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Correlation function and KP formula
High-energy collision: chaotic source  of hadron emissionS(r)

- Definition

C(q) =
NK−p( pK−, pp)

NK−( pK−)Np( pp)

pp

pK−

p

K−

S(r)

(= 1 in the absence of FSI/QS)

relative 
momentum q

Introduction — Femtoscopy

S. Cho, et al., ExHIC collaboration, PPNP 95, 279 (2017)

interaction

Source function  <—> wave function  (interaction)S(r) Ψ(−)
q (r)

- Theory (Koonin-Pratt formula)

C(q) ≃ ∫ d3r S(r) |Ψ(−)
q (r) |2 , Ψ(−)

q (r) ∝ S†e−iqr − e+iqr (r → ∞)

S.E. Koonin, PLB 70, 43 (1977); S. Pratt, PRD 33, 1314 (1986)
incoming + outgoing
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Experimental data with strangeness and charm
Correlation functions observed by ALICE@LHC

ALICE collaboration, Nature 588, 232 (2020);
ALICE collaboration, PRD 106, 052010 (2022)

D−p

Introduction — Femtoscopy

Almost impossible in scattering experiments

234 | Nature | Vol 588 | 10 December 2020

Article

the number of uncorrelated pairs with the same k*, obtained by com-
bining particles produced in different collisions (the so-called 
mixed-event technique). Figure 1d shows how an attractive or repulsive 
interaction is mapped into the correlation function. For an attractive 
interaction the magnitude of the correlation function will be above 
unity for small values of k*, whereas for a repulsive interaction it will 
be between zero and unity. In the former case, the presence of a bound 
state would create a depletion of the correlation function with a depth 
increasing with increasing binding energy.

Correlations can occur in nature from quantum mechanical inter-
ference, resonances, conservation laws or final-state interactions. 
Here, it is the final-state interactions that contribute predominantly 
at low relative momentum; in this work we focus on the strong and 
Coulomb interactions in pairs composed of a proton and either a Ξ− or 
a Ω− hyperon.

Protons do not decay and can hence be directly identified within the 
ALICE detector, but Ξ− and Ω− baryons are detected through their weak 
decays, Ξ− → Λ + π− and Ω− → Λ + Κ−. The identification and momentum 
measurement of protons, Ξ−, Ω− and their respective antiparticles are 
described in Methods. Figure 2 shows a sketch of the Ω− decay and the 
invariant mass distribution of the ΛΚ− and ΛK¯ + pairs. The clear peak 
corresponding to the rare Ω− and Ω̄+

 baryons demonstrates the excel-
lent identification capability, which is the key ingredient for this meas-
urement. The contamination from misidentification is ≤5%. For the 
Ξ− (Ξ̄+

) baryon the misidentification amounts to 8%11.
Once the p, Ω− and Ξ− candidates and charge conjugates are selected 

and their 3-momenta measured, the correlation functions can be built. 
Since we assume that the same interaction governs baryon–baryon 
and antibaryon–antibaryon pairs8, we consider in the following the 
direct sum (%) of particles and antiparticles (p Ξ p Ξ p Ξ– % ¯ – ¯ ≡ –− + −  
and p Ω p Ω p Ω– % ¯ – ¯ ≡ –− + −). The determination of the correction ξ(k*) 
and the evaluation of the systematic uncertainties are described in 
Methods.

Comparison of the p–Ξ− and p–Ω− interactions
The obtained correlation functions are shown in Fig. 3a, b for the p–Ξ− 
and p–Ω− pairs, respectively, along with the statistical and systematic 
uncertainties. The fact that both correlations are well above unity 
implies the presence of an attractive interaction for both systems. For 
opposite-charge pairs, as considered here, the Coulomb interaction 

is attractive and its effect on the correlation function is illustrated 
by the green curves in both panels of Fig. 3. These curves have been 
obtained by solving the Schrödinger equation for p–Ξ− and p–Ω− pairs 
using the Correlation Analysis Tool using the Schrödinger equation 
(CATS) equation solver39, considering only the Coulomb interaction and 
assuming that the shape of the source follows a Gaussian distribution 
with a width equal to 1.02 ± 0.05 fm for the p–Ξ− system and to 0.95 ± 
0.06 fm for the p–Ω− system, respectively. The source-size values have 
been determined via an independent analysis of p–p correlations15, 
where modifications of the source distribution due to strong decays 
of short-lived resonances are taken into account, and the source size 
is determined as a function of the transverse mass mT of the pair, as 
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Fig. 2 | Reconstruction of the Ω− and Ω̄
+

 signals. Sketch of the weak decay  
of Ω− into a Λ and a Κ−, and measured invariant mass distribution (blue points)  
of ΛΚ− and Λ K¯ + combinations. The dotted red line represents the fit to the data 
including signal and background, and the black dotted line the background 
alone. The contamination from misidentification is ≤5%.
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Fig. 3 | Experimental p–Ξ− and p–Ω− correlation functions. a, b, Measured  
p–Ξ− (a) and p–Ω− (b) correlation functions in high multiplicity p–p collisions at 

s = 13 TeV . The experimental data are shown as black symbols. The black 
vertical bars and the grey boxes represent the statistical and systematic 
uncertainties. The square brackets show the bin width and the horizontal black 
lines represent the statistical uncertainty in the determination of the mean k* 
for each bin. The measurements are compared with theoretical predictions, 
shown as coloured bands, that assume either Coulomb or Coulomb + strong 
HAL QCD interactions. For the p–Ω− system the orange band represents the 
prediction considering only the elastic contributions and the blue band 
represents the prediction considering both elastic and inelastic contributions. 
The width of the curves including HAL QCD predictions represents the 
uncertainty associated with the calculation (see Methods section ‘Corrections 
of the correlation function’ for details) and the grey shaded band represents, in 
addition, the uncertainties associated with the determination of the source 
radius. The width of the Coulomb curves represents only the uncertainty 
associated with the source radius. The considered radius values are 1.02 ± 0.05 
fm for p–Ξ− and 0.95 ± 0.06 fm for p–Ω− pairs, respectively. The inset in b shows 
an expanded view of the p–Ω− correlation function for C(k*) close to unity. For 
more details see text.

as previously mentioned, the systematic uncertainty on
Cexpðk"Þ is estimated by varying the proton and D−-
candidate selection criteria and ranges between 0.5% and
3% as a function of k". The uncertainties of the λi weights
are derived from the systematic uncertainties on the proton
and D− purities (Pp and PD−), fD"− , and fnonprompt reported
in Sec. III A. The systematic uncertainties of CpðKþπ−π−Þðk"Þ
are estimated following the same procedure adopted for
Cexpðk"Þ and, in addition, by varying the range of the fit of
the correlation function parametrized from the sidebands
regions of the invariant mass distribution. Additional
checks are performed by varying the invariant mass interval
used to define the sidebands region of up to 100 MeV=c2.
The resulting systematic uncertainty ranges from 1% to
5%. The systematic uncertainty of CpD"−ðk"Þ is due to the
uncertainty on the emitting source. Considering the small
λpD"−ðk"Þ this uncertainty results to be negligible compared
to the other sources of uncertainty. The overall relative
Systematic uncertainty on CpD−ðk"Þ resulting from the
different sources ranges between 3% and 10% and is
maximum in the lowest k" interval.

IV. RESULTS

The resulting genuine CpD−ðk"Þ correlation function can
be employed to study the pD− strong interaction that is
characterized by two isospin configurations and is coupled
to the nD̄0 channel. First of all, in order to assess the effect
of the strong interaction on the correlation function, a
reference calculation including only the Coulomb interac-
tion is considered. The corresponding correlation function is
obtained using CATS [71]. Second, various theoretical
approaches to describe the strong interaction are bench-
marked, including meson exchange (J. Haidenbauer et al.
[22]), meson exchange based on heavy quark symmetry
(Y. Yamaguchi et al. [25]), an SU(4) contact interaction
(J. Hoffmann and M. Lutz [23]), and a chiral quark model
(C. Fontoura et al. [24]). The relative wave functions for the
model of J. Haidenbauer et al. [22] are provided directly,
while for the other models [23–25] they are evaluated by
employing a Gaussian potential whose strength is adjusted
to describe the corresponding published I ¼ 0 and I ¼ 1
scattering lengths listed in Table I. The pD− correlation
function is computed within the Koonin-Pratt formalism,
taking into account explicitly the coupling between the pD−

and nD̄0 channels [73] and including the Coulomb inter-
action [74]. The finite experimental momentum resolution is
considered in the modeling of the correlation functions [39].
The outcome of these models is compared in Fig. 3 with

the measured genuine pD− correlation function. The degree
of consistency between data and models is quantified by the
p-value computed in the range k" < 200 MeV=c. It is
expressed by the number of standard deviations nσ reported
in Table I, where the nσ range accounts, at one standard
deviation level, for the total uncertainties of the data points
and the models. The values of the scattering lengths f0 for
the different models are also reported in Table I. Here, the
high-energy physics convention on the scattering-length
sign is adopted: a negative value corresponds to either a
repulsive interaction or to an attractive one with presence of
a bound state, while a positive value corresponds to an
attractive interaction. The data are compatible with the
Coulomb-only hypothesis within ð1.1–1.5Þ σ. Nevertheless,
the level of agreement slightly improves in case of the
models by J. Haidenbauer et al. (employing g2σ=4π ¼ 2.25)
which predicts an attractive interaction, and by Y.
Yamaguchi et al. which foresees the formation of a ND̄
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FIG. 3. Genuine pD− correlation function compared with
different theoretical models (see text for details). The null
hypothesis is represented by the curve corresponding to the
Coulomb interaction only.

TABLE I. Scattering parameters of the different theoretical models for the ND̄ interaction [22–25] and degree of
consistency with the experimental data computed in the range k" < 200 MeV=c.

Model f0ðI ¼ 0Þ f0ðI ¼ 1Þ nσ

Coulomb (1.1–1.5)
Haidenbauer et al. [22] (g2σ=4π ¼ 2.25) 0.67 0.04 (0.8–1.3)
Hofmann and Lutz [23] −0.16 −0.26 (1.3–1.6)
Yamaguchi et al. [25] −4.38 −0.07 (0.6–1.1)
Fontoura et al. [24] 0.16 −0.25 (1.1–1.5)

S. ACHARYA et al. PHYS. REV. D 106, 052010 (2022)

052010-6

D−p
pΩ−

 : strangeness ,  : charm Ω− ∼ sss S = − 3 D− ∼ c̄d C = − 1

https://inspirehep.net/literature/2011222
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 correlation: MotivationΛα

A solution to hyperon puzzle in neutron stars

 correlationsΛα

-  three-body force for repulsion at high densityΛNN
D. Gerstung, N. Kaiser, W. Weise, EPJA 55, 175 (2020)

Eur. Phys. J. A (2020) 56 :175 Page 9 of 13 175
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Fig. 7 Single-particle potentials UΛ(p = 0; ρ) of a Λ hyperon in
dense symmetric nuclear matter (left) and neutron matter(right), based
on self-consistent solutions of Eqs. (15) and (17) computed up to
ρ = 3.5 ρ0 using the NLO13 interaction, and further extrapolated to

higher densities as described in the text. The uncertainty bands reflect
cutoff dependence and choices of (H1, H2) from the lower solid seg-
ments of the NLO13 lines of Fig. 6
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Fig. 8 Comparison of Λ and neutron chemical potentials, µΛ and µn ,
in neutron star matter up to baryon densities typically encountered in
the center of neutron stars. The neutron chemical potential is derived
from the equation-of-state calculated in ref. [10] using chiral SU(2)
nucleon-meson field theory combined with functional renormalization
group methods. The uncertainty band reflects primarily the errors in

the nuclear symmetry energy Esym = 32 ± 3 MeV. The Λ chemical
potential is based on UΛ as in Fig. 7, calculated using the chiral SU(3)
interactions NLO13 (left panel) and NLO19 (right panel) with full two-
and three-body forces (ΛN+ΛNN ) and sets of three-body parameters
as explained in the text. The dashed line shows µΛ using two-body Y N
interactions only

The comparison of µΛ and µn is shown in Fig. 8. The
uncertainty band of the neutron chemical potential is related
primarily to the range of possible values of the nuclear sym-
metry energy, Esym = (32 ± 3) MeV. We note that this
uncertainty band also includes µn as given in Ref. [8] for
their maximally repulsive interaction (AV18+δv + UIX*) up
to ρ ! 4 ρ0.

Figure 8 points out that the combined repulsion from
two- and three-body hyperon–nuclear interactions for both
NLO13 and NLO19 cases can indeed be potentially strong
enough to avoid the appearance of Λ hyperons in neutron
stars. One findsµΛ > µn throughout the neutron star density
range when a set of three-body parameters is selected from
the solid segments of the lines in Fig. 6 that are constrained

123

How to verify this in experiments? 
-  directed flow in heavy ion collisionsΛ

Y. Nara, A. Jinno, K. Murase, A. Ohnishi, 
PRC 106, 044902 (2022)

 correlation function —> nature of  potential?Λα Λα

-nucleus correlation function? Λ

- Heavy nuclei are difficult to produce
- Strong binding of : two-body treatment justifiedα
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 potentialsΛα
 correlationsΛα

Phenomenological  potentials (  binding energy)Λα 5
ΛHe

- SG: single gaussian
I. Kumagai-Fuse, S. Okabe, Y. Akaishi, PLB 345, 386 (1997)

- Isle: two gaussians (with core)

Skyrme-Hartree Fock methods

- Chi3: based on chiral EFT with  force ΛNN

- Both potentials reproduce hypernuclear data from  to C Pb

A. Jinno, K. Murase, Y. Nara, A. Ohnishi, PRC 108, 065803 (2023)

- LY4: phenomenorogical
D.E. Lanskoy, Y. Yamamoto, PRC 55, 2330 (1997)

Effect of repulsive core —> correlation function?

-  density distribution —>  potentialsα Λα

4

FIG. 1. ⇤↵ potentials as functions of the distance between ⇤ and
↵. Isle (dashed line) and SG (thick dash-dotted line) are the phe-
nomenological potentials given in Gaussian form [37]. Chi3 (solid
line), LY-IV (dotted line), and Chi3 w/o mom (thin dash-dotted line),
are the Skyrme-type ⇤ potentials with the ↵ density distribution.

LY-IV exhibits the Woods-Saxon like shape. This is a con-
sequence of the different high-density behavior of the ⇤ po-
tential in nuclear matter mentioned above. In this way, we
explicitly show that the property of ⇤ in nuclear matter is re-
flected in the short range behavior of the ⇤↵ potential. The
Isle potential has further strong repulsive core at short dis-
tance, while the SG model is entirely attractive. In all cases,
the interaction ranges are of the order of 2-3 fm.

The two-body Schrödinger equation for the ⇤↵ system is
written as

"
�r⇤ ·

✓
1

2m⇤
⇤(r)

r⇤

◆
�

1

2m↵
r

2
↵

+ U⇤↵(r)

#
�(r⇤, r↵) = E�(r⇤, r↵), (13)

where ri is the coordinate of the particle i. The derivative
operator ri is acting on the particle i and the relative coordi-
nate is defined as r = r↵ � r⇤. The effective mass m⇤

⇤(r)
of ⇤ is set as its vacuum value m⇤ for local potentials: Isle,
SG, and Chi3 w/o mom. In the center-of-mass frame, the total
momentum is zero, and then rR� = 0 with the center-of-
mass coordinate R = (m↵r↵+m⇤r⇤)/(m↵+m⇤), and the
Schrödinger equation (13) can be reduced to the equation for
the relative wave function  as

�rr ·

✓
1

2µ⇤(r)
rr

◆
+ U⇤↵(r)

�
 (r) = E (r), (14)

where we call µ⇤
= m⇤

⇤m↵/(m⇤
⇤ + m↵) the reduced effec-

tive mass. In Fig. 2, the r dependence of µ⇤ for different
models is shown. The reduced effective mass is a constant
µ = m⇤m↵/(m⇤ + m↵) for local potentials, Isle, SG, and
Chi3 w/o mom. For nonlocal potentials, the reduced effective
mass decreases from µ in the distance where the nucleon den-
sity appears, and Chi3 shows stronger reduction than that of

FIG. 2. Reduced effective masses as functions of the distance be-
tween ⇤ and ↵ for Chi3 (solid line) and LY-IV (dotted line). Its
vacuum value µ corresponds to the dashed line.

LY-IV. The reduction of µ⇤ is a consequence of positive a⇤2
[see Eq. (3)], which is enhanced for the model with larger a⇤2 .

In Fig. 3, normalized ⇤↵ phase shifts �/⇡ calculated with
various potential models are shown as functions of the magni-
tude of the relative momentum q =

p
2µE1. The behavior of

the low-energy phase shift is constrained by the bound state
5
⇤He below the threshold. The ⇤ binding energy of 5

⇤He is
listed in Table III. The results are similar since all models are
constructed to reproduce the experimental value. The scatter-
ing length a0 and the effective length re↵ are defined with the
effective range expansion parameters as

q cot � = �
1

a0
+

1

2
re↵q

2
+O

�
q4
�
. (15)

Obtained values are listed in Table III. We note that the order-
ing of the magnitude of a0 and re↵ coincides with the order-
ing of the value of the potential U⇤↵ at r = 0, except for Chi3
w/o mom. To check the convergence of the effective range
expansion, we evaluate the binding energy estimated by the
truncated effective range expansion [70]

BERE
⇤ = �

1

2µ

✓
i

re↵
�

1

re↵

r
2re↵
a0

� 1

◆2

, (16)

in Table III. It is seen that the exact binding energy B⇤ is
reasonably estimated by BERE

⇤ , indicating the good conver-
gence of the effective range expansion. At the same time,
however, the deviation of B⇤ and BERE

⇤ increases for mod-
els with larger re↵ .

1 To determine the momentum, we use the reduced mass µ also for the non-
local potentials, because the scattering momentum is defined in the asymp-
totic region r ! 1 where µ⇤ ! µ.
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 correlation: source size dependenceΛα

Correlation functions from small and large sources

 correlationsΛα

- Bound state signature (dip at low  in small source)q

6

FIG. 4. ⇤↵ correlation functions for three different source sizes. The solid and dotted lines show the result calculated by the Skyrme-type ⇤↵
potentials, Chi3 and LY-IV, respectively. The dashed and dash-dotted lines are the results from the phenomenological ⇤↵ potentials, Isle and
SG, respectively.

is valid if R is much larger than the interaction range, as men-
tioned above.

To see the dependence on the momentum-dependent part
of the Skyrme-type potential, we compare the ⇤↵ correlation
functions calculated by using Chi3 with those by Chi3 w/o
mom in Fig. 6. For a source size R = 1 fm, the correla-
tion functions show tiny but nonnegligible deviation, origi-
nated from the momentum dependence of the potential. From
Fig. 2, the momentum dependence of the potential induces
a sizable difference in the reduced effective mass of the ⇤↵
system. Nevertheless, its influence in the correlation function
is quantitatively small, presumably because of the subsequent
adjustment of the a⇤3 parameter to reproduce the ⇤ binding en-
ergy of 5

⇤He. For R � 3 fm, the differences in the correlation
function is not noticeable. For such larger source size, the LL
formula works well, as seen above. Then, the similarity be-
tween the correlation functions represents that the differences
in a0 and re↵ are not so large to exhibit the difference in the
correlation functions.

IV. SUMMARY

In this paper, we extend the femtoscopy technique to the
system including light nuclei, and provide quantitative predic-
tions of the ⇤↵ momentum correlation functions measured in
the high-energy collisions. We have examined five models of
the ⇤↵ potentials. Two of them are the phenomenological ⇤↵
models (Isle and SG) [37]. The others are constructed by sub-
stituting the ↵ density distribution for the Skyrme-type ⇤ po-
tentials [58, 59]. All models reproduce the ⇤ binding energy
of 5

⇤He and have consistent interaction range of 2-3 fm, while
they have different properties at short range, including both
attractive ones and repulsive ones. The constructed Skyrme-
type potentials indicate that the repulsive nature of the ⇤ po-
tential at high densities induces the repulsive core in the ⇤↵
interaction at short range.

While the correlation functions from the source with R & 3

fm are not sensitive to the short range behavior of the ⇤↵ po-
tential, the difference of the potentials is manifest in the cor-
relation functions from the small source system (R ⇠ 1 fm).

It is found that the correlation is suppressed in the order of the
repulsive strength of the ⇤↵ potential at short range. This in-
dicates that the ⇤↵ correlation function can constrain the ⇤↵
potential at short range, which is not sensitive to the calcu-
lated ⇤ binding energy of the few-body ⇤ hypernuclei [31].
Detailed knowledge of the ⇤↵ potential at short range would
bring valuable information on the property of ⇤ in dense nu-
clear medium, which is one of the key ingredients to solve the
hyperon puzzle of neutron stars.

We examine the validity of the LL formula, which has been
utilized to extract the low-energy scattering parameters from
the correlation function measurements. For a small source
size of 1 fm, the LL formula is shown to severely deviate from
the exact result in the low-momentum region, since the system
with longer interaction range than the source size invalidates
the assumption made in the LL formula. We also study the
effect of the momentum dependence of the ⇤ potential, which
is not so firmly determined from the experimental data. We
compare the momentum dependent model with the one omit-
ting the momentum dependence of the ⇤ potential in symmet-
ric nuclear matter while fixing the ⇤ binding energy of 5

⇤He.
The difference between with and without the momentum de-
pendence is found to be small.

We have demonstrated that the study of the two-body corre-
lation functions including ↵ could serve as a new tool to study
the property of the hyperons in nuclear medium. The exper-
imental measurement of the ⇤↵ correlation function may be
feasible at the collision energy

p
sNN < 10 GeV in which a

number of ↵ particles would be produced in central heavy-ion
collisions as estimated by the statistical model [75]. Also, ac-
cording to Ref. [75], yield of ⇤ is always larger than that of ↵
for

p
sNN � 3 GeV. We hope that the present work stimu-

lates the study of the ⇤↵ correlation functions in future exper-
iments, including the facilities with medium collision energies
such as FAIR [76], NICA, and J-PARC HI [77].
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- Interaction dependence in small source ( )R ∼ 1 fm

- No difference in large source ( )R ∼ 3 fm

small source large source

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, PRC110, 014001 (2024)

https://inspirehep.net/literature/2768754
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 correlation: interaction dependenceΛα

Correlation functions and  potentialsΛα

 correlationsΛα

- Central repulsion suppresses correlation at low q

6

FIG. 4. ⇤↵ correlation functions for three different source sizes. The solid and dotted lines show the result calculated by the Skyrme-type ⇤↵
potentials, Chi3 and LY-IV, respectively. The dashed and dash-dotted lines are the results from the phenomenological ⇤↵ potentials, Isle and
SG, respectively.

is valid if R is much larger than the interaction range, as men-
tioned above.

To see the dependence on the momentum-dependent part
of the Skyrme-type potential, we compare the ⇤↵ correlation
functions calculated by using Chi3 with those by Chi3 w/o
mom in Fig. 6. For a source size R = 1 fm, the correla-
tion functions show tiny but nonnegligible deviation, origi-
nated from the momentum dependence of the potential. From
Fig. 2, the momentum dependence of the potential induces
a sizable difference in the reduced effective mass of the ⇤↵
system. Nevertheless, its influence in the correlation function
is quantitatively small, presumably because of the subsequent
adjustment of the a⇤3 parameter to reproduce the ⇤ binding en-
ergy of 5

⇤He. For R � 3 fm, the differences in the correlation
function is not noticeable. For such larger source size, the LL
formula works well, as seen above. Then, the similarity be-
tween the correlation functions represents that the differences
in a0 and re↵ are not so large to exhibit the difference in the
correlation functions.

IV. SUMMARY

In this paper, we extend the femtoscopy technique to the
system including light nuclei, and provide quantitative predic-
tions of the ⇤↵ momentum correlation functions measured in
the high-energy collisions. We have examined five models of
the ⇤↵ potentials. Two of them are the phenomenological ⇤↵
models (Isle and SG) [37]. The others are constructed by sub-
stituting the ↵ density distribution for the Skyrme-type ⇤ po-
tentials [58, 59]. All models reproduce the ⇤ binding energy
of 5

⇤He and have consistent interaction range of 2-3 fm, while
they have different properties at short range, including both
attractive ones and repulsive ones. The constructed Skyrme-
type potentials indicate that the repulsive nature of the ⇤ po-
tential at high densities induces the repulsive core in the ⇤↵
interaction at short range.

While the correlation functions from the source with R & 3

fm are not sensitive to the short range behavior of the ⇤↵ po-
tential, the difference of the potentials is manifest in the cor-
relation functions from the small source system (R ⇠ 1 fm).

It is found that the correlation is suppressed in the order of the
repulsive strength of the ⇤↵ potential at short range. This in-
dicates that the ⇤↵ correlation function can constrain the ⇤↵
potential at short range, which is not sensitive to the calcu-
lated ⇤ binding energy of the few-body ⇤ hypernuclei [31].
Detailed knowledge of the ⇤↵ potential at short range would
bring valuable information on the property of ⇤ in dense nu-
clear medium, which is one of the key ingredients to solve the
hyperon puzzle of neutron stars.

We examine the validity of the LL formula, which has been
utilized to extract the low-energy scattering parameters from
the correlation function measurements. For a small source
size of 1 fm, the LL formula is shown to severely deviate from
the exact result in the low-momentum region, since the system
with longer interaction range than the source size invalidates
the assumption made in the LL formula. We also study the
effect of the momentum dependence of the ⇤ potential, which
is not so firmly determined from the experimental data. We
compare the momentum dependent model with the one omit-
ting the momentum dependence of the ⇤ potential in symmet-
ric nuclear matter while fixing the ⇤ binding energy of 5

⇤He.
The difference between with and without the momentum de-
pendence is found to be small.

We have demonstrated that the study of the two-body corre-
lation functions including ↵ could serve as a new tool to study
the property of the hyperons in nuclear medium. The exper-
imental measurement of the ⇤↵ correlation function may be
feasible at the collision energy

p
sNN < 10 GeV in which a

number of ↵ particles would be produced in central heavy-ion
collisions as estimated by the statistical model [75]. Also, ac-
cording to Ref. [75], yield of ⇤ is always larger than that of ↵
for

p
sNN � 3 GeV. We hope that the present work stimu-

lates the study of the ⇤↵ correlation functions in future exper-
iments, including the facilities with medium collision energies
such as FAIR [76], NICA, and J-PARC HI [77].
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4

FIG. 1. ⇤↵ potentials as functions of the distance between ⇤ and
↵. Isle (dashed line) and SG (thick dash-dotted line) are the phe-
nomenological potentials given in Gaussian form [37]. Chi3 (solid
line), LY-IV (dotted line), and Chi3 w/o mom (thin dash-dotted line),
are the Skyrme-type ⇤ potentials with the ↵ density distribution.

LY-IV exhibits the Woods-Saxon like shape. This is a con-
sequence of the different high-density behavior of the ⇤ po-
tential in nuclear matter mentioned above. In this way, we
explicitly show that the property of ⇤ in nuclear matter is re-
flected in the short range behavior of the ⇤↵ potential. The
Isle potential has further strong repulsive core at short dis-
tance, while the SG model is entirely attractive. In all cases,
the interaction ranges are of the order of 2-3 fm.

The two-body Schrödinger equation for the ⇤↵ system is
written as

"
�r⇤ ·

✓
1

2m⇤
⇤(r)

r⇤

◆
�

1

2m↵
r

2
↵

+ U⇤↵(r)

#
�(r⇤, r↵) = E�(r⇤, r↵), (13)

where ri is the coordinate of the particle i. The derivative
operator ri is acting on the particle i and the relative coordi-
nate is defined as r = r↵ � r⇤. The effective mass m⇤

⇤(r)
of ⇤ is set as its vacuum value m⇤ for local potentials: Isle,
SG, and Chi3 w/o mom. In the center-of-mass frame, the total
momentum is zero, and then rR� = 0 with the center-of-
mass coordinate R = (m↵r↵+m⇤r⇤)/(m↵+m⇤), and the
Schrödinger equation (13) can be reduced to the equation for
the relative wave function  as

�rr ·

✓
1

2µ⇤(r)
rr

◆
+ U⇤↵(r)

�
 (r) = E (r), (14)

where we call µ⇤
= m⇤

⇤m↵/(m⇤
⇤ + m↵) the reduced effec-

tive mass. In Fig. 2, the r dependence of µ⇤ for different
models is shown. The reduced effective mass is a constant
µ = m⇤m↵/(m⇤ + m↵) for local potentials, Isle, SG, and
Chi3 w/o mom. For nonlocal potentials, the reduced effective
mass decreases from µ in the distance where the nucleon den-
sity appears, and Chi3 shows stronger reduction than that of

FIG. 2. Reduced effective masses as functions of the distance be-
tween ⇤ and ↵ for Chi3 (solid line) and LY-IV (dotted line). Its
vacuum value µ corresponds to the dashed line.

LY-IV. The reduction of µ⇤ is a consequence of positive a⇤2
[see Eq. (3)], which is enhanced for the model with larger a⇤2 .

In Fig. 3, normalized ⇤↵ phase shifts �/⇡ calculated with
various potential models are shown as functions of the magni-
tude of the relative momentum q =

p
2µE1. The behavior of

the low-energy phase shift is constrained by the bound state
5
⇤He below the threshold. The ⇤ binding energy of 5

⇤He is
listed in Table III. The results are similar since all models are
constructed to reproduce the experimental value. The scatter-
ing length a0 and the effective length re↵ are defined with the
effective range expansion parameters as

q cot � = �
1

a0
+

1

2
re↵q

2
+O

�
q4
�
. (15)

Obtained values are listed in Table III. We note that the order-
ing of the magnitude of a0 and re↵ coincides with the order-
ing of the value of the potential U⇤↵ at r = 0, except for Chi3
w/o mom. To check the convergence of the effective range
expansion, we evaluate the binding energy estimated by the
truncated effective range expansion [70]

BERE
⇤ = �

1

2µ

✓
i

re↵
�

1

re↵

r
2re↵
a0

� 1

◆2

, (16)

in Table III. It is seen that the exact binding energy B⇤ is
reasonably estimated by BERE

⇤ , indicating the good conver-
gence of the effective range expansion. At the same time,
however, the deviation of B⇤ and BERE

⇤ increases for mod-
els with larger re↵ .

1 To determine the momentum, we use the reduced mass µ also for the non-
local potentials, because the scattering momentum is defined in the asymp-
totic region r ! 1 where µ⇤ ! µ.

potentialcorrelation

- : Isle < LY-IV < Chi3 < SGCΛα(q = 0)

- : Isle > LY-IV > Chi3 > SGUΛα(r = 0)

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, PRC110, 014001 (2024)

https://inspirehep.net/literature/2768754
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 correlation: MotivationΞα

 interactions ( , , , ) from lattice QCD and ChEFTΞN 11S0
31S0

13S1
33S1

 correlationsΞα

K. Sasaki, et al. (HAL QCD), NPA 998, 121737 (2020);
J. Haidenbauer, U.-G. Meißner, EPJA 55, 23 (2019)

E. Hiyama, M. Isaka, T. Doi, T. Hatsuda, PRC 106, 064318 (2022) 
H. Le, J. Haidenbauer, U.-G. Meißner, A. Nogga,EPJA 57, 339 (2021)

—> Different predictions for  and  bound statesΞ−α Ξ0α
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FIG. 1. The !ω folding potential Vfolding [16] and the HAL QCD
!N potentials V!N (

2I+1,2s+1LJ) [9]. For V!N , the central values
of t = 12 data are plotted.

a Coulomb-assisted shallow bound state 5
!H with the binding

energy

B = 0.47 MeV. (3)

Note that this is distinguishable from the Coulomb bound
states, which emerge from the purely Coulombic attraction.
The binding energy of the ground state by the pure Coulomb
potential is given as

B
Coulomb

=
ω

aBohr
= 0.104 MeV, (4)

with the Bohr radius of the !
→
ω system a

Bohr
=

(2µ!→ωω)
→1

= 13.9 fm. Compared with B
Coulomb, the bind-

ing energy B = 0.47 MeV is about 0.3 MeV deeper and its
dominant contribution should come from the strong interac-
tion Vfolding.2

In the study of chiral effective field theory [13], the 5
!H

bound state with B = 2.16 MeV is found by using the chi-
ral next-to-leading order (NLO) !N interactions. This indi-
cates that the chiral !ω interaction is more attractive than the
HAL QCD based potential Vfolding. On the other hand, be-
cause the strength of the !ω potential is to some extent am-
biguous, the !ω potential might be less attractive than Vfolding

without generating the bound 5
!H. To examine the theoretical

uncertainty of the !ω potential, we consider two variations
of the potential; VdoubleVdouble= 2Vfolding and Vhalf Vhalf

= Vfolding/2 for the stronger and weaker potentials, respec-
tively. These variations are shown in Fig. 2. With the stronger
potential Vdouble, the 5

!H binding energy is found to be 2.08
MeV, which is close to the value in the chiral NLO analysis. In
addition, this stronger potential Vdouble makes a bound state

2 For the detialed discussion on the contribution of the Coulomb potential on
the bound states, see Appendix A.
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FIG. 2. Comparison of the !ω folding potential Vfolding and its vari-
ations of Vdouble and Vhalf .

TABLE I. The scattering length a0 and the effective range re of the
!

0ω scattering calculated with the folding potential Vfolding and its
variations Vdouble and Vhalf .

potential a0 [fm] re [fm]
Vfolding →522.8 4.50

Vdouble = 2Vfolding 6.39 3.01

Vhalf = Vfolding/2 →3.39 7.36

also in the !
0
ω channel without the Coulomb attraction. Ac-

cordingly, the scattering length a0 becomes positive. On the
other hand, the binding energy of 5

!H with the weaker poten-
tial Vhalf is 0.18 MeV, which is of the same order with the
binding energy of the Coulomb bound state (4). As expected,
there is no bound state in the !0

ω system with Vhalf . The scat-
tering lengths a0, effective ranges re, and the binding energies
of the !ω systems for different potentials are summarized in
Table I and II.

In the present framework, the !ω system is treated as a
single-channel scattering. For a given !ω potential, the mo-
mentum correlation function C(q) in the high-energy nuclear
collisions can be calculated by the Koonin-Pratt (KP) for-
mula [47–50];

C(q) =

∫
d
3
rS(r)

∣∣∣”(→)
(q; r)

∣∣∣
2
, (5)

where q is the relative momentum in the pair rest frame,
S(r) is the normalized source function, and ”

(→)
(q; r)

is the relative wave function with the outgoing bound-
ary condition, calculated by the potential. In this study,
we employ the static Gaussian source function SR(r) →
exp(↑r

2
/4R

2
)/(4εR

2
)
3/2 with the source size3

R. For the
!
0
ω pair, we consider the modification of the wave function

3 We note that S(r) is the relative source function representing the distribu-

Three  potentials (attraction plus core)Ξα

4

TABLE II. The binding energy of the !
→ω and !

0ω systems. The
Coulomb interaction is included in the !

→ω calculation.

potential !
→ω [MeV] !

0ω [MeV]
Vfolding 0.47 -
Vdouble 2.08 1.15
Vhalf 0.18 –

from the plane wave only in the s-wave component, which
is significantly distorted by the strong interaction in the low-
momentum region. On the other hand, for the !

→
ω pair, be-

cause of the long range nature of the Coulomb interaction, one
must use the Coulomb wave functions as the asymptotic form
in all the partial waves, and introduce the strong interaction
effect in the s wave [51].

III. RESULTS

First we discuss the !
0
ω correlation function without the

Coulomb attraction. The results with Vfolding, Vdouble, and
Vhalf for R = 1, 3, and 5 fm are shown in Fig. 3.4 We see that
C!ω with Vdouble shows qualitatively different behavior from
those with Vfolding and Vhalf . This is attributed to the existence
of the bound state by Vdouble. In addition, the very strong en-
hancement of the correlation with Vfolding at small momentum
reflects the significantly large scattering length |a0| > 500 fm.
As a consequence, three different potential models adopted
here are distinguishable by the measurement of the !

0
ω cor-

relation function, in particular for the large source R = 3-5
fm. We find that the result with Vdouble shows the suppres-
sion or bump structure depending on the source size R. This
is a typical feature of C!ω for the attractive interaction with a
bound state. On the other hand, the correlation functions with
Vfolding and Vhalf show the enhancement in the low momen-
tum region characteristic for an attractive interaction without a
bound state, but a dip structure in the intermediate momentum
region (q → 200 MeV/c) is found. The dip structure is more
prominent in C!ω with a small source, R = 1 fm. Because
such dip structure is not seen in the model calculation with
simple attraction [54], this should be related to the detailed
shape of the !ω potential.

To see the effect of the shape of the !ω folding potential, we
introduce the purely attractive one range Gaussian potential

tion of the !ω pair emitted with the relative distance r. The relative source
size is defined as R =

√
(R2

! +R2
ω)/2 with R! (Rω) being the source

size of the single ! (ω) production. With this definition, the relative source
is given by the gaussian with radius

→
2R [50].

4 The source size R = 1 fm might look small for the emission of the ω parti-
cle with the charge radius ↑ 1.68 fm [52]. As we mentioned, however, the
relative source function S(r) has the gaussian width

→
2R, and the proba-

bility distribution of the relative distance r is given by 4εr2S(r) [53]. As
a consequence, with R = 1 fm, the mean distance between the emitted
pair is about ↓r↔ = 4R/

→
ε ↑ 2.26 fm.

given as

VGaussian(r) = V0 exp(↑r
2
/b

2
), (6)

with the potential strength V0 and the range parameter b. We
construct the Gaussian potentials by choosing the range pa-
rameter as b = 3 fm and tuning V0 to reproduce the scattering
length a0 in Table I for each potential. We have checked that
the qualitative conclusions given below remain unchanged un-
der the variation of the value of b. The correlation functions by
the Gaussian potentials with R = 1 fm are compared with the
results from the original folding potentials Vfolding, Vdouble,
and Vhalf in Fig. 4. We find that the Gaussian potentials quali-
tatively reproduce the results of the original folding potentials,
while the correlation in the small momentum region is some-
how overestimated. In particular, the Gaussian potentials cor-
responding to Vfolding and Vhalf without a bound state provide
the enhancement of the correlation without a dip in the inter-
mediate momentum region, as expected. In other words, the
folding potentials with a repulsive core gives the suppression
of the correlation functions in this region, causing a dip struc-
ture. Thus, we conclude that the characteristic suppression
found in the !

0
ω correlation with R = 1 fm in the inter-

mediate momentum region is caused by the repulsive core of
the folding potential. This means that the correlation function
from the small source may be useful to investigate the exis-
tence and strength of the repulsive core of the !ω interaction.

To further discuss the effect of the potential shape to the
correlation, we evaluate the correlation functions with the
Lednicky-Lyuboshits (LL) formula [50, 55]

CLL(q) =1 +
|f(q)|2

2R2
F3

(
re”

R

)

+
2Ref(q)↓

εR
F1(2qR)↑ Imf(q)

R
F2(2qR), (7)

where F1(x) =
∫ x
0 dt e

t2→x2

/x, F2(x) = (1 ↑ e
→x2

)/x,
F3(x) = 1↑x/2

↓
ε, and f(q) = 1/(↑1/a0+re/2q

2↑iq) is
the s-wave !ω scattering amplitude calculated by the effective
range expansion with the threshold parameters in Table I. The
LL formula is obtained from the KP formula by approximat-
ing the full wave function by the asymptotic wave function.
This means that if the detailed shape of the potential affects
the correlation function, the LL formula estimation should be
deviated deviate from the result of the KP formula. In Fig. 4,
we compare the results by the KP formula (5) with the cor-
responding ones by the LL formula for Vfolding, Vdouble, and
Vhalf potentials with the source size R = 1 fm. As shown in
Fig. 4, for R = 1 fm case, the results with the LL formula
do not reproduce those with the KP formula for all potentials.
In particular, in the low momentum region, CLL rapidly de-
creases, while the result of the KP formula shows the strong
enhancement. Note that C!ω defined in Eq. (5) is always posi-
tive while CLL can be negative in the small momentum region
when re is large and positive. The negative CLL seen in Fig. 4
also indicates that the LL formula is not applicable in these
cases. In fact, in Ref. [55], it is pointed out that this formula
is not applicable for the too small source cases, however, this
formula surprisingly works well for R → 1 fm sources for two

Y. Kamiya, A. Jinno, T. Hyodo, A. Ohnishi, arXiv:2409.13207 [nucl-th]

- : folding HAL QCD  potentialsVfolding ΞN

- Vdouble = Vfolding × 2, Vhalf = Vfolding /2

https://inspirehep.net/literature/2831083
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 correlation: source size dependenceΞα

 Correlation functionsΞ0α

- Dip in  and  <— repulsice core?Vforlding Vhalf

- : strong source size dependence <— bound stateVdouble

Y. Kamiya, A. Jinno, T. Hyodo, A. Ohnishi, arXiv:2409.13207 [nucl-th]

 correlationsΞα
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FIG. 3. The !
0ω correlation function with R = 1, 3, and 5 fm. The results with Vfolding, Vdouble, and Vhalf are shown by solid, long-dashed,

and dashed lines respectively.
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FIG. 4. Comparison of !0ω correlation functions for R = 1 fm with the KP formula for the folding potential (solid lines), the Gaussian
potential model (dash-dotted lines), and the LL formula estimation (dashed lines). The left, central, and right panel show the results with
Vfolding, Vdouble, and Vhalf , respectively.

body correlation functions (as an example, see the results of
!! correlation in Ref. [30]). On the other hand, as shown
in Fig. 5 for R = 3 fm and R = 5 fm cases, the LL formula
gives the good approximation of the KP formula results. This
is because the correlation from the large source is determined
mainly by the distortion of the wave function at large rela-
tive distance r where the detailed potential shape is irrelevant.
This failure of the LL formula for small source is qualitatively
consistent with what is found in the study of the !ω correla-
tion function [40].

Finally, we show the results of the ”
→
ω correlation func-

tions in Fig. 6. Due to the Coulomb attraction, C!ω shows the
strong enhancement at the low momentum for all potentials.
The effect of the strong interaction emerges as the deviation
from the pure Coulomb result, where the strong interaction is
switched off. In contrast to the ”0

ω correlation, the difference
between the adopted potentials in larger source is smeared by
the Coulomb attraction. Nevertheless, with a good resolution
of the measurement, it may be possible to distinguish differ-
ent potentials by the correlation function with R = 1-3 fm.
Through the comparison with C!0ω in Fig. 3, we find that
the results with Vdouble and Vhalf in the low momentum re-
gion is simply enhanced due to Coulomb force from C!0ω.
On the other hand, C!→ω with Vfolding with R = 3 and 5
fm is smaller than the pure Coulomb case while C!0ω shows
the enhancement. Namely, the correlation function of Vfolding
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FIG. 5. Comparison of !0ω correlation functions by Vfolding with the
KP formula (thick lines) and the LL formula estimation (thin lines)
for different source sizes. The results with R = 1, 3, and 5 fm are
denoted by solid, dashed, and dotted lines, respectively.

shows enhancement for the small source and suppression for
the large source with respect to the pure Coulomb result. This
is nothing but the source size dependence of the correlation
function with a shallow bound state. This means that, when
the Coulomb-assisted bound state exists, the typical source
size dependence can be observed in the ”→

ω correlation func-

https://inspirehep.net/literature/2831083
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 and Tcc X(3872)
 and  correlationsDD* DD̄*

 : another near-threshold state with  X(3872) MTcc ∼ MX(3872)

X(3871.65)

D0D̄*0(3871.69)

D+D*−(3879.92)

D0D̄0π0(3864.66)

Tcc

D0D*+(3875.10)
D+D*0(3876.51)

D0D+π0(3869.45)
D0D0π+(3869.25)

3875
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3875
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D0D̄−π+(3874.07)

3865

3880- Masses from PDG Live
(c.c. implicit)

ππJ/ψ, ⋯

≈
-  has decay channelsX(3872)

Energy (MeV)

—> Molecule nature?
-  near Tcc /X(3872) DD*/DD̄*
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 sectorDD* ∼ Tcc

 and  correlation functions ( , exotic)D0D*+ D+D*0 ccūd̄

 and  correlationsDD* DD̄*

- Bound state feature (source size dep.) in both channels
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Figure 1: Correlation function of D0D̄∗+ and D+D∗0 pair.

3

- Strong signal in , weaker one in D0D*+ D+D*0

-  cusp in  ( ) is not very prominentD+D*0 D0D*+ q ∼ 52 MeV

D0D*+ D+D*0

Tcc

D0D*+
D+D*0

Y. Kamiya, T. Hyodo, A. Ohnishi, EPJA58, 131 (2022)
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 sectorDD̄* ∼ X(3872)

 and  correlation functions ( )D0D̄*0 D+D̄*− cc̄qq̄

 and  correlationsDD* DD̄*

-  correlation : Coulomb attraction dominanceD+D*−

- Sizable  cusp in  ( )D+D*− D0D̄*0 q ∼ 126 MeV

- Bound state feature in  correlationD0D̄*0
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Figure 1: Correlation function of D0D̄∗0 and D−D∗+ pair.

Hadron mass [MeV] JP

D+ 1869.66 0−

D0 1864.84 0−

D∗+ 2010.26 1−

D∗0 2006.85 1−

Table 2: Masses of charmed hadrons.

Hadron pair Threshold energy [MeV]
D0D̄∗0 3871.69
D+D∗− 3879.92
D∗0D̄∗0 4013.70
D∗+D̄∗− 4020.52

Table 3: Threshold energy of DD̄ and DD̄∗ channels.

3

Y. Kamiya, T. Hyodo, A. Ohnishi, EPJA58, 131 (2022)

https://inspirehep.net/literature/2058465
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Femtoscopy: novel and useful method to study 
interactions of exotic hadrons and nuclei

 correlations

 correlations

 and  correlations

Λα

Ξα

DD* DD̄*

Summary and future prospects

Summary

- hint for repulsive core in  interactionΛα

- (quasi-)bound nature of  and Tcc X(3872)
Y. Kamiya, T. Hyodo, A. Ohnishi, EPJA58, 131 (2022)

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, PRC110, 014001 (2024)

- existence of bound state
Y. Kamiya, A. Jinno, T. Hyodo, A. Ohnishi, arXiv:2409.13207 [nucl-th]

https://inspirehep.net/literature/2058465
https://inspirehep.net/literature/2768754
https://inspirehep.net/literature/2831083
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New direction: femtoscopy with nuclei

 correlation? (in preparation)

 correlations? (in preparation)

K±α

Λ 3He, Ξ 3He

Summary and future prospects

Future prospects

-  correlations: J-PARC HI, CBM@GSI,…Λα, Ξα

- K nuclei, K atoms

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, PRC110, 014001 (2024);
Y. Kamiya, A. Jinno, T. Hyodo, A. Ohnishi, arXiv:2409.13207 [nucl-th]

- measurable at ALICE?

- Folding potential, optical potential, …

https://inspirehep.net/literature/2768754
https://inspirehep.net/literature/2831083

