Femtoscopy for exotic hadrons and nuclei

Tetsuo Hyodo

Tokyo Metropolitan Univ.

Contents

Introduction — Femtoscopy primer

Femtoscopy for exotic hadrons

- K^-p correlations for $\Lambda(1405)$

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise, PRL124, 132501 (2020)

Femtoscopy for hypernuclei

- $\Lambda \alpha$ correlations for Λ in medium

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, PRC110, 014001 (2024)

Summary

Scattering experiments and femtoscopy

Traditional methods: scattering experiments

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011)

- Limited channels: NN, YN, πN , KN, $\bar{K}N$, ...
- Heavy (c,b) hadrons: impossible
- Limited statistics (low-energy)

Femtoscopy: correlation function

ALICE collaboration, PRL 124, 092301 (2020)

- Various systems: $\Lambda\Lambda, N\Omega, \phi N, \bar{K}\Lambda, DN, \cdots$
- Heavy hadrons: possible!
- Excellent precision (\bar{K}^0n cusp)

Experimental data in charm sector

Observed correlation functions with charm: $DN, D\pi, DK$

ALICE collaboration, PRD 106, 052010 (2022);

ALICE collaboration, PRD 110, 032004 (2024)

Unique way to obtain data in charm sector (yet low statistics)

 k^* (MeV/c)

Correlation function and KP formula

High-energy collision: chaotic source S(r) of hadron emission

- Definition

$$C(q) = \frac{N_{K^-p}(p_{K^-}, p_p)}{N_{K^-}(p_{K^-})N_p(p_p)}$$
 (= 1 in the absence of FSI/QS)

- Theory (Koonin-Pratt formula)

incoming + outgoing

S.E. Koonin, PLB 70, 43 (1977); S. Pratt, PRD 33, 1314 (1986)

$$C(\boldsymbol{q}) \simeq \int d^3 \boldsymbol{r} \, S(\boldsymbol{r}) |\Psi_{\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2, \quad \Psi_{\boldsymbol{q}}^{(-)}(\boldsymbol{r}) \propto S^{\dagger} e^{-i\boldsymbol{q}\boldsymbol{r}} - e^{+i\boldsymbol{q}\boldsymbol{r}} \quad (\boldsymbol{r} \to \infty)$$

Source function S(r) < -> wave function $\Psi_q^{(-)}(r)$ (interaction)

Wave functions and correlations

Spherical source with s-wave interaction dominance

$$C(q) \simeq 1 + \int_0^\infty dr \, S(r) \{ |\chi_q(r)|^2 - \sin^2(qr) \}$$

repulsion

Correlation function <-> nature of interaction

Contents

Introduction — Femtoscopy primer

Femtoscopy for exotic hadrons

- K^-p correlations for $\Lambda(1405)$

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise, PRL124, 132501 (2020)

Femtoscopy for hypernuclei

- $\Lambda \alpha$ correlations for Λ in medium

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, PRC110, 014001 (2024)

Summary

$\Lambda(1405)$ and $\bar{K}N$ scattering

$\Lambda(1405)$ does not fit in standard picture —> exotic candidate

N. Isgur and G. Karl, PRD18, 4187 (1978)

: theory

: experiment

Resonance in coupled-channel scattering

- Coupling to MB: chiral SU(3) dynamics

 $\bar{K}N$ threshold $\Lambda(1405)$ $\pi\Sigma$ threshold

Coupled-channel effects

Schrödinger equation (s-wave)

$$\begin{pmatrix} \frac{-1}{2\mu_1}\frac{d^2}{dr^2} + V_{11}(r) + V_{C}(r) & V_{12}(r) & \cdots \\ V_{21}(r) & \frac{-1}{2\mu_2}\frac{d^2}{dr^2} + V_{22}(r) + \Delta_2 & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} \psi_{K^-p}(r) \\ \psi_{\bar{K}^0n}(r) \\ \vdots \end{pmatrix} = E \begin{pmatrix} \psi_{K^-p}(r) \\ \psi_{\bar{K}^0n}(r) \\ \vdots \end{pmatrix}$$
 Coulomb threshold energy difference

Asymptotic $(r \to \infty)$ wave function (incoming + outgoing)

$$\begin{pmatrix} \psi_{K^{-p}}(r) \\ \psi_{\bar{K}^{0}n}(r) \\ \vdots \end{pmatrix} \propto \begin{pmatrix} S_{11}^{\dagger} e^{-iqr} - e^{iqr} \\ S_{12}^{\dagger} e^{-iq_{2}r} - 0 \times e^{iq_{2}r} \\ \vdots \end{pmatrix} \quad (r \to \infty)$$

- Transition from $\bar{K}^0n, \pi^+\Sigma^-, \pi^0\Sigma^0, \pi^-\Sigma^+, \pi^0\Lambda$ is in $\psi_i(r)$ with $i \neq K^-p$

Coupled-channel correlation function

Coupled-channel Koonin-Pratt formula

R. Lednicky, V.V. Lyuboshitz, V.L. Lyuboshitz, Phys. Atom. Nucl. 61, 2950 (1998);

- J. Haidenbauer, NPA 981, 1 (2019);
- Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise, PRL124, 132501 (2020)

$$C_{K^{-p}}(\mathbf{q}) \simeq \int d^3 \mathbf{r} \, S_{K^{-p}}(\mathbf{r}) |\Psi_{K^{-p},\mathbf{q}}^{(-)}(\mathbf{r})|^2 + \sum_{i \neq K^{-p}} \mathbf{\omega}_i \int d^3 \mathbf{r} \, S_i(\mathbf{r}) |\Psi_{i,\mathbf{q}}^{(-)}(\mathbf{r})|^2$$

- Transition from $\bar{K}^0 n, \pi^+ \Sigma^-, \pi^0 \Sigma^0, \pi^- \Sigma^+, \pi^0 \Lambda$
- ω_i : weight of channel *i* source relative to K^-p

Coupled-channel effect is enhanced for small sources

Correlation from chiral SU(3) dynamics

Wave function $\Psi_{i,a}^{(-)}(r)$: Kyoto $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential

K. Miyahara, T. Hyodo, W. Weise, PRC98, 025201 (2018)

- Source function S(r): gaussian, $R \sim 1$ fm from K^+p data
- Source weight $\omega_{\pi\Sigma} \sim 2$ by simple statistical model estimate

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise, PRL124, 132501 (2020)

Correlation is well reproduced by chiral SU(3) potential

Large source case

New data with Pb-Pb collisions at 5.02 TeV

ALICE collaboration, PLB 822, 136708 (2021)

- Scattering length $a_{K^{-}p} = -0.91 + 0.92i$ fm

Correlation is suppressed at larger R, as predicted

Systematic study of source size dependence

Correlations in pp, p-Pb, Pb-Pb by Kyoto $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential

ALICE collaboration, EPJC 83, 340 (2023)

$$C_{K^{-p}}(\mathbf{q}) \simeq \int d^3\mathbf{r} \, S_{K^{-p}}(\mathbf{r}) \, |\Psi_{K^{-p},\mathbf{q}}^{(-)}(\mathbf{r})|^2 + \sum_{i \neq K^{-p}} \alpha_i \omega_i \int d^3\mathbf{r} \, S_i(\mathbf{r}) \, |\Psi_{i,\mathbf{q}}^{(-)}(\mathbf{r})|^2$$

 $ω_i$: expected weight by Thermal Fist + Blast Wave

enhancement needed to explain data

expected weight is OK

More strength is needed in the \bar{K}^0n channel

Contents

Introduction — Femtoscopy primer

Femtoscopy for exotic hadrons

- K^-p correlations for $\Lambda(1405)$

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise, PRL124, 132501 (2020)

Femtoscopy for hypernuclei

- $\Lambda \alpha$ correlations for Λ in medium

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, PRC110, 014001 (2024)

Summary

Motivation

A solution to hyperon puzzle in neutron stars

- ANN three-body force for repulsion at high density

D. Gerstung, N. Kaiser, W. Weise, EPJA 55, 175 (2020)

How to verify this in experiments?

- Λ directed flow in heavy ion collisions

Y. Nara, A. Jinno, K. Murase, A. Ohnishi, PRC 106, 044902 (2022)

∆-nucleus correlation function?

- Heavy nuclei are difficult to produce
- Strong binding of α: two-body treatment justified

 $\Lambda \alpha$ correlation function —> nature of $\Lambda \alpha$ potential?

 $\Lambda \alpha$ correlations for Λ in medium

$\Lambda \alpha$ potentials

Phenomenological $\Lambda \alpha$ potentials ($^{5}_{\Lambda}$ He binding energy)

- I. Kumagai-Fuse, S. Okabe, Y. Akaishi, PLB 345, 386 (1997)
- SG: single gaussian
- Isle: two gaussians (with core)

Skyrme-Hartree Fock methods

- LY4: phenomenorogical
D.E. Lanskov, Y. Yamamoto, PRC 55, 2330 (1997)

- Chi3: based on chiral EFT with ANN force
 - A. Jinno, K. Murase, Y. Nara, A. Ohnishi, PRC 108, 065803 (2023)
- Both potentials reproduce hypernuclear data from C to Pb
- α density distribution —> $\Lambda \alpha$ potentials

Effect of repulsive core —> correlation function?

$\Lambda \alpha$ correlation functions: source size dependence

Correlation functions from small and large sources

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, PRC110, 014001 (2024)

- Bound state signature (dip at low q in small source)
- No difference in large source ($R \sim 3 \text{ fm}$)
- Potential dependence in small source ($R \sim 1 \text{ fm}$)

$\Lambda \alpha$ correlation functions: potential dependence

Correlation functions and $\Lambda \alpha$ potentials

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, PRC110, 014001 (2024)

- $U_{\Lambda\alpha}(r=0)$: |s|e > LY-IV > Chi3 > SG
- $C_{\Lambda q}(q=0)$: Isle < LY-IV < Chi3 < SG
- Central repulsion suppresses correlation at low q

Femtoscopy: novel and useful method to study interactions of exotic hadrons and nuclei

- unique tool to study charm sector

K⁻p correlations

- precise test for $\Lambda(1405)$ and $\bar{K}N$ interactions

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL124, 132501 (2020)

Λα correlations

- hint for repulsive core in $\Lambda \alpha$ interaction

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, PRC110, 014001 (2024)

Hadron2025

Hadron 2025 conference will be held in Osaka

- March 27-31, 2025
- Registration will be open soon

https://hadron2025.rcnp.osaka-u.ac.jp/

