Femtoscopy for the systems with strangeness and charm

Tetsuo Hyodo

Tokyo Metropolitan Univ.

Contents

Introduction — Femtoscopy

Femtoscopy for strangeness

- $\Lambda \alpha$ and $\Xi \alpha$ correlations

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, PRC110, 014001 (2024); Y. Kamiya, A. Jinno, T. Hyodo, A. Ohnishi, arXiv:2409.13207 [nucl-th]

Femtoscopy for charm

- DD^* and $D\bar{D}^*$ correlations

Y. Kamiya, T. Hyodo, A. Ohnishi, EPJA58, 131 (2022)

Summary and future prospects

Correlation function and KP formula

High-energy collision: chaotic source S(r) of hadron emission

- Definition

$$C(q) = \frac{N_{K^-p}(p_{K^-}, p_p)}{N_{K^-}(p_{K^-})N_p(p_p)}$$
 (= 1 in the absence of FSI/QS)

- Theory (Koonin-Pratt formula)

incoming + outgoing

S.E. Koonin, PLB 70, 43 (1977); S. Pratt, PRD 33, 1314 (1986)

$$C(\boldsymbol{q}) \simeq \int d^3 \boldsymbol{r} \, S(\boldsymbol{r}) |\Psi_{\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2, \quad \Psi_{\boldsymbol{q}}^{(-)}(\boldsymbol{r}) \propto S^{\dagger} e^{-i\boldsymbol{q}\boldsymbol{r}} - e^{+i\boldsymbol{q}\boldsymbol{r}} \quad (\boldsymbol{r} \to \infty)$$

Source function S(r) < -> wave function $\Psi_q^{(-)}(r)$ (interaction)

Experimental data with strangeness and charm

Correlation functions observed by ALICE@LHC

ALICE collaboration, Nature 588, 232 (2020);

ALICE collaboration, PRD 106, 052010 (2022)

 $\Omega^- \sim sss$: strangeness S = -3, $D^- \sim \bar{c}d$: charm C = -1

Almost impossible in scattering experiments

Contents

Introduction — Femtoscopy

Femtoscopy for strangeness

- $\Lambda \alpha$ and $\Xi \alpha$ correlations

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, PRC110, 014001 (2024); Y. Kamiya, A. Jinno, T. Hyodo, A. Ohnishi, arXiv:2409.13207 [nucl-th]

Femtoscopy for charm

- DD^* and $D\bar{D}^*$ correlations

Y. Kamiya, T. Hyodo, A. Ohnishi, EPJA58, 131 (2022)

Summary and future prospects

$\Delta \alpha$ correlation: Motivation

A solution to hyperon puzzle in neutron stars

- ANN three-body force for repulsion at high density

D. Gerstung, N. Kaiser, W. Weise, EPJA 55, 175 (2020)

How to verify this in experiments?

- Λ directed flow in heavy ion collisions

Y. Nara, A. Jinno, K. Murase, A. Ohnishi, PRC 106, 044902 (2022)

∆-nucleus correlation function?

- Heavy nuclei are difficult to produce
- Strong binding of α: two-body treatment justified

 $\Lambda \alpha$ correlation function —> nature of $\Lambda \alpha$ potential?

$\Lambda \alpha$ potentials

Phenomenological $\Lambda \alpha$ potentials ($^{5}_{\Lambda}$ He binding energy)

- I. Kumagai-Fuse, S. Okabe, Y. Akaishi, PLB 345, 386 (1997)
- SG: single gaussian
- Isle: two gaussians (with core)

Skyrme-Hartree Fock methods

- LY4: phenomenorogical
D.E. Lanskov, Y. Yamamoto, PRC 55, 2330 (1997)

- Chi3: based on chiral EFT with ANN force
 - A. Jinno, K. Murase, Y. Nara, A. Ohnishi, PRC 108, 065803 (2023)
- Both potentials reproduce hypernuclear data from C to Pb
- α density distribution —> $\Lambda \alpha$ potentials

Effect of repulsive core —> correlation function?

$\Lambda \alpha$ correlation: source size dependence

Correlation functions from small and large sources

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, PRC110, 014001 (2024)

- Bound state signature (dip at low q in small source)
- No difference in large source ($R \sim 3 \text{ fm}$)
- Interaction dependence in small source ($R \sim 1 \text{ fm}$)

$\Lambda \alpha$ correlation: interaction dependence

Correlation functions and $\Lambda \alpha$ potentials

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, PRC110, 014001 (2024)

- $U_{\Lambda\alpha}(r=0)$: |s|e > LY-IV > Chi3 > SG
- $C_{\Lambda q}(q=0)$: Isle < LY-IV < Chi3 < SG
- Central repulsion suppresses correlation at low q

$\Xi \alpha$ correlation: Motivation

ΞN interactions ($^{11}S_0$, $^{31}S_0$, $^{13}S_1$, $^{33}S_1$) from lattice QCD and ChEFT

- K. Sasaki, et al. (HAL QCD), NPA 998, 121737 (2020);
- J. Haidenbauer, U.-G. Meißner, EPJA 55, 23 (2019)

-> Different predictions for $\Xi^-\alpha$ and $\Xi^0\alpha$ bound states

- E. Hiyama, M. Isaka, T. Doi, T. Hatsuda, PRC 106, 064318 (2022)
- H. Le, J. Haidenbauer, U.-G. Meißner, A. Nogga, EPJA 57, 339 (2021)

Three $\Xi \alpha$ potentials (attraction plus core)

Y. Kamiya, A. Jinno, T. Hyodo, A. Ohnishi, arXiv:2409.13207 [nucl-th]

- V_{folding}: folding HAL QCD ΞN potentials
- $V_{\text{double}} = V_{\text{folding}} \times 2$, $V_{\text{half}} = V_{\text{folding}}/2$

potential	$\Xi^{-}\alpha$ [MeV]	$\Xi^0 \alpha [{ m MeV}]$
$V_{ m folding}$	0.47	-
$V_{ m double}$	2.08	1.15
$V_{ m half}$	0.18	_

$\Xi \alpha$ correlation: source size dependence

$\Xi^0 \alpha$ Correlation functions

Y. Kamiya, A. Jinno, T. Hyodo, A. Ohnishi, arXiv:2409.13207 [nucl-th]

- V_{double}: strong source size dependence < bound state
- Dip in V_{forlding} and V_{half} < repulsice core?

Contents

Introduction — Femtoscopy

Femtoscopy for strangeness

- $\Lambda \alpha$ and $\Xi \alpha$ correlations

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, PRC110, 014001 (2024);

Y. Kamiya, A. Jinno, T. Hyodo, A. Ohnishi, arXiv:2409.13207 [nucl-th]

Femtoscopy for charm

- DD^* and $D\bar{D}^*$ correlations

Y. Kamiya, T. Hyodo, A. Ohnishi, EPJA58, 131 (2022)

Summary and future prospects

DD^* and $Dar{D}^*$ correlations

T_{cc} and X(3872)

$DD^* \sim T_{cc}$ sector

D^0D^{*+} and D^+D^{*0} correlation functions ($cc\bar{u}\bar{d}$, exotic)

Y. Kamiya, T. Hyodo, A. Ohnishi, EPJA58, 131 (2022)

- Bound state feature (source size dep.) in both channels
- Strong signal in D^0D^{*+} , weaker one in D^+D^{*0}
- D^+D^{*0} cusp in D^0D^{*+} ($q \sim 52 \text{ MeV}$) is not very prominent

$D\bar{D}^* \sim X(3872)$ sector

$D^0 \bar{D}^{*0}$ and $D^+ \bar{D}^{*-}$ correlation functions ($c\bar{c}q\bar{q}$)

Y. Kamiya, T. Hyodo, A. Ohnishi, EPJA58, 131 (2022)

- Bound state feature in $D^0\bar{D}^{*0}$ correlation
- Sizable D^+D^{*-} cusp in $D^0\bar{D}^{*0}$ ($q\sim 126~{
 m MeV}$)
- D+D*- correlation : Coulomb attraction dominance

Femtoscopy: novel and useful method to study interactions of exotic hadrons and nuclei

Λα correlations

- hint for repulsive core in $\Lambda \alpha$ interaction

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, PRC110, 014001 (2024)

$\Xi \alpha$ correlations

- existence of bound state

Y. Kamiya, A. Jinno, T. Hyodo, A. Ohnishi, arXiv:2409.13207 [nucl-th]

DD* and DD* correlations

- (quasi-)bound nature of T_{cc} and X(3872)

Y. Kamiya, T. Hyodo, A. Ohnishi, EPJA58, 131 (2022)

Future prospects

New direction: femtoscopy with nuclei

- Λα, Ξα correlations: J-PARC HI, CBM@GSI,...

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, PRC110, 014001 (2024); Y. Kamiya, A. Jinno, T. Hyodo, A. Ohnishi, arXiv:2409.13207 [nucl-th]

$K^{\pm}\alpha$ correlation? (in preparation)

- K nuclei, K atoms
- Folding potential, optical potential, ...

Λ ³He, Ξ ³He correlations? (in preparation)

- measurable at ALICE?