Higher partial waves and resonance contributions in femtoscopy

Koichi Murase, Tetsuo Hyodo

Tokyo Metropolitan Univ.

Contents

Introduction — Femtoscopy

Contribution from s-wave resonance

S. Watanabe, T. Hyodo, in preparation

- Origin of resonance peak

Contribution from higher partial waves

K. Murase, T. Hyodo, J. Subatomic Part. Cosmol. 3, 100017 (2025); K. Murase, T. Hyodo, arXiv:2509.22844 [nucl-th]

- Correlation function with l > 0
- Regularized LL formula for l > 0

Summary

Correlation function and KP formula

High-energy collision: chaotic source S(r) of hadron emission

- Definition

$$C(q) = \frac{N_{K^-p}(p_{K^-}, p_p)}{N_{K^-}(p_{K^-})N_p(p_p)}$$
 (= 1 in the absence of FSI/QS)

- Theory: KP (Koonin-Pratt) formula

S.E. Koonin, PLB 70, 43 (1977); S. Pratt, PRD 33, 1314 (1986)

$$C(\boldsymbol{q}) \simeq \int d^3 \boldsymbol{r} \, S(\boldsymbol{r}) |\Psi_{\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2$$

Source function S(r) < -> wave function $\Psi_q^{(-)}(r)$ (interaction)

Experimental data with strangeness and charm

Correlation functions observed by ALICE@LHC

ALICE collaboration, Nature 588, 232 (2020);

ALICE collaboration, PRD 106, 052010 (2022)

 $\Omega^- \sim sss$: strangeness S = -3, $D^- \sim \bar{c}d$: charm C = -1

Almost impossible in scattering experiments

Introduction — Femtoscopy

Resonance contributions

Resonance peaks in experimental data ($\ell = 0$ and $\ell \neq 0$)

ALICE collaboration, PRL 124, 092301 (2020); PLB845, 138145 (2023)

 $\Lambda(1520)$: d wave

 $\Xi(1620), \Xi(1690)$: s wave,

 Ω : p wave (weak decay),

 $\Xi(1820)$: d wave

Questions:

- Origin of resonance peak?
- Contribution from higher partial waves?

Contents

Introduction — Femtoscopy

Contribution from s-wave resonance

S. Watanabe, T. Hyodo, in preparation

- Origin of resonance peak

Contribution from higher partial waves

K. Murase, T. Hyodo, J. Subatomic Part. Cosmol. 3, 100017 (2025); K. Murase, T. Hyodo, arXiv:2509.22844 [nucl-th]

- Correlation function with l > 0
- Regularized LL formula for l > 0

Summary

Wave function and correlation (attraction)

Attractive well (no bound state)

source size R = 1 fm

q [MeV]

150

0.0

W.f. is pulled in, increased at $r \lesssim R -> C(q)$ enhancement

200

Wave function and correlation (repulsion)

Repulsive rectangular potential

$$C(q) \simeq 1 + \int_0^\infty dr \, \frac{4\pi}{q^2} S(r) \{ ||rq\psi_q(r)|^2 - \sin^2(qr) \}$$

W.f. is pushed out, decreased at $r \leq R -> C(q)$ suppression

Wave function and correlation (resonance)

W.f. is localized in $r \leq R$ at pole momentum —> peak in C(q)

Contents

Introduction — Femtoscopy

Contribution from s-wave resonance

S. Watanabe, T. Hyodo, in preparation

- Origin of resonance peak

Contribution from higher partial waves

K. Murase, T. Hyodo, J. Subatomic Part. Cosmol. 3, 100017 (2025); K. Murase, T. Hyodo, arXiv:2509.22844 [nucl-th]

- Correlation function with l > 0
- Regularized LL formula for l > 0

Summary

Higher partial waves

KP formula with l > 0 (spherical source)

$$C(q) = 1 + \sum_{l=0}^{\infty} \Delta C_l(q)$$

$$\Delta C_l(q) = (2l+1)$$

$$\times \int_{0}^{\infty} dr \, 4\pi r^{2} S(r) [|R_{l}(r)|^{2} - |j_{l}(qr)|^{2}]$$

- sum of partial wave contributions
- interacting w.f. $R_l(r)$ free w.f. $j_l(qr)$

Gaussian potentials (range ~ 1.25 fm)

- l > 0 components at larger q
- *l*-th wave dominant at $q \sim l/r \sim 160l \text{ MeV}$

Resonance contribution

With $q \to \infty$, C(q) approaches unity

- How can resonances be seen?

Resonances in higher partial waves

p-wave resonance at

$$q^- \sim 105 - 23i \text{ MeV}$$

- d-wave resonance at

$$q^- \sim 216 - 20i \text{ MeV}$$

- f-wave resonance at

$$q^- \sim 345 - 21i \text{ MeV}$$

Contribution from higher partial waves

LL formula for higher partial wave?

Lednicky-Lyuboshits (LL) formula for s-wave

R. Lednicky, V.L. Lyuboshits, Yad. Fiz. 35, 1316 (1981);

K. Murase, T. Hyodo, J. Subatomic Part. Cosmol. 3, 100017 (2025)

- Asymptotic w.f. for entire r <- on-shell observable

$$\Delta C(q) = \int_0^\infty dr \, \frac{4\pi}{q^2} S(r) [\sin^2(qr - \delta(q)) - \sin^2(q)]$$

- corresponding to zero range limit (point-like interaction)

Naive generalization for l > 0 is not possible

$$\Delta C_l(q) = (2l+1) \int_0^\infty dr \, 4\pi r^2 S(r) [|R_l^{\text{aym}}(r)|^2 - |j_l(qr)|^2]$$

- $R_l^{\text{aym}}(r)$ is too singular for l>0 ($n_l(qr)\sim r^{-l-1}$) at $r\to 0$

Some regularization for $r \rightarrow 0$ is needed

Regularized LL formula

Simplest choice: introducing cutoff r_c

Works for l > 0 with $r_c \sim$ interaction range (1.25 fm)

Resonace peaks in correlation functions

s-wave resonance peak <— localization of wave function at interacting region

S. Watanabe, T. Hyodo, in preparation

Higher partial wave (l > 0) contributions becomes important for larger q

Regularized LL formula with suitable cutoff r_c works for l > 0

K. Murase, T. Hyodo, J. Subatomic Part. Cosmol. 3, 100017 (2025); K. Murase, T. Hyodo, arXiv:2509.22844 [nucl-th]