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Correlation function and KP formula
High-energy collision: chaotic source  of hadron emissionS(r)

- Definition

C(q) =
NK−p( pK−, pp)

NK−( pK−)Np( pp)

pp

pK−

p

K−

S(r)

(= 1 in the absence of FSI/QS)

relative 
momentum q

Introduction — Femtoscopy

S. Cho, et al., ExHIC collaboration, PPNP 95, 279 (2017)

interaction

Source function  <—> wave function  (interaction)S(r) Ψ(−)
q (r)

- Theory: KP (Koonin-Pratt) formula

C(q) ≃ ∫ d3r S(r) |Ψ(−)
q (r) |2

S.E. Koonin, PLB 70, 43 (1977); S. Pratt, PRD 33, 1314 (1986)

http://inspirehep.net/record/1511900
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Experimental data with strangeness and charm
Correlation functions observed by ALICE@LHC

ALICE collaboration, Nature 588, 232 (2020);
ALICE collaboration, PRD 106, 052010 (2022)

D−p

Introduction — Femtoscopy

Almost impossible in scattering experiments

234 | Nature | Vol 588 | 10 December 2020

Article

the number of uncorrelated pairs with the same k*, obtained by com-
bining particles produced in different collisions (the so-called 
mixed-event technique). Figure 1d shows how an attractive or repulsive 
interaction is mapped into the correlation function. For an attractive 
interaction the magnitude of the correlation function will be above 
unity for small values of k*, whereas for a repulsive interaction it will 
be between zero and unity. In the former case, the presence of a bound 
state would create a depletion of the correlation function with a depth 
increasing with increasing binding energy.

Correlations can occur in nature from quantum mechanical inter-
ference, resonances, conservation laws or final-state interactions. 
Here, it is the final-state interactions that contribute predominantly 
at low relative momentum; in this work we focus on the strong and 
Coulomb interactions in pairs composed of a proton and either a Ξ− or 
a Ω− hyperon.

Protons do not decay and can hence be directly identified within the 
ALICE detector, but Ξ− and Ω− baryons are detected through their weak 
decays, Ξ− → Λ + π− and Ω− → Λ + Κ−. The identification and momentum 
measurement of protons, Ξ−, Ω− and their respective antiparticles are 
described in Methods. Figure 2 shows a sketch of the Ω− decay and the 
invariant mass distribution of the ΛΚ− and ΛK¯ + pairs. The clear peak 
corresponding to the rare Ω− and Ω̄+

 baryons demonstrates the excel-
lent identification capability, which is the key ingredient for this meas-
urement. The contamination from misidentification is ≤5%. For the 
Ξ− (Ξ̄+

) baryon the misidentification amounts to 8%11.
Once the p, Ω− and Ξ− candidates and charge conjugates are selected 

and their 3-momenta measured, the correlation functions can be built. 
Since we assume that the same interaction governs baryon–baryon 
and antibaryon–antibaryon pairs8, we consider in the following the 
direct sum (%) of particles and antiparticles (p Ξ p Ξ p Ξ– % ¯ – ¯ ≡ –− + −  
and p Ω p Ω p Ω– % ¯ – ¯ ≡ –− + −). The determination of the correction ξ(k*) 
and the evaluation of the systematic uncertainties are described in 
Methods.

Comparison of the p–Ξ− and p–Ω− interactions
The obtained correlation functions are shown in Fig. 3a, b for the p–Ξ− 
and p–Ω− pairs, respectively, along with the statistical and systematic 
uncertainties. The fact that both correlations are well above unity 
implies the presence of an attractive interaction for both systems. For 
opposite-charge pairs, as considered here, the Coulomb interaction 

is attractive and its effect on the correlation function is illustrated 
by the green curves in both panels of Fig. 3. These curves have been 
obtained by solving the Schrödinger equation for p–Ξ− and p–Ω− pairs 
using the Correlation Analysis Tool using the Schrödinger equation 
(CATS) equation solver39, considering only the Coulomb interaction and 
assuming that the shape of the source follows a Gaussian distribution 
with a width equal to 1.02 ± 0.05 fm for the p–Ξ− system and to 0.95 ± 
0.06 fm for the p–Ω− system, respectively. The source-size values have 
been determined via an independent analysis of p–p correlations15, 
where modifications of the source distribution due to strong decays 
of short-lived resonances are taken into account, and the source size 
is determined as a function of the transverse mass mT of the pair, as 

(GeV/c2)mΛΚ 

1.65 1.66 1.67 1.68 1.69 1.70

dN
/d
m

 (G
eV

/c
2 )

–1

0

5,000

10,000

15,000

20,000

25,000

30,000

ALICE data
Signal + background fit

= 1.6725 GeV/c2mΩ
= 1.82 MeV/c2V

Background fit

Λ

Ω –

–Κ

S–
p

Fig. 2 | Reconstruction of the Ω− and Ω̄
+

 signals. Sketch of the weak decay  
of Ω− into a Λ and a Κ−, and measured invariant mass distribution (blue points)  
of ΛΚ− and Λ K¯ + combinations. The dotted red line represents the fit to the data 
including signal and background, and the black dotted line the background 
alone. The contamination from misidentification is ≤5%.

1.0

1.5

2.0

2.5

3.0

3.5

C
(k

*)
 HAL QCD−

 HAL QCD elastic1−

 HAL QCD elastic + inelastic1−

−

−

−

ALICE data

Coulomb

ΞCoulomb + p

Coulomb + p

Coulomb + p

a

Ξ−p−

Ω−p−

0 100 200 300
k* (MeV/c)

1

2

3

4

5

6

7

*)
k(

C

100 200
k* (MeV/c)

0.8

1.0

1.2

C
(k

*)

b

Fig. 3 | Experimental p–Ξ− and p–Ω− correlation functions. a, b, Measured  
p–Ξ− (a) and p–Ω− (b) correlation functions in high multiplicity p–p collisions at 

s = 13 TeV . The experimental data are shown as black symbols. The black 
vertical bars and the grey boxes represent the statistical and systematic 
uncertainties. The square brackets show the bin width and the horizontal black 
lines represent the statistical uncertainty in the determination of the mean k* 
for each bin. The measurements are compared with theoretical predictions, 
shown as coloured bands, that assume either Coulomb or Coulomb + strong 
HAL QCD interactions. For the p–Ω− system the orange band represents the 
prediction considering only the elastic contributions and the blue band 
represents the prediction considering both elastic and inelastic contributions. 
The width of the curves including HAL QCD predictions represents the 
uncertainty associated with the calculation (see Methods section ‘Corrections 
of the correlation function’ for details) and the grey shaded band represents, in 
addition, the uncertainties associated with the determination of the source 
radius. The width of the Coulomb curves represents only the uncertainty 
associated with the source radius. The considered radius values are 1.02 ± 0.05 
fm for p–Ξ− and 0.95 ± 0.06 fm for p–Ω− pairs, respectively. The inset in b shows 
an expanded view of the p–Ω− correlation function for C(k*) close to unity. For 
more details see text.

as previously mentioned, the systematic uncertainty on
Cexpðk"Þ is estimated by varying the proton and D−-
candidate selection criteria and ranges between 0.5% and
3% as a function of k". The uncertainties of the λi weights
are derived from the systematic uncertainties on the proton
and D− purities (Pp and PD−), fD"− , and fnonprompt reported
in Sec. III A. The systematic uncertainties of CpðKþπ−π−Þðk"Þ
are estimated following the same procedure adopted for
Cexpðk"Þ and, in addition, by varying the range of the fit of
the correlation function parametrized from the sidebands
regions of the invariant mass distribution. Additional
checks are performed by varying the invariant mass interval
used to define the sidebands region of up to 100 MeV=c2.
The resulting systematic uncertainty ranges from 1% to
5%. The systematic uncertainty of CpD"−ðk"Þ is due to the
uncertainty on the emitting source. Considering the small
λpD"−ðk"Þ this uncertainty results to be negligible compared
to the other sources of uncertainty. The overall relative
Systematic uncertainty on CpD−ðk"Þ resulting from the
different sources ranges between 3% and 10% and is
maximum in the lowest k" interval.

IV. RESULTS

The resulting genuine CpD−ðk"Þ correlation function can
be employed to study the pD− strong interaction that is
characterized by two isospin configurations and is coupled
to the nD̄0 channel. First of all, in order to assess the effect
of the strong interaction on the correlation function, a
reference calculation including only the Coulomb interac-
tion is considered. The corresponding correlation function is
obtained using CATS [71]. Second, various theoretical
approaches to describe the strong interaction are bench-
marked, including meson exchange (J. Haidenbauer et al.
[22]), meson exchange based on heavy quark symmetry
(Y. Yamaguchi et al. [25]), an SU(4) contact interaction
(J. Hoffmann and M. Lutz [23]), and a chiral quark model
(C. Fontoura et al. [24]). The relative wave functions for the
model of J. Haidenbauer et al. [22] are provided directly,
while for the other models [23–25] they are evaluated by
employing a Gaussian potential whose strength is adjusted
to describe the corresponding published I ¼ 0 and I ¼ 1
scattering lengths listed in Table I. The pD− correlation
function is computed within the Koonin-Pratt formalism,
taking into account explicitly the coupling between the pD−

and nD̄0 channels [73] and including the Coulomb inter-
action [74]. The finite experimental momentum resolution is
considered in the modeling of the correlation functions [39].
The outcome of these models is compared in Fig. 3 with

the measured genuine pD− correlation function. The degree
of consistency between data and models is quantified by the
p-value computed in the range k" < 200 MeV=c. It is
expressed by the number of standard deviations nσ reported
in Table I, where the nσ range accounts, at one standard
deviation level, for the total uncertainties of the data points
and the models. The values of the scattering lengths f0 for
the different models are also reported in Table I. Here, the
high-energy physics convention on the scattering-length
sign is adopted: a negative value corresponds to either a
repulsive interaction or to an attractive one with presence of
a bound state, while a positive value corresponds to an
attractive interaction. The data are compatible with the
Coulomb-only hypothesis within ð1.1–1.5Þ σ. Nevertheless,
the level of agreement slightly improves in case of the
models by J. Haidenbauer et al. (employing g2σ=4π ¼ 2.25)
which predicts an attractive interaction, and by Y.
Yamaguchi et al. which foresees the formation of a ND̄
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FIG. 3. Genuine pD− correlation function compared with
different theoretical models (see text for details). The null
hypothesis is represented by the curve corresponding to the
Coulomb interaction only.

TABLE I. Scattering parameters of the different theoretical models for the ND̄ interaction [22–25] and degree of
consistency with the experimental data computed in the range k" < 200 MeV=c.

Model f0ðI ¼ 0Þ f0ðI ¼ 1Þ nσ

Coulomb (1.1–1.5)
Haidenbauer et al. [22] (g2σ=4π ¼ 2.25) 0.67 0.04 (0.8–1.3)
Hofmann and Lutz [23] −0.16 −0.26 (1.3–1.6)
Yamaguchi et al. [25] −4.38 −0.07 (0.6–1.1)
Fontoura et al. [24] 0.16 −0.25 (1.1–1.5)

S. ACHARYA et al. PHYS. REV. D 106, 052010 (2022)

052010-6

D−p
pΩ−

 : strangeness ,  : charm Ω− ∼ sss S = − 3 D− ∼ c̄d C = − 1

https://inspirehep.net/literature/2011222
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Resonance contributions
Resonance peaks in experimental data (  and  )ℓ = 0 ℓ ≠ 0

 : d waveΛ(1520)

ALICE Collaboration Physics Letters B 845 (2023) 138145

Fig. 1. Upper: measured correlation function for !–K− pairs (empty points) with 
statistical (line) and systematic (gray boxes) uncertainties. Lower: invariant mass 
spectrum of !–K− pairs used to build the measured correlation function. Only the 
statistical uncertainties are shown. The upper x-axis indicates the energy at rest 
E =

√
(k∗)2 + m2

! +
√

(k∗)2 + m2
K of the pair written as a function of the relative 

momentum of the !–K− pair. The quantity E corresponds to the invariant mass 
M of the !–K− pairs. The colored vertical dashed lines indicate the values of the 
relative momentum k∗ (upper panel) and the value of the energy E at rest of each 
resonance (lower panel) corresponding to its nominal mass extracted in the final 
femtoscopic fit.

strong decay to !–K− . In order to help the convergence of the fi-
nal femtoscopic fit, a fit of the total Cbackground(k∗) correlation to 
the data is performed in the k∗ region of 190 − 600 MeV/c to es-
timate the weights α# , αi as well as the masses and widths of the 
resonances. A change of ±10% in the upper limit of the prefit range 
is included in the evaluation of the final systematic uncertainties. 
These parameters are then kept free in the final femtoscopic fit of 
Ctot(k∗) to the data and the values obtained for the masses and 
widths are found to be compatible with the available PDG val-
ues [31] and recent measurements [29,30]. The orange band in 
Figs. 2 and 3 shows the total Cbackground(k∗) correlation function 
extracted in the final femtoscopic fit, multiplied by the normaliza-
tion factor ND , for !–K+ and !–K− pairs, respectively.

The last ingredient needed to model the data is the strong in-
teraction of the !–K+ and !–K− pairs entering in the Cmodel(k∗)
in Eq. (2) via the genuine correlation function Cgen(k∗). This is 
modeled for both pairs using the Lednický–Lyuboshits analytical 
formula [70], following the approach used in Ref. [46],

C(k∗)LL = 1 +
[

1
2

∣∣∣∣∣
f (k∗)

R

∣∣∣∣∣

2(

1 − d0

2
√

π R

)

+ 2ℜ f (k∗)√
π R

F1(2k∗R)

− ℑ f (k∗)
R

F2(2k∗R)

]

. (4)

The scattering amplitude f (k∗) is the quantity embedding the scat-
tering parameters and providing information on the underlying 
interaction. Typically, f (k∗) is expressed via the effective-range 
expansion (ERE) f (k∗) =

(
1
f0

+ 1
2 d0k∗2 − ik∗

)−1
, in which f0 is 

the scattering length and d0 is the effective range. The parame-
ter R is the size of the emitting source with a Gaussian profile. 
In this work it was fixed using the core-resonance model taken 
from Ref. [53], already employed in several previous femtoscopic 
analyses performed in small colliding systems as pp collisions 
and anchored to p–p correlations. The core radius for !–K+ and 
!–K− pairs is rcore(⟨mT⟩ = 1.35 GeV/c2) = 1.11 ± 0.04 fm. In or-
der to use the core-resonance total source in Eq. (4), this must be 
parametrized with a Gaussian distribution. The presence of long-
lived strong resonances feeding to ! and kaons introduces a sig-
nificant exponential tail for large r∗ , which cannot be described 
with a single Gaussian [5,6,8,10,13]. The total source is hence mod-
eled with a weighted sum of two Gaussians, leading to an effective 
emitting source Seff(r∗) = λS [ωS S1(r∗) + (1 − ωS)S2(r∗)], in which 
r1 = 1.202+0.043

−0.042 fm, r2 = 2.330+0.050
−0.045 fm, λS = 0.9806+0.0006

−0.0008, and 
ωS = 0.7993+0.0037

−0.0027. As systematic variation of the source function, 
these values are varied within the uncertainties. Due to the addi-
tive property of correlation functions, the final genuine correlation 
is then taken as the sum of two correlations evaluated with the 
two properly weighted Gaussian sources. To preserve the correct 
normalization of the emitting source and the unitarity of the λ pa-
rameters [2] in Cmodel(k∗), a (1−λS ) contribution is added.

The understanding of the !K− interaction, particularly in the 
low k∗ region, is strictly connected to the '(1620) state. In prin-
ciple, since '(1620) shares the same quantum numbers as the 
!–K− pair, the two systems can couple strongly. The Belle collab-
oration recently published the observation of the '(1620) state in 
the 'π decay channel (Ethr.1 = mπ + m' = 1461.3 MeV/c2) [28]. 
The reported mass and widths in Ref. [28] are M'(1620) = 1610.4 ±
6.0 MeV/c2, ('(1620) = 60.0 ± 4.8 MeV, which indicates that the 
decay of '(1620) into !K− (Ethr.2 = mK− + m! = 1609.4 MeV/c2) 
is kinematically allowed. No experimental evidence of this decay 
channel has been observed so far. The presented work provides 
quantitative evidence of this process.

The '(1620) state can be clearly seen in the peak at k∗ ≈
80 MeV/c in the lower panel of Fig. 1. Hence, to model the !K−

interaction at low k∗ , the '(1620) must be taken into account 
in the Lednický–Lyuboshits approach. Similar scenarios, with res-
onances contributing to the signal in the low k∗ region, were 
observed in K0

S − K± correlations measured in pp and Pb–Pb colli-
sions, in which the interaction mainly goes through the formation 
of the a0 resonance. A way to properly include such a resonant in-
teraction is to write the scattering amplitude in Eq. (4) in terms of 
the probability distribution describing the state. Due to the vicin-
ity of the !K− decay-channel threshold, the '(1620) resonance 
must be described with a Flatté-like distribution [71] such as the 
Sill distribution used in Ref. [72]. The corresponding scattering am-
plitude can be written as

f (k∗) =
−2(̃!K−

E2 − M2 + i(̃'π

√
E2 − E2

thr.'π + i(̃!K−
√

E2 − Ethr.!K−
2

(5)

in which M is the mass of the '(1620) state, (̃i='π,!K− are the 
effective partial widths as defined in Ref. [72], and Ethr.i='π,!K−

are the threshold energies for the two channels, as defined above.
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the transport code used in the simulation from GEANT3 [48]
to GEANT4 [49].
The effects related to momentum resolution effects are

accounted for by correcting the theoretical correlation
function, similarly to what shown in Refs. [33] and [41].
The theoretical correlation function Cðk"Þtheoretical depends
not only on the interaction between particles, but also on
the profile and the size of the particle emitting source.
Under the assumption that there is a common Gaussian
source for all particle pairs produced in pp collisions at a
fixed energy, the size of the source considered in the present
analysis is fixed from the baryon-baryon analyses described
in Refs. [33] and [41]. The impact of strongly decaying
resonances (mainly K" decaying into K and Δ decaying
into p) on the determination of the radius for Kp pairs was
studied using different Monte Carlo simulations [45,46]
and found to be 10%. This contribution was linearly added
to the systematic uncertainty associated with the radius.
The radii of the considered Gaussian sources are r0 ¼
1.13% 0.02þ0.17

−0.15 fm [33] for collisions at
ffiffiffi
s

p
¼ 5 and

7 TeV, and r0 ¼ 1.18% 0.01% 0.12 fm [41] for the
ffiffiffi
s

p
¼

13 TeV collisions.
The comparison of the measured Cðk"Þ for same-charge

Kp pairs with different models is shown in Fig. 1. Each
panel presents the results at different collision energy and
the comparison with two different scenarios. The blue band
represents the correlation function evaluated as described in
Eq. (1), assuming only the presence of the Coulomb
potential to evaluate the Cðk"Þtheoretical term. The red band
represents the correlation function assuming the strong
potential implemented in the Jülich model [50] in addition
to the Coulomb potential. The latter has been implemented

using the Gamow factor [51]. In the bottom panels, the
difference between data and model evaluated in the middle
of each k" interval, and divided by statistical error of data
for the three considered collision energies are shown. The
width of the bands represents the n-σ range associated to
the model variations. The reduced χ2 are also shown. This
comparison reveals that the Coulomb interaction is not able
to describe the data points, as expected, while the intro-
duction of a strong potential allows us to reproduce
consistently the data when the same source radius as for
baryon-baryon pairs is considered. Hence, the measured
correlation functions are sensitive to the strong interaction
and can be used to test different strong potentials for the
K−p system, assuming a common source for all the Kp
pairs produced in a collision.
Similar to Fig. 1 for like-sign pairs, Fig. 2 shows the

data-model comparison for unlike-sign pairs. The measured
Cðk"Þ is reported for the three different collision energies
and the Cðk"Þ distributions were compared with different
interaction models. Since all the models considered in this
Letter do not take the presence of Λð1520Þ into account,
only the region below 170 MeV=c is considered in the
comparison. The blue bands show results obtained using
CATS with a Coulomb potential only.
The remaining curves include, on top of the Coulomb

attraction, different descriptions of the K̄N strong inter-
action. The width of each band accounts for the uncer-
tainties in the λ parameters, the source radius and the
baseline. The light blue bands corresponds to the Kyoto
model calculations with approximate boundary conditions
on the K−p wave function which neglect the contributions
from Σπ and Λπ coupled channels [26,52–55]. Moreover,
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FIG. 2. (K−p ⊕ Kþp̄) correlation functions obtained (from left to right) from pp collisions at
ffiffiffi
s

p
¼ 5, 7, 13 TeV. The fourth panel

shows the combined results at the three colliding energies; the number of pairs in each data sample has been used as weight. The inset
shows the correlation function evaluated for pp collisions at

ffiffiffi
s

p
¼ 5 TeV in a wider k" interval. The measurement is presented by the

black markers; the vertical lines and the boxes represent the statistical and systematic uncertainties, respectively. Bottom panels
represent comparison with models as described in the text.

PHYSICAL REVIEW LETTERS 124, 092301 (2020)

092301-4

K−p
K−Λ

 : s wave,
 : p wave (weak decay), 

 : d wave

Ξ(1620), Ξ(1690)
Ω
Ξ(1820)Questions:

- Contribution from higher partial waves?
- Origin of resonance peak?

ALICE collaboration, PRL 124, 092301 (2020); PLB845, 138145 (2023)
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Contribution from s-wave resonance

Contribution from higher partial waves  

Summary

Contents

Contents

S. Watanabe, T. Hyodo, in preparation

- Origin of resonance peak

K. Murase, T. Hyodo, J. Subatomic Part. Cosmol. 3, 100017 (2025);
K. Murase, T. Hyodo, arXiv:2509.22844 [nucl-th]

- Regularized LL formula for  l > 0
- Correlation function with  l > 0

https://inspirehep.net/literature/2847980
https://arxiv.org/abs/2509.22844
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Wave function and correlation (attraction)
Attractive well (no bound state)

source size R = 1 fm

Contribution from s-wave resonances

C(q) ≃ 1 + ∫
∞

0
dr

4π
q2

S(r){ | |rqψq(r) |2 −sin2(qr)}

r
V(r) 1 fm

W.f. is pulled in, increased at  —>  enhancementr ≲ R C(q)

q = 60 MeV

q = 100 MeV
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Wave function and correlation (repulsion)
Repulsive rectangular potential

Contribution from s-wave resonances

C(q) ≃ 1 + ∫
∞

0
dr

4π
q2

S(r){ | |rqψq(r) |2 −sin2(qr)}

source size R = 1 fm

r
V(r)

1 fm

W.f. is pushed out, decreased at  —>  suppressionr ≲ R C(q)

q = 60 MeV

q = 100 MeV
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Wave function and correlation (resonance)
Well + barrier potential

Contribution from s-wave resonances

- resonance @ q− = 59 − 14i MeV

r
V(r)

1 fm

W.f. is localized in  at pole momentum —> peak in r ≲ R C(q)

q = 60 MeV

q = 100 MeV
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Contribution from s-wave resonance

Contribution from higher partial waves  

Summary

Contents

Contents

S. Watanabe, T. Hyodo, in preparation

- Origin of resonance peak

K. Murase, T. Hyodo, J. Subatomic Part. Cosmol. 3, 100017 (2025);
K. Murase, T. Hyodo, arXiv:2509.22844 [nucl-th]

- Regularized LL formula for  l > 0
- Correlation function with  l > 0

https://inspirehep.net/literature/2847980
https://arxiv.org/abs/2509.22844
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Higher partial waves
KP formula with  (spherical source)l > 0

Contribution from higher partial waves

ΔCl(q) = (2l + 1)

C(q) = 1 +
∞

∑
l=0

ΔCl(q)

- sum of partial wave contributions
- interacting w.f.  — free w.f. Rl(r) jl(qr)

× ∫
∞

0
dr 4πr2S(r)[ |Rl(r) |2 − | jl(qr) |2 ]

 1×10−8

 1×10−6

 0.0001

 0.01

 1

(a) V2G(r)

l = 0
l = 1
l = 2
l = 3

|Δ
C

l|

 1×10−8

 1×10−6

 0.0001

 0.01

 1

(b) V1GA(r)

|Δ
C

l|
 1×10−10

 1×10−8

 1×10−6

 0.0001

 0.01

 1

 0  100  200  300  400  500

(c) V1GR(r)

|Δ
C

l|

Relative momentum q (MeV)

Gaussian potentials (range ~ 1.25 fm)
-  components at larger l > 0 q

- -th wave dominant at l q ∼ l/r ∼ 160l MeV

s p d f
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Resonance contribution

Resonances in higher partial waves

Contribution from higher partial waves

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4
(a) VL1(r) KP (l ≤ 10)

rLL(cut) (l ≤ 10)
rLL(cut) (l = 0)
rLL(cut) (l = 1)
rLL(cut) (l = 2)
rLL(cut) (l = 3)

Δ
C

(q
)

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6 (b) VL2(r)

Δ
C

(q
)

−0.3

−0.2

−0.1

 0

 0.1

 0.2

 0.3

 0  100  200  300  400  500

(c) VL3(r)

Δ
C

(q
)

q (MeV)

- p-wave resonance at 

With resonances,  components is enahncedl > 0

p

d

f

q− ∼ 105 − 23i MeV

- d-wave resonance at 
q− ∼ 216 − 20i MeV

- f-wave resonance at 
q− ∼ 345 − 21i MeV

With ,  approaches unityq → ∞ C(q)

- How can resonances be seen?
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LL formula for higher partial wave?
Lednicky-Lyuboshits (LL) formula for s-wave

Contribution from higher partial waves

- Asymptotic w.f. for entire  <— on-shell observabler

- corresponding to zero range limit (point-like interaction)

ΔC(q) = ∫
∞

0
dr

4π
q2

S(r)[sin2(qr − δ(q)) − sin2(q)]

Some regularization for  is neededr → 0

Naive generalization for  is not possiblel > 0

ΔCl(q) = (2l + 1)∫
∞

0
dr 4πr2S(r)[ |Raym

l (r) |2 − | jl(qr) |2 ]

-  is too singular for  (  ) at Raym
l (r) l > 0 nl(qr) ∼ r−l−1 r → 0

R. Lednicky, V.L. Lyuboshits, Yad. Fiz. 35, 1316 (1981);
K. Murase, T. Hyodo, J. Subatomic Part. Cosmol. 3, 100017 (2025)

https://inspirehep.net/literature/2847980
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Regularized LL formula
Simplest choice: introducing cutoff rc

Contribution from higher partial waves

Works for  with  ~ interaction range (1.25 fm)l > 0 rc

ΔCl(q) = (2l + 1)∫
∞

rc

dr 4πr2S(r)[ |Raym
l (r) |2 − | jl(qr) |2 ]

−0.5

−0.4

−0.3

−0.2

−0.1

 0
l = 0

KP integral
rc = 1.2 fm
rc = 1.4 fm
rc = 1.6 fm

Δ
C
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−0.005
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l = 2

Δ
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l
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l = 3

q (MeV)
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Resonace peaks in correlation functions 

s-wave resonance peak <— localization of 
wave function at interacting region 

Higher partial wave ( ) contributions 
becomes important for larger 

Regularized LL formula with suitable cutoff  
works for  

l > 0
q

rc

l > 0

Summary

Summary

S. Watanabe, T. Hyodo, in preparation

K. Murase, T. Hyodo, J. Subatomic Part. Cosmol. 3, 100017 (2025);
K. Murase, T. Hyodo, arXiv:2509.22844 [nucl-th]

https://inspirehep.net/literature/2847980
https://arxiv.org/abs/2509.22844

