b2

3a20
− 1

k2
0a0b

) (155)

5.5 比較
LLでは r → ∞での波動関数を用いているため b ≪ R0で LL公式の精度が高そう。（井戸の外側の波動関数の範囲が大きいと精度高そう）
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Figure 9: b = 1 fm,R = 1 fm,V0 = 58 MeV
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Too small source size
Square-well potential

LL formula breaks down for R = 0.2Rint

attraction V0 = − 27 MeV repulsion V0 = 58 MeV

V(r) = {V0 (0 ≤ r ≤ Rint)
0 (Rint < r)

μ = 470 MeV, Rint = 1 fm

- source size R = 0.2 fm

Resonance contributions
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Figure 12: b = 1 fm,R = 0.2 fm,V0 = −27 MeV
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Figure 13: b = 1 fm,R = 1 fm,V0 = −830 MeV,kpole = (206,−201) MeV
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Figure 10: b = 1 fm,R = 0.2 fm,V0 = 58 MeV
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Figure 11: b = 1 fm,R = 1 fm,V0 = −27 MeV
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attraction V0 = − 830 MeV

—> resonance q = − 206 − 201i MeV

LL may not work when a near-threshold resonance exists

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  100  200  300  400  500  600  700  800

cll
cll2
ckp

C
(q

)

q [MeV]

Figure 12: b = 1 fm,R = 0.2 fm,V0 = −27 MeV
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Figure 13: b = 1 fm,R = 1 fm,V0 = −830 MeV,kpole = (206,−201) MeV
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- Correlation with R = Rint

15

When a near-threshold resonance exists
Square-well potential has resonance solutions

Resonance contributions

� � ��

-�

-�

�

�

� B

R1

R2 R3

Re p [b−1]

Im
p

[b
−1

]

T.A. Weber, C.L. Hammer, V.S. Zidell, Am. J. Phys. 50, 839 (1982)
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Femtoscopy: novel and useful method to study 
interactions of exotic hadrons and nuclei

Resonance contributions 

Summary

Summary

- LL formula works well even for , 
  but breaks down for 

R = Rint

R ≃ 0.2Rint

- unique tool to study charm sector

S. Watanabe, T. Hyodo, in preparation

- Near-threshold resonance —> LL fails?

- Resonance contribution in LL : 
  peak (Im) plus background (Re) 


