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Observed hadrons
Particle Data Group (PDG)

Introduction: structure of unstable hadrons
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Exotic hadrons

- Quark content ∼ ccūd̄

- Near  thresholdD*+D0

Introduction: structure of unstable hadrons

Observation of tetraquark Tcc
LHCb collaboration, Nature Phys. 18, 7, 751 (2022); Nature Commun. 13, 1, 3351 (2022) 

LETTERS NATURE PHYSICS

and background components. The signal component is described 
by the convolution of the detector resolution with a resonant shape, 
which is modelled by a relativistic P-wave two-body Breit–Wigner 
(BW) function modified by a Blatt–Weisskopf form factor with a 
meson radius parameter of 3.5 GeV−1. The use of a P-wave reso-
nance is motivated by the expected JP = 1+ quantum numbers for 
the T+

cc

 state. A two-body decay structure T+
cc

→ AB is assumed with 
m

A

= 2m

D

0

 and m
B

= m

π

+, where m
π

+ stands for the known mass 
of the π+ meson. Several alternative prescriptions are used for the 
evaluation of the systematic uncertainties. Despite its simplicity, the 
model serves well to quantify the existence of the T+

cc

 state and to 
measure its properties, such as the position and the width of the 
resonance. A follow-up study91 investigates the underlying nature 
of the T+

cc

 state, expanding on the modelling of the signal shape and 
the determination of its physical properties. The detector resolution 
is modelled by the sum of two Gaussian functions with a common 
mean, where the additional parameters are taken from simulation 
(Methods) with corrections applied32,92,93. The root mean square of 
the resolution function is around 400 keV c−2. A study of the D0π+ 
mass distribution for D0D0π+ combinations in the region above the 
D*0D+ mass threshold but below 3.9 GeV c−2 shows that approxi-
mately 90% of all random D0D0π+ combinations contain a genuine 
D*+ meson. On the basis of this observation, the background com-
ponent is parameterized by the product of a two-body phase space 
function and a positive second-order polynomial. The resulting 
function is convolved with the detector resolution.

The fit results are shown in Fig. 1, and the parameters of interest, 
namely the signal yield, N, the mass parameter of the BW function rel-
ative to the D*+D0 mass threshold, δm

BW

≡ m

BW

− (m
D

∗+ +m

D

0), 
and the width parameter, ΓBW, are listed in Table 1. The statistical 
significance of the observed T+

cc

D

0

D

0

π

+ signal is estimated using 
Wilks’ theorem to be 22 s.d. The fit suggests that the mass param-
eter of the BW shape is slightly below the D*+D0 mass threshold.  
The statistical significance of the hypothesis δmBW < 0 is estimated 
to be 4.3 s.d.

To validate the presence of the signal component, several addi-
tional cross-checks are performed. The data are categorized accord-
ing to data-taking periods, including the polarity of the LHCb 
dipole magnet and the charge of the T+

cc

 candidates. Instead of 
statistically subtracting the non-D0 background, the mass of each 
D → K−π+ candidate is required to be within a narrow region around 
the known mass of the D0 meson38. The results are found to be con-
sistent among all samples and analysis techniques. Furthermore, 
dedicated studies are performed to ensure that the observed 
signal is not caused by kaon or pion misidentification, doubly 
Cabibbo-suppressed D0 → K+π− decays or D0

D

0 oscillations, decays 
of charm hadrons originating from beauty hadrons or artefacts due 
to the track reconstruction creating duplicate tracks.

Systematic uncertainties for the δmBW and ΓBW parameters are 
summarized in Table 2 and described below. The largest systematic 
uncertainty is related to the fit model and is studied using pseudo-
experiments with alternative parameterizations of the D0D0π+ mass 
shape. Several variations in the fit model are considered: changes 
in the signal model due to the imperfect knowledge of the detector 
resolution, an uncertainty in the correction factor for the resolution 
taken from control channels, parameterization of the background 
component and the additional model parameters of the BW func-
tion. The model uncertainty related to the assumption of JP = 1+ 
quantum numbers of the state is estimated and listed separately. 
The results are affected by the overall detector momentum scale, 
which is known to a relative precision of δα = 3 × 10−4 (ref. 94). The 
corresponding uncertainty is estimated using simulated samples 
where the momentum scale is modified by factors of (1± δα). In 
the reconstruction, the momenta of charged tracks are corrected 
for energy loss in the detector material, the amount of which is 
known with a relative uncertainty of 10%. The resulting uncertainty 
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Fig. 1 | The distribution of the D0D0π+ mass. The distribution of the 
D0D0π+ mass after statistical subtraction of the contribution of the non-D0 
background, with the result of the fit with the two-component function 
described in the text. The horizontal bin width is indicated on the vertical 
axis legend. The inset shows a zoomed signal region with a fine binning 
scheme. Uncertainties on the data points are statistical only and represent 
one standard deviation, calculated as a sum in quadrature of the assigned 
weights from the background subtraction procedure.

Table 1 | Parameters obtained from the fit to the D0D0π+ mass 
spectrum: signal yield, N, BW mass relative to the D*+D0 
mass threshold, δmBW, and width, ΓBW. The uncertainties are 
statistical only

Parameter Value

N 117!±!16
δmBW −273!±!61!keV!c−2

ΓBW 410!±!165!keV

Table 2 | Systematic uncertainties for the δmBW and ΓBW 
parameters. The total uncertainty is calculated as the sum 
in quadrature of all components except for those related to 
the assignment of JP quantum numbers, which are handled 
separately

Source σ

δm

BW

(

keV c

−2

)

σΓ
BW

(keV)

Fit model
Resolution model 2 7
Resolution correction factor 1 30
Background model 3 30
Model parameters <1 <1
Momentum scale 3 —
Energy loss corrections 1 —
D*+!−!D0 mass difference 2 —
Total 5 43

JP quantum numbers +11

−14

+18

−38
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Conventional, hadronic matter consists of baryons and 
mesons made of three quarks and a quark–antiquark pair, 
respectively1,2. Here, we report the observation of a hadronic 
state containing four quarks in the Large Hadron Collider 
beauty experiment. This so-called tetraquark contains two 
charm quarks, a u  and a d  quark. This exotic state has a mass 
of approximately 3,875!MeV and manifests as a narrow peak 
in the mass spectrum of D0D0π+ mesons just below the D*+D0 
mass threshold. The near-threshold mass together with the 
narrow width reveals the resonance nature of the state.

Quantum chromodynamics, the theory of the strong force, 
describes the interactions of coloured quarks and gluons and the 
formation of hadronic matter, that is, mesons and baryons. While 
quantum chromodynamics makes precise predictions at high ener-
gies, the theory has difficulties describing the interactions of quarks 
in hadrons from first principles due to the highly nonperturba-
tive regime at the corresponding energy scale. Hence, the field of 
hadron spectroscopy is driven by experimental discoveries that are 
sometimes unexpected, which could lead to changes in the research 
landscape. Along with conventional mesons and baryons, made of a 
quark–antiquark pair (q

1

q

2

) and three quarks (q1q2q3), respectively, 
particles with an alternative quark content, known as exotic states, 
have been actively discussed since the birth of the constituent quark 
model1–8. This discussion has been revived by recent observations 
of numerous tetraquark q

1

q

2

q

3

q

4

 and pentaquark q
1

q

2

q

3

q

4

q

5

 candi-
dates9–36. Due to the closeness of their masses to known particle-pair 
thresholds37,38, many of these states are likely to be hadronic mol-
ecules39–42 where colour-singlet hadrons are bound by residual 
nuclear forces similar to the electromagnetic van der Waals forces 
attracting electrically neutral atoms and molecules. An ordinary 
example of a hadronic molecule is the deuteron formed by a proton 
and a neutron. On the other hand, an interpretation of exotic states 
as compact multiquark structures is also possible43.

All exotic hadrons observed so far predominantly decay via 
the strong interaction, and their decay widths vary from a few to 
a few hundred MeV. A discovery of a long-lived exotic state, sta-
ble with respect to the strong interaction, would be intriguing.  
A hadron with two heavy quarks Q and two light antiquarks q , that 
is, Q

1

Q

2

q

1

q

2

, is a prime candidate to form such a state44–49. In the 
limit of a large heavy-quark mass, the two heavy quarks Q1Q2 form 
a point-like, heavy, colour-antitriplet object that behaves similarly 
to an antiquark, and the corresponding state should be bound. It is 
expected that the b quark is heavy enough to sustain the existence 
of a stable bbud  state with a binding energy of about 200 MeV with 
respect to the sum of the masses of the pseudoscalar, B− or B0, and 
vector, B*− or B∗0, beauty mesons, which defines the minimal mass 
for the strong decay to be allowed. In the case of the bcud  and ccud  
systems, there is currently no consensus regarding whether such 
states exist and are narrow enough to be detected experimentally. 

The similarity of the ccud  tetraquark state and the Ξ++
cc

 baryon con-
taining two c quarks and a u quark leads to a relationship between 
the properties of the two states. In particular, the measured mass of 
the Ξ

++
cc

 baryon with quark content ccu50–52 implies that the mass 
of the ccud  tetraquark is close to the sum of the masses of the D0 
and D*+ mesons with quark content of cu  and cd , respectively, as 
suggested in ref. 53. Theoretical predictions for the mass of the ccud  
ground state with spin-parity quantum numbers JP = 1+ and isospin 
I = 0, denoted hereafter as T+

cc

, relative to the D*+D0 mass threshold

δm ≡ m

T

+
cc

− (m
D

∗+ +m

D

0) (1)

lie in the range of −300 < δm < 300 MeV (refs. 53–84), where m
D

∗+ 
and m

D

0 denote the known masses of the D*+ and D0 mesons38. 
Lattice quantum chromodynamics calculations also do not provide 
a definite conclusion on the existence of the T+

cc

 state or its binding 
energy73,85–87. The observation of the Ξ++

cc

 baryon50,51 and of a new 
exotic resonance decaying to a pair of J/ψ mesons29 by the LHCb 
experiment motivates the search for the T+

cc

 state.
In this Letter, the observation of a narrow state in the D0D0π+ 

mass spectrum near the D*+D0 mass threshold compatible with 
being a T+

cc

 tetraquark state is reported. Throughout this Letter, 
charge conjugate decays are implied. The study is based on proton–
proton (pp) collision data collected by the LHCb detector at the 
Large Hadron Collider at the European Organization for Nuclear 
Research at centre-of-mass energies of 7, 8 and 13 TeV, correspond-
ing to integrated luminosity of 9 fb−1. The LHCb detector88,89 is a 
single-arm forward spectrometer covering the pseudorapidity range 
of 2 < η < 5, designed to study particles containing b or c quarks and 
is further described in Methods. The pseudorapidity η is defined 
as − log

(

tan

θ

2

)

, where θ is a polar angle of the track relative to the 
proton beam line.

The D0D0π+ final state is reconstructed by selecting events with 
two D0 mesons and a positively charged pion, all produced at the 
same pp interaction point. Both D0 mesons are reconstructed in the 
D0→K−π+ decay channel. The selection criteria are similar to those 
used in ref. 90. To subtract the background not originating from two 
D0 candidates, an extended, unbinned maximum-likelihood fit to 
the two-dimensional distribution of the masses of the two D0 can-
didates is performed. The corresponding procedure, together with 
the selection criteria, is described in detail in Methods. To improve 
the δm mass resolution and to make the determination insensitive 
to the precision of the D0 meson mass, the mass of the D0D0π+ com-
binations is calculated with the mass of each D0 meson constrained 
to the known value38. The resulting D0D0π+ mass distribution for 
selected D0D0π+ combinations is shown in Fig. 1. A narrow peak 
near the D*+D0 mass threshold is clearly visible.

An extended, unbinned, maximum-likelihood fit to the D0D0π+ 
mass distribution is performed using a model consisting of the signal 

Observation of an exotic narrow doubly charmed 
tetraquark
LHCb Collaboration*

NATURE PHYSICS | VOL 18 | JULY 2022 | 751–754 | www.nature.com/naturephysics 751

- Internal structure?

Decay into : structure of unstable statesD0D0π+

c d̄
ūc

D0
D*+

? ?
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Unstable states via strong interaction
Stable/unstable hadrons

Introduction: structure of unstable hadrons
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Most hadrons are unstable (above two-hadron threshold)

~210 mesons~170 baryons
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Compositeness and elementarity
Compositeness of near-threshold bound states

- Normalization of  + completeness of free eigenstates|B⟩

⟨B |B⟩ = 1, 1 = |B0⟩⟨B0 | + ∫
dp

(2π)3
| p⟩⟨p | = Q + P

- : real and nonnegative —> interpreted as probabilityZ, X

“elementarity” compositeness

- Definition
1 = Z + X, Z ≡ |⟨B0 |B⟩ |2 , X ≡ ∫

dp
(2π)3

|⟨p |B⟩ |2 = ⟨B |P |B⟩

Compositeness: quantitative measure of internal structure
- Eigenstates of Hamiltonian H = H0 + V

H0 |B0⟩ = ν0 |B0⟩, H0 | p⟩ =
p2

2μ
| p⟩, H |B⟩ = − B |B⟩

B0

p

−p
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Compositeness  of stable bound state: deuteronX
S. Weinberg, Phys. Rev. 137, B672 (1965);
T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013)

Weak-binding relation

|d⟩ = X |NN⟩ + Z |6q⟩, X + Z = 1, 0 ≤ X ≤ 1

Compositeness of near-threshold bound states

- Shallow bound state ( ): observables R ≫ Rtyp X ← (a0, B)

a0 = R { 2X
1 + X

+ 𝒪 ( Rtyp

R )}, R =
1
2μB

radius of bound statescattering length

range of interaction
6q

NN

-  for  <— low-energy universality X = 1 B = 0 a0 = R

-  gives violation of universality by coupling to X < 1 |6q⟩

T. Hyodo, PRC90, 055208 (2014)

https://inspirehep.net/literature/1256957
https://inspirehep.net/literature/1305435
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Application to physical systems

Near-threshold bound states
Compositeness of near-threshold bound states

T. Kinugawa, T. Hyodo, PRC 106, 015205 (2022)

TOMONA KINUGAWA AND TETSUO HYODO PHYSICAL REVIEW C 106, 015205 (2022)

FIG. 11. Comparison of the bound states with the distribution of
the magnitude of the uncertainty Ē in the effective range model in
the R̃int-r̃e plane. The legends are the same as Fig. 5.

however, keep in mind that the applicable region in Fig. 10
is the result of the specific model (the effective range model)
and the applicable boundaries are model dependent.

For the discussion of the meaningful estimation, we plot
the parameters in Table III in comparison with the magnitude
of the uncertainty Ē in R̃int-r̃e plane in Fig. 11. Because all
the states are contained in the region Ē ! 0.5, we expect that
meaningful estimations of the compositeness are possible for
these states.

C. Estimation of compositeness

We now estimate the compositeness X of the bound states
listed in Table II. We summarize the estimated uncertainties
ξeff = |re|/R and ξint = Rint/R in Table IV. Here, we set Reff =
|re| assuming that the coefficients of the higher order terms in
the effective range expansion are of natural size. We then show
the estimated compositeness with the uncertainty band with
ξeff [X (ξeff )] and ξint [X (ξint )] in Table IV. In the last column
we also show Rtyp in the improved weak-binding relation (28).

We can see that the central values of the compositeness
Xc are larger than unity except for X (3872) in Table IV.
This is because the radius R is smaller than the scattering
length a0 in these states. As we discussed in Sec. III A, Xc is
larger than unity for a0 > R. The relation between a0 and R is
also approximately determined by the sign of re. Neglecting
the O(k4) terms in the effective range expansion, we obtain

TABLE IV. The uncertainties ξeff , ξint , the estimated compos-
iteness X , and the length scale Rtyp in the improved weak-binding
relation. X (ξeff ) [X (ξint )] stands for X estimated with ξeff (ξint).

Bound state ξeff ξint X (ξeff ) X (ξint ) Rtyp

d 0.405 0.331 1.68+3.18
−0.943 1.68+2.14

−0.824 Reff

X (3872) 0.160 0.0428 0.743+0.282
−0.213 0.743+0.0675

−0.0626 Reff

D∗
s0(2317) 0.0949 0.341 1.61+0.369

−0.288 1.61+2.09
−0.804 Rint

Ds1(2460) 0.192 0.345 1.12+0.540
−0.358 1.12+1.22

−0.566 Rint

N" dibaryon 0.277 0.149 1.40+1.20
−0.600 1.40+0.523

−0.364 Reff

"" dibaryon 0.337 0.252 1.56+1.95
−0.773 1.56+1.22

−0.626 Reff
3
#H 0.157 0.295 1.35+0.532

−0.366 1.35+1.25
−0.605 Rint

4He dimer 0.0757 0.0560 1.08+0.177
−0.152 1.08+0.128

−0.114 Reff

TABLE V. The compositeness X consis-
tent with the definition (36) estimated by the
improved weak-binding relation.

Bound state Compositeness X

d 0.74 ! X ! 1
X (3872) 0.53 ! X ! 1
D∗

s0(2317) 0.81 ! X ! 1
Ds1(2460) 0.55 ! X ! 1
N" dibaryon 0.80 ! X ! 1
"" dibaryon 0.79 ! X ! 1
3
#H 0.74 ! X ! 1
4He dimer 0.93 ! X ! 1

Eq. (22):

a0 = R
1

−re/(2R) + 1
. (71)

Because R > 0, we obtain a0 > R for positive re > 0, and
a0 < R for negative re < 0 from this equation. In fact, in
Table II, these relations are satisfied except for D∗

s0(2317)
and Ds1(2460) with the small effective range. In summary,
the central value of the compositeness is larger than unity for
a0 > R, which is expected to be realized with positive re > 0
when relation (71) approximately holds.

One may wonder that the central value Xc > 1 contradicts
with the definition of the compositeness, 0 ! X ! 1. In fact,
this problem for the deuteron partly motivates the works
in Refs. [27–29]. From our viewpoint, this problem can be
avoided by considering the uncertainty ξ as in Eq. (36) as
discussed below.

Focusing on the N" dibaryon, we find that the lower limit
of the compositeness estimated by ξint is larger than unity
[Xl (ξint ) = 1.04] from Table IV. Hence, the exact value of
the compositeness of the N" dibaryon is not contained in the
uncertainty band of X (ξint ), and we cannot perform the mean-
ingful estimation of the compositeness of the N" dibaryon
with the previous weak-binding relation (Rtyp = Rint). In fact,
we have seen that the N" dibaryon exists near the boundary
of the applicable region of the previous weak-binding relation
in the effective range model as shown in Fig. 10.

In the improved weak-binding relation with Eq. (27), we
calculate compositeness with the uncertainty band as X (ξeff )
[X (ξint )] for Rtyp = Reff (Rtyp = Rint). From the last column,
we see that X (ξint ) is adopted for the states D∗

s0(2317),
Ds1(2460), and 3

#H, and X (ξeff ) for other states. By taking the
region consistent with the definition 0 ! X ! 1 in Eq. (36),
we finally determine the compositeness X as shown in
Table V.

These results (0.5 ! X ! 1) indicate that the composite
component gives the largest fraction in the wavefunction for
all states. In particular, the 4He dimer is an almost purely com-
posite state with a small fraction of the other components (!
7%). However, the compositeness of X (3872) and Ds1(2460)
can be as low as ≈0.5, which is the boundary of the composite
dominance. Therefore, it is expected that the other compo-
nents would play a substantial role in these states. We find that
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Introduction: structure of unstale hadrons

Compositeness of near-threshold bound states

Near-threshold resonances 

Summary
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Resonances in effective range expansion
Effective range expansion (ERE): valid for small k

Near-threshold resonances

T. Hyodo, PRL111, 132002 (2013);
T. Kinugawa, T. Hyodo, arXiv:2403.12635 [hep-ph]

k± =
i
re

± 1
re

2re

a0
− 1 + i0+

length 1=a from!1 toþ1 in Fig. 1(a). The primary pole
moves from the bound state region to the virtual state
region, and merges with the conjugate pole at the double
root k! ¼ kþ ¼ i=re. The pole then moves off the imagi-
nary k axis while acquiring a real part, and eventually turns
into a resonance. We note that the double root should lie in
the negative region of the imaginary k axis, in order to have
a resonance (k! in the fourth quadrant). The properties of
the poles are summarized in Table I.

The scattering length and the effective range can be
expressed by the pole positions as

a ¼ kþ þ k!

ikþk!
; re ¼

2i

kþ þ k!
: (3)

In the present case, because kþ þ k! (kþk!) is purely
imaginary (real), both re and a are real numbers. The
scattering amplitude is then written as fðkÞ ¼ ðkþ þ
k!Þ=½iðk! kþÞðk! k!Þ' so the residue of the pole is
obtained as

lim
k!k(

ðk! k(ÞfðkÞ ¼ kþ þ k!

iðk( ! k)Þ : (4)

Again, this is a real number. For the bound and virtual
states, the residue of the primary pole k! is determined by
the position of the conjugate pole kþ and vice versa.
In the case of the resonances, kþ ¼ !ðk!Þ*, so the residue
is solely determined by the position of the pole. Note
that in general the residue of the resonance pole is a
complex number, which is independent of the pole
position. Equation (4) suggests that the properties of the

near-threshold resonances are constrained through the
threshold quantities.
Next we turn to the compositeness. For a weakly

bound state, the scattering length and the effective range
are related to the field renormalization constant as [4]
a ¼ !2ð1! ZÞR=ð2! ZÞ and re ¼ !ZR=ð1! ZÞ with
R ¼ ð2!BÞ!1=2, the reduced mass !, and the binding
energy B. The field renormalization constant Z is defined
as the overlap of the physical bound state with the elemen-
tary contribution other than the scattering state. By elim-
inating R, Z is given by

Z ¼ 1!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1! 1

1þ a=ð2reÞ

s
¼ 2k!

k! ! kþ
; (5)

where we choose the sign of the square root so that the
expression matches with the normalization 0< Z< 1 for
the bound states. The quantity X + 1! Z is called com-
positeness, which measures the two-body molecule com-
ponent in the bound state.
Now we consider the 1=a dependence of Z with a fixed

re < 0 [Fig. 1(b)]. It is instructive to consider X ¼ 1! Z,
instead of Z itself. The compositeness X is real and positive
for 1=a <!2=re. In addition, for the bound states (nega-
tive 1=a < 0), the compositeness is always normalized as
0<X < 1. We obtain a pure composite state X ¼ 1 in the
unitary limit 1=a ¼ 0. Beyond the unitary limit, the bound
state turns into a virtual state and the compositeness
exceeds unity. At the double root 1=a ¼ !2=re,X diverges
and for 1=a >!2=re, X becomes purely imaginary.
Interestingly, however, its magnitude is normalized within
0< jXj< 1 for the resonance case!1=re < 1=a. Here we
define a new quantity

!X +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!1þ 1

1þ a=ð2reÞ

s
;

which is real and positive for 1=a >!2=re, and properly
normalized for resonances (0< !X < 1). The normalization
is given at !X ¼ 1 at k! ¼ !1=re þ i=re with 1=a ¼
!1=re. The corresponding eigenenergy is

E! ¼ ðk!Þ2
2!

¼ ! i

!r2e
: (6)

This is a special state whose mass is located at the two-
body threshold and the width is determined solely by the
effective range; the width is small (large) for a large (small)
jrej. !X ¼ 0 is realized when Re k! ! þ1 (1=a ! þ1).

(a) (b)

FIG. 1 (color online). Trajectories of the pole positions k! and
kþ (a), and the field renormalization constant Z (b) increasing
the inverse scattering length 1=a for a fixed negative effective
range re < 0. Inverted triangles, squares, circles, crosses, and
triangles correspond to 1=a ¼ !1, 0, !2=re, !1=re, and þ1,
respectively. Solid (dashed) line with filled (empty) symbols
stands for k! (kþ).

TABLE I. Classification of the properties of the poles in the effective range expansion for re < 0.

Inverse scattering length 1=a < 0 0< 1=a <!2=re !2=re < 1=a <!1=re !1=re < 1=a

Primary pole Bound state Virtual state Virtual state with width Resonance
Conjugate pole Virtual state Virtual state Anti-virtual state with width Anti-resonance
Compositeness 0<X < 1 1<X 1< !X 0< !X < 1

PRL 111, 132002 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
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k+

k−

- Pole positions  <—> k± (a0, re)

Resonance solution ( ) re < 0

1
|re |

2re

a0
−1 ≥ 1

|re |
, ⇒

re

a0
≥ 1, ⇒ |a0 | ≤ |re |

- Energy  <—> ER = MR − i ΓR
2 (a0, re)

- Resonance with  : not only  but also |k− | → 0 |a0 | → ∞ |re | → ∞

f(k) = [− 1
a0

+
re

2 k2 − ik]
−1 bound state

virtual state

resonance
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Compositeness of resonances
Compositeness: pure imaginary  <— weak-binding relation

Near-threshold resonances

X =
1

1 − 2re

a0

= − i tan(θk), k− = |k− |eiθk

Resonance state: complex eigenenergy

H |R⟩ = ER |R⟩, ER = MR − i
ΓR

2
∈ ℂ

- Complex : probability?X

X ≡ ⟨R̃ |P |R⟩ = ∫
dp

(2π)3
⟨R̃ | p⟩⟨p |R⟩ ∈ ℂ

⟨R |H = ⟨R |E*R , ⟨R̃ |H = ⟨R̃ |ER

- Normalization by Gamow vector

⟨R |R⟩ → ∞, ⟨R̃ |R⟩ = 1

length 1=a from!1 toþ1 in Fig. 1(a). The primary pole
moves from the bound state region to the virtual state
region, and merges with the conjugate pole at the double
root k! ¼ kþ ¼ i=re. The pole then moves off the imagi-
nary k axis while acquiring a real part, and eventually turns
into a resonance. We note that the double root should lie in
the negative region of the imaginary k axis, in order to have
a resonance (k! in the fourth quadrant). The properties of
the poles are summarized in Table I.

The scattering length and the effective range can be
expressed by the pole positions as

a ¼ kþ þ k!

ikþk!
; re ¼

2i

kþ þ k!
: (3)

In the present case, because kþ þ k! (kþk!) is purely
imaginary (real), both re and a are real numbers. The
scattering amplitude is then written as fðkÞ ¼ ðkþ þ
k!Þ=½iðk! kþÞðk! k!Þ' so the residue of the pole is
obtained as

lim
k!k(

ðk! k(ÞfðkÞ ¼ kþ þ k!

iðk( ! k)Þ : (4)

Again, this is a real number. For the bound and virtual
states, the residue of the primary pole k! is determined by
the position of the conjugate pole kþ and vice versa.
In the case of the resonances, kþ ¼ !ðk!Þ*, so the residue
is solely determined by the position of the pole. Note
that in general the residue of the resonance pole is a
complex number, which is independent of the pole
position. Equation (4) suggests that the properties of the

near-threshold resonances are constrained through the
threshold quantities.
Next we turn to the compositeness. For a weakly

bound state, the scattering length and the effective range
are related to the field renormalization constant as [4]
a ¼ !2ð1! ZÞR=ð2! ZÞ and re ¼ !ZR=ð1! ZÞ with
R ¼ ð2!BÞ!1=2, the reduced mass !, and the binding
energy B. The field renormalization constant Z is defined
as the overlap of the physical bound state with the elemen-
tary contribution other than the scattering state. By elim-
inating R, Z is given by

Z ¼ 1!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1! 1

1þ a=ð2reÞ

s
¼ 2k!

k! ! kþ
; (5)

where we choose the sign of the square root so that the
expression matches with the normalization 0< Z< 1 for
the bound states. The quantity X + 1! Z is called com-
positeness, which measures the two-body molecule com-
ponent in the bound state.
Now we consider the 1=a dependence of Z with a fixed

re < 0 [Fig. 1(b)]. It is instructive to consider X ¼ 1! Z,
instead of Z itself. The compositeness X is real and positive
for 1=a <!2=re. In addition, for the bound states (nega-
tive 1=a < 0), the compositeness is always normalized as
0<X < 1. We obtain a pure composite state X ¼ 1 in the
unitary limit 1=a ¼ 0. Beyond the unitary limit, the bound
state turns into a virtual state and the compositeness
exceeds unity. At the double root 1=a ¼ !2=re,X diverges
and for 1=a >!2=re, X becomes purely imaginary.
Interestingly, however, its magnitude is normalized within
0< jXj< 1 for the resonance case!1=re < 1=a. Here we
define a new quantity

!X +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!1þ 1

1þ a=ð2reÞ

s
;

which is real and positive for 1=a >!2=re, and properly
normalized for resonances (0< !X < 1). The normalization
is given at !X ¼ 1 at k! ¼ !1=re þ i=re with 1=a ¼
!1=re. The corresponding eigenenergy is

E! ¼ ðk!Þ2
2!

¼ ! i

!r2e
: (6)

This is a special state whose mass is located at the two-
body threshold and the width is determined solely by the
effective range; the width is small (large) for a large (small)
jrej. !X ¼ 0 is realized when Re k! ! þ1 (1=a ! þ1).

(a) (b)

FIG. 1 (color online). Trajectories of the pole positions k! and
kþ (a), and the field renormalization constant Z (b) increasing
the inverse scattering length 1=a for a fixed negative effective
range re < 0. Inverted triangles, squares, circles, crosses, and
triangles correspond to 1=a ¼ !1, 0, !2=re, !1=re, and þ1,
respectively. Solid (dashed) line with filled (empty) symbols
stands for k! (kþ).

TABLE I. Classification of the properties of the poles in the effective range expansion for re < 0.

Inverse scattering length 1=a < 0 0< 1=a <!2=re !2=re < 1=a <!1=re !1=re < 1=a

Primary pole Bound state Virtual state Virtual state with width Resonance
Conjugate pole Virtual state Virtual state Anti-virtual state with width Anti-resonance
Compositeness 0<X < 1 1<X 1< !X 0< !X < 1
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Uncertain nature of resonance
Resonance contribution in a prepared state 1 = ⟨ψ |ψ⟩

Near-threshold resonances

T. Berggren, PLB33, 547 (1970)

- Completeness relation with contour deformation

1 = |R⟩⟨R̃ | + ∫C

dp
(2π)3

| p full⟩⟨p full |

T. Berggren, NPA109, 547 (1968)

σ(E)

E

1 = ZR + Xp, ZR = ⟨ψ |R⟩⟨R̃ |ψ⟩ ∈ ℂ

ZR

Xp

?

Introduce three probabilities
- certainly find  : |R⟩ a

- certainly find not  :  |R⟩ b

- uncertain: c

a + b + c = 1, a + c = |ZR | , b + c = |1 − ZR |
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New interpretation scheme
Decomposition of resonance wave function ⟨R̃ |R⟩ = 1

Near-threshold resonances

Introduce three probabilities

T. Kinugawa, T. Hyodo, arXiv:2403.12635 [hep-ph]

1 = |B0⟩⟨B0 | + ∫
dp

(2π)3
| p⟩⟨p |

1 = Z + X, X = ∫
dp

(2π)3
⟨R̃ | p⟩⟨p |R⟩ ∈ ℂ

- certainly find composite : 𝒳
- certainly find elementary :  𝒵

- uncertain: 𝒴

𝒳 + 𝒴 + 𝒵 = 1, 𝒳 + α𝒴 = |X | , 𝒵 + α𝒴 = |1 − X | = |Z |

- : parameter to control degree of uncertaintyα

https://inspirehep.net/literature/2769909
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Compositeness of resonances
 as functions of argument of eigenenergy𝒳, 𝒴, 𝒵

Near-threshold resonances

Near-threshold resonances are not composite dominant

- Large elementarity: 𝒵 ≳ 0.8

4
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FIG. 2. The probabilities X , Y, and Z as functions of the
argument of the eigenenergy �✓E . The solid line stands for
X , dashed for Y, and dotted for Z. The shaded area is the
non-interpretable region determined by the condition (12).

region in Fig. 2. Note that X is positive for |✓E | <
| arctan(�1/2)|.

We focus on the interpretable region. In the ✓E ! 0
limit, X = Y = 0 and Z = 1 because the complex X
goes to zero as seen in Eq. (7). The pole on the real axis
with ✓E ! 0 represents the state which does not couple
to the scattering states (� = 0). Because the coupling
to the scattering states induces the compositeness of the
state, it is natural to obtain the completely elementary
state with Z = 1 (e.g. the bare state). The value of Z
decreases from Z = 1 with the increase of |✓E |, but the
resonance in the interpretable region remains elementary
dominant with Z & 0.8. We therefore conclude that near-
threshold resonances with narrow width (small |✓E |) are
elementary dominant in accordance with the model anal-
ysis in Ref. [12]. This result shows that the property of
near-threshold resonances is completely opposite to near-
threshold bound states which are shown to be composite
dominant by the low-energy universality [12, 44, 50].

Comparison with previous works: Finally, we compare
the present results with the previous works by focusing
on the elementarity. In Refs. [12, 26, 27, 31, 35], the
fraction of the elementary component is defined using the
scattering length a0 and effective range re, or complex
compositeness X as follows:

Z̄ = 1�

s����
1

1� 2re/a0

���� (Ref. [12]), (14)

Z̃KH =
1� |X|+ |1�X|

2
(Refs. [26, 31]), (15)

Z̃ =
|1�X|

|X|+ |1�X|
(Ref. [27]), (16)

Z̄A = 1�

s
1

1 + |2re/a0|
(Ref. [35]). (17)

These quantities reduce to the original Z for bound
states. Let us compare these quantities with Z for a
given set of a0 and re, where we express X by a0 and
re using the relation (6). We vary 1/a0 from a positive

value to a sufficiently negative one for a fixed negative re
so that a bound state represented by the pole k� turns
into a virtual state and then into a resonance [12]. Be-
cause the fractions of the elementary component (14),
(15), (16), (17) and Z in Eq. (11) depend only on the
ratio of re to a0, we plot these quantities as functions of
�2re/a0 in Fig. 3 (a).

Before considering resonances, we discuss bound and
virtual states. In the �2re/a0 > 0 region where a
bound state appears, all the results become identical
by definition. In contrast, for a virtual state in the
�1 < �2re/a0 < 0 region, the fractions are quite dif-
ferent from each other. The virtual state is interpreted
as composite dominant with Z̃KH, Z̃, and Z̄A. In par-
ticular, with the prescription in Refs. [26, 31], Z̃KH = 0
always holds for the virtual state, i.e., completely com-
posite X̃KH = 1. However, Z̄ and Z are always nega-
tive for the virtual state. In our study, the virtual state
is classified as non-interpretable, in agreement with the
negative norm of the virtual state which indicates its un-
physical nature [61].

A resonance is represented by the pole in the
�2re/a0 < �2 region in Fig. 3 (a). The non-shaded
area (�2re/a0 . �18) corresponds to the interpretable
region where the resonance has a small decay width. To
focus on the resonance, in Fig. 3 (b), we plot the fractions
as functions of the argument of the eigenenergy �✓E in
the whole fourth quadrant (0 < �✓E  ⇡/2). We see
that all results converge to unity in the ✓E ! 0 (� ! 0)
limit. Furthermore, in the interpretable region, all ele-
mentarities are larger than 0.7. Hence, it is concluded
that near-threshold resonances with a narrow width are
elementary dominant with any prescriptions considered
here.

Summary: In this work, we examine the internal struc-
ture of near-threshold s-wave resonances through quan-
titative analysis. Initially, we demonstrate that near-
threshold s-wave resonances do not follow the low-energy
universality using the ERE. This is attributed to the large
negative effective range characteristic of near-threshold
resonances.

To analyze the internal structure of resonances,
we then introduce a novel probabilistic interpretation
scheme for their complex compositeness. The key idea is
to incorporate the probability of the uncertain identifica-
tion in addition to the compositeness and elementarity.
Additionally, in this framework, a discernible criterion to
exclude unphysical states is inherently embedded. This
is our solution related to the first issue.

To address the second issue, using our interpretation
scheme, we present quantitative evidence demonstrat-
ing that near-threshold resonances with a narrow decay
width exhibit elementary dominance. The elementary
dominance of resonances holds regardless of the origin,
because the compositeness and elementarity are deter-
mined within the ERE. This observation can be regarded

ER = |ER |eiθE

<— Narrow s-wave state is Feshbach resonance

( )Γ > Re E
narrow 
resonance
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Compositeness : probability of finding

Bound state exactly at threshold

Near threshold bound states

Near-threshold resonances

X

Summary

Summary

- completely composite   X = 1

- in general, composite X ∼ 1

- non-composite, 𝒳 ≲ 0.2

T. Kinugawa, T. Hyodo, PRC 109, 045205 (2024)

T. Hyodo, PRC90, 055208 (2014);

T. Kinugawa, T. Hyodo, arXiv:2403.12635 [hep-ph]
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