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相関関数における共鳴状態の影響
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相関関数とKP公式
高エネルギー衝突での相関関数 ：ハドロン間相互作用C(q)

- 定義
C(q) =

NK−p( pK−, pp)
NK−( pK−)Np( pp)

pp

pK−

p

K−

S(r)

（相互作用/量子統計が無ければ = 1）

相対運動量 q

導入：フェムトスコピー

S. Cho, et al., ExHIC collaboration, PPNP 95, 279 (2017)

相互作用

ソース関数  <—> 波動関数  (相互作用)S(r) Ψ(−)
q (r)

- KP (Koonin-Pratt) 公式

C(q) ≃ ∫ d3r S(r) |Ψ(−)
q (r) |2

S.E. Koonin, PLB 70, 43 (1977); S. Pratt, PRD 33, 1314 (1986)

http://inspirehep.net/record/1511900
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相関関数における共鳴状態
共鳴状態のピークの観測（  および  ）ℓ = 0 ℓ ≠ 0

 : d波Λ(1520)
 : p波（弱崩壊）, : d波Ω Ξ(1820)

ALICE Collaboration Physics Letters B 845 (2023) 138145

Fig. 1. Upper: measured correlation function for !–K− pairs (empty points) with 
statistical (line) and systematic (gray boxes) uncertainties. Lower: invariant mass 
spectrum of !–K− pairs used to build the measured correlation function. Only the 
statistical uncertainties are shown. The upper x-axis indicates the energy at rest 
E =

√
(k∗)2 + m2

! +
√

(k∗)2 + m2
K of the pair written as a function of the relative 

momentum of the !–K− pair. The quantity E corresponds to the invariant mass 
M of the !–K− pairs. The colored vertical dashed lines indicate the values of the 
relative momentum k∗ (upper panel) and the value of the energy E at rest of each 
resonance (lower panel) corresponding to its nominal mass extracted in the final 
femtoscopic fit.

strong decay to !–K− . In order to help the convergence of the fi-
nal femtoscopic fit, a fit of the total Cbackground(k∗) correlation to 
the data is performed in the k∗ region of 190 − 600 MeV/c to es-
timate the weights α# , αi as well as the masses and widths of the 
resonances. A change of ±10% in the upper limit of the prefit range 
is included in the evaluation of the final systematic uncertainties. 
These parameters are then kept free in the final femtoscopic fit of 
Ctot(k∗) to the data and the values obtained for the masses and 
widths are found to be compatible with the available PDG val-
ues [31] and recent measurements [29,30]. The orange band in 
Figs. 2 and 3 shows the total Cbackground(k∗) correlation function 
extracted in the final femtoscopic fit, multiplied by the normaliza-
tion factor ND , for !–K+ and !–K− pairs, respectively.

The last ingredient needed to model the data is the strong in-
teraction of the !–K+ and !–K− pairs entering in the Cmodel(k∗)
in Eq. (2) via the genuine correlation function Cgen(k∗). This is 
modeled for both pairs using the Lednický–Lyuboshits analytical 
formula [70], following the approach used in Ref. [46],

C(k∗)LL = 1 +
[

1
2

∣∣∣∣∣
f (k∗)

R

∣∣∣∣∣

2(

1 − d0

2
√

π R

)

+ 2ℜ f (k∗)√
π R

F1(2k∗R)

− ℑ f (k∗)
R

F2(2k∗R)

]

. (4)

The scattering amplitude f (k∗) is the quantity embedding the scat-
tering parameters and providing information on the underlying 
interaction. Typically, f (k∗) is expressed via the effective-range 
expansion (ERE) f (k∗) =

(
1
f0

+ 1
2 d0k∗2 − ik∗

)−1
, in which f0 is 

the scattering length and d0 is the effective range. The parame-
ter R is the size of the emitting source with a Gaussian profile. 
In this work it was fixed using the core-resonance model taken 
from Ref. [53], already employed in several previous femtoscopic 
analyses performed in small colliding systems as pp collisions 
and anchored to p–p correlations. The core radius for !–K+ and 
!–K− pairs is rcore(⟨mT⟩ = 1.35 GeV/c2) = 1.11 ± 0.04 fm. In or-
der to use the core-resonance total source in Eq. (4), this must be 
parametrized with a Gaussian distribution. The presence of long-
lived strong resonances feeding to ! and kaons introduces a sig-
nificant exponential tail for large r∗ , which cannot be described 
with a single Gaussian [5,6,8,10,13]. The total source is hence mod-
eled with a weighted sum of two Gaussians, leading to an effective 
emitting source Seff(r∗) = λS [ωS S1(r∗) + (1 − ωS)S2(r∗)], in which 
r1 = 1.202+0.043

−0.042 fm, r2 = 2.330+0.050
−0.045 fm, λS = 0.9806+0.0006

−0.0008, and 
ωS = 0.7993+0.0037

−0.0027. As systematic variation of the source function, 
these values are varied within the uncertainties. Due to the addi-
tive property of correlation functions, the final genuine correlation 
is then taken as the sum of two correlations evaluated with the 
two properly weighted Gaussian sources. To preserve the correct 
normalization of the emitting source and the unitarity of the λ pa-
rameters [2] in Cmodel(k∗), a (1−λS ) contribution is added.

The understanding of the !K− interaction, particularly in the 
low k∗ region, is strictly connected to the '(1620) state. In prin-
ciple, since '(1620) shares the same quantum numbers as the 
!–K− pair, the two systems can couple strongly. The Belle collab-
oration recently published the observation of the '(1620) state in 
the 'π decay channel (Ethr.1 = mπ + m' = 1461.3 MeV/c2) [28]. 
The reported mass and widths in Ref. [28] are M'(1620) = 1610.4 ±
6.0 MeV/c2, ('(1620) = 60.0 ± 4.8 MeV, which indicates that the 
decay of '(1620) into !K− (Ethr.2 = mK− + m! = 1609.4 MeV/c2) 
is kinematically allowed. No experimental evidence of this decay 
channel has been observed so far. The presented work provides 
quantitative evidence of this process.

The '(1620) state can be clearly seen in the peak at k∗ ≈
80 MeV/c in the lower panel of Fig. 1. Hence, to model the !K−

interaction at low k∗ , the '(1620) must be taken into account 
in the Lednický–Lyuboshits approach. Similar scenarios, with res-
onances contributing to the signal in the low k∗ region, were 
observed in K0

S − K± correlations measured in pp and Pb–Pb colli-
sions, in which the interaction mainly goes through the formation 
of the a0 resonance. A way to properly include such a resonant in-
teraction is to write the scattering amplitude in Eq. (4) in terms of 
the probability distribution describing the state. Due to the vicin-
ity of the !K− decay-channel threshold, the '(1620) resonance 
must be described with a Flatté-like distribution [71] such as the 
Sill distribution used in Ref. [72]. The corresponding scattering am-
plitude can be written as

f (k∗) =
−2(̃!K−

E2 − M2 + i(̃'π

√
E2 − E2

thr.'π + i(̃!K−
√

E2 − Ethr.!K−
2

(5)

in which M is the mass of the '(1620) state, (̃i='π,!K− are the 
effective partial widths as defined in Ref. [72], and Ethr.i='π,!K−

are the threshold energies for the two channels, as defined above.
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導入：共鳴状態の寄与

the transport code used in the simulation from GEANT3 [48]
to GEANT4 [49].
The effects related to momentum resolution effects are

accounted for by correcting the theoretical correlation
function, similarly to what shown in Refs. [33] and [41].
The theoretical correlation function Cðk"Þtheoretical depends
not only on the interaction between particles, but also on
the profile and the size of the particle emitting source.
Under the assumption that there is a common Gaussian
source for all particle pairs produced in pp collisions at a
fixed energy, the size of the source considered in the present
analysis is fixed from the baryon-baryon analyses described
in Refs. [33] and [41]. The impact of strongly decaying
resonances (mainly K" decaying into K and Δ decaying
into p) on the determination of the radius for Kp pairs was
studied using different Monte Carlo simulations [45,46]
and found to be 10%. This contribution was linearly added
to the systematic uncertainty associated with the radius.
The radii of the considered Gaussian sources are r0 ¼
1.13% 0.02þ0.17

−0.15 fm [33] for collisions at
ffiffiffi
s

p
¼ 5 and

7 TeV, and r0 ¼ 1.18% 0.01% 0.12 fm [41] for the
ffiffiffi
s

p
¼

13 TeV collisions.
The comparison of the measured Cðk"Þ for same-charge

Kp pairs with different models is shown in Fig. 1. Each
panel presents the results at different collision energy and
the comparison with two different scenarios. The blue band
represents the correlation function evaluated as described in
Eq. (1), assuming only the presence of the Coulomb
potential to evaluate the Cðk"Þtheoretical term. The red band
represents the correlation function assuming the strong
potential implemented in the Jülich model [50] in addition
to the Coulomb potential. The latter has been implemented

using the Gamow factor [51]. In the bottom panels, the
difference between data and model evaluated in the middle
of each k" interval, and divided by statistical error of data
for the three considered collision energies are shown. The
width of the bands represents the n-σ range associated to
the model variations. The reduced χ2 are also shown. This
comparison reveals that the Coulomb interaction is not able
to describe the data points, as expected, while the intro-
duction of a strong potential allows us to reproduce
consistently the data when the same source radius as for
baryon-baryon pairs is considered. Hence, the measured
correlation functions are sensitive to the strong interaction
and can be used to test different strong potentials for the
K−p system, assuming a common source for all the Kp
pairs produced in a collision.
Similar to Fig. 1 for like-sign pairs, Fig. 2 shows the

data-model comparison for unlike-sign pairs. The measured
Cðk"Þ is reported for the three different collision energies
and the Cðk"Þ distributions were compared with different
interaction models. Since all the models considered in this
Letter do not take the presence of Λð1520Þ into account,
only the region below 170 MeV=c is considered in the
comparison. The blue bands show results obtained using
CATS with a Coulomb potential only.
The remaining curves include, on top of the Coulomb

attraction, different descriptions of the K̄N strong inter-
action. The width of each band accounts for the uncer-
tainties in the λ parameters, the source radius and the
baseline. The light blue bands corresponds to the Kyoto
model calculations with approximate boundary conditions
on the K−p wave function which neglect the contributions
from Σπ and Λπ coupled channels [26,52–55]. Moreover,
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FIG. 2. (K−p ⊕ Kþp̄) correlation functions obtained (from left to right) from pp collisions at
ffiffiffi
s

p
¼ 5, 7, 13 TeV. The fourth panel

shows the combined results at the three colliding energies; the number of pairs in each data sample has been used as weight. The inset
shows the correlation function evaluated for pp collisions at

ffiffiffi
s

p
¼ 5 TeV in a wider k" interval. The measurement is presented by the

black markers; the vertical lines and the boxes represent the statistical and systematic uncertainties, respectively. Bottom panels
represent comparison with models as described in the text.

PHYSICAL REVIEW LETTERS 124, 092301 (2020)

092301-4

K−p
K−Λ

: s波Ξ(1620), Ξ(1690)

問題：

- c.f. 高次部分波の寄与（今回はs波に注目）
- 共鳴状態はBreit-WignerでOK？ピークの起源は？

K. Murase, T. Hyodo, J. Subatomic Part. Cosmol. 3, 100017 (2025)

ALICE collaboration, PRL 124, 092301 (2020); PLB845, 138145 (2023)

https://inspirehep.net/literature/2847980
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有効レンジ展開による散乱振幅
有効レンジ展開の散乱振幅の極（s波）

共鳴状態

- 共鳴解の条件 ( )−π/4 < arg(q−) < 0

T. Hyodo, PRL 111, 132002 (2013),
T. Kinugawa, T. Hyodo, arXiv:2403.12635 [nucl-th]

re < a0 < 0

f(q) =
1

− 1
a0

+ re

2 q2 − iq
, q± =

i
re

± 1
re

2re

a0
− 1 + i0+

 の場合a0 = − 0.18 fm, re = − 9.1 fm

 はBreit-Wigner型共鳴振幅 f(E)

q− = 217 − 21i MeV

—> 散乱断面積  のピークσ ∝ Im f(E)

https://inspirehep.net/literature/1232512
https://inspirehep.net/literature/2769909


5

相関関数における共鳴状態（LL公式）
LL公式：相関関数を散乱振幅の実部＋虚部で表現

LL公式

C(q) = 1 +
| f(q) |2

2R2
F3(re /R) +

2Re f(q)

πR
F1(2qR) −

Im f(q)
R

F2(2qR)

R. Lednicky, V.L. Lyuboshits, Yad. Fiz. 35, 1316 (1981);
K. Murase, T. Hyodo, J. Subatomic Part. Cosmol. 3, 100017 (2025)

相関関数のピーク（虚部）+ バックグラウンド（実部）

共鳴極を持つ散乱振幅を代入
q− = 217 − 21i MeV

S. Watanabe, T. Hyodo, in preparation

= 1 +
2Re f(q)

πR
F1(2qR) +

Im f(q)
2qR2 (e−(2qR)2 −

re

2 πR )
Cre(q) Cim(q)

https://inspirehep.net/literature/2847980
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波動関数と相関（引力）
引力井戸型 b = 1 fm, V0 = − 27 MeV

V(r) = {V0 (0 ≤ r ≤ b)
0 (b < r)

- ソースサイズ R = 1 fm

KP公式（引力）

波動関数が引き込まれ  で増大 —> 相関  が増大r ≲ R C(q)

q = 100 MeV

q = 60 MeV

C(q) ≃ 1 + ∫
∞

0
dr S(r){ |rψq(r) |2 − sin2(qr)}
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波動関数と相関（斥力）
斥力井戸型 b = 1 fm, V0 = 58 MeV

V(r) = {V0 (0 ≤ r ≤ b)
0 (b < r)

- ソースサイズ R = 1 fm

KP公式（引力）

波動関数が押し出され  で減少 —> 相関が減少r ≲ R

q = 100 MeV

q = 60 MeV

C(q) ≃ 1 + ∫
∞

0
dr S(r){ |rψq(r) |2 − sin2(qr)}
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波動関数と相関（共鳴）
井戸+障壁ポテンシャル b = 1 fm

V(r) =
V0 (0 ≤ r ≤ b)
V1 (b ≤ r ≤ 2b)
0 (2b < r)

- V0 = − 187 MeV, V1 = 100 MeV

KP公式（引力）

—> 共鳴@ q = 59 − 14i MeV

共鳴運動量で波動関数が  に局在 —> 相関のピークr ≲ R

q = 100 MeV

q = 60 MeV
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実験の相関関数に共鳴状態のピークが観測

相関関数における共鳴状態の寄与

まとめ

まとめ

- KP公式（波動関数）
  波動関数の局在によって相関にピークが生じる
  —> 共鳴ピークの物理的起源

S. Watanabe, T. Hyodo, in preparation

- LL公式（散乱振幅） 
  虚部のピーク + 実部のバックグラウンド
  —> 散乱断面積と相補的な情報？


