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Abstract

Quantum chromodynamics (QCD) governs the strong interaction among quarks and glu-

ons, which compose hadrons in the non-perturbative vacuum. Since hadrons are elementary

excitations of the QCD vacuum, it is important to study their properties in order to under-

stand the whole dynamics of QCD. The field of the hadron spectroscopy is being stimulated

by recent experimental results, namely, evidences of new states and observation of various

quantities to extract properties of excited states.

In this thesis, we study the exotics appearing in the meson-baryon dynamics. We consider

not only the manifestly exotic states such as pentaquarks, but also the states which are

considered to contain a large amount of q̄q components in addition to the valence quarks. We

study the properties of these exotics in effective models with hadronic degrees of freedom.

These models are constructed based on the chiral and flavor symmetries of QCD, and the

results are compared with experimental data. There are two main subjects to be pursued in

this thesis. One is the study of baryon resonances using the chiral unitary model, and the

other is the study of pentaquarks. A key issue common for both subjects is the investigation

of multi-quark components.

We adopt a model which utilizes the meson-baryon interaction derived from the chiral

perturbation theory. Imposing the unitarity condition, the model describes the baryon reso-

nances as meson-baryon molecule states. Hence, the resonances may be regarded as five-quark

states in contrast to conventional approaches with three quarks. The model has been referred

to as the chiral unitary model. Within this model, we study the flavor SU(3) breaking effect

at the interaction level. An interesting two-pole structure of the Λ(1405) resonance is stud-

ied through the production reactions in order to clarify the structure in experiments. The

amplitude of the chiral unitary model enables us to extract various coupling constants of the

generated resonance. Using this method, we calculate the magnetic moments of the N(1535)

resonance and K∗ vector meson coupling to the Λ(1520) resonance.

The Θ+ baryon has strangeness S = +1. Therefore the minimal number of quarks to

construct the Θ+ is five, which is manifestly exotic. We study a K induced reaction to de-

termine the Θ+ quantum numbers in experiments. Inspired by the πKN molecule picture,

we estimate the two-meson clouds around antidecuplet baryons using phenomenological in-

teraction Lagrangians based on flavor SU(3) symmetry. A possibility of spin 3/2 for the Θ+

is examined in the 8-10 representation mixing scheme, analyzing the SU(3) relations for the

mass spectra and the decay widths of known baryon resonances. This scheme is extended

to determine two-meson couplings of the Θ+. The resulting interactions are applied to the

meson-induced productions of the Θ+.
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Chapter 1

Introduction

1.1 Hadronic description of exotics

Strong interaction is described by quantum chromodynamics (QCD), which is color SU(3)
gauge theory with quarks as fundamental fields of matter and gluons as gauge fields. Because
QCD has non-Abelian gauge symmetry, gluons interact with themselves, so that the running
coupling constant of QCD behaves asymptotically free. Inversely, the coupling constant
becomes large in low energy regions, where perturbative calculations break down. In this
non-perturbative region, color confinement and chiral symmetry breaking take place, and
provide a variety of phenomena. The color confinement allows only color singlet states to
exist, and the effective degrees of freedom become mesons and baryons that we refer to as
hadrons. The hadrons acquire masses significantly larger than the current masses of quarks,
due to the spontaneous chiral symmetry breaking. We would like to study these interesting
but complicated physics of hadrons.

In recent years, there has been a remarkable development in hadron physics. From the
experimental side, several evidences for manifestly exotic states have been reported, and
various quantities such as spin observables and angular distributions to extract properties
of excited states are becoming available. Stimulated by the observation of the exotic states,
a tremendous amount of theoretical works have been devoted to study these states, which
shed light on the properties of exotic states, but also reveal insufficiencies in our conventional
understanding. For instance, constituent quark models provide an overall description for
hadrons made from q̄q and qqq with simple Hamiltonians. However, for instance, pentaquarks
include both quark-quark and quark-antiquark correlations in one system, in contrast to the
conventional mesons and baryons. On the other hand, among conventional hadrons there are
also several exceptions which have not been well described in the simple quark picture, such
as the Λ(1405) resonance, the Roper resonance, light scalar mesons, and so on. These states
are considered to have other nature than the quark picture, and rather described as hadronic
molecules or multi-quark states. Since the manifestly exotic states and the non-conventional
states are closely related to each other, we shall call all of them as “exotics”, which are
investigated in this thesis.

A powerful method for the non-perturbative QCD is the simulation on the lattice. Recent
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|B 〉 = | qqq 〉 + | qqq(qq̄) 〉 + · · ·

|P 〉 = | qqqqq̄ 〉 + | qqqqq̄(qq̄) 〉 + · · ·

Figure 1.1: Schematic view of the multi-quark components in baryons |B 〉 and pentaquarks
|P 〉. Those enclosed by dashed lines correspond to the conventional pictures in quark models,
while there are many other structures with q̄q excitations. Among them, we study those
enclosed by solid lines.

progress in lattice QCD researches increases the applicability of simulations, as including the
spectrum of excited states. Here, however, we shall adopt effective models to study hadrons.
If one wants to understand a phenomenon physically, it is important to have an intuitive
picture which captures the essence of the physics there. Thus, the role of effective models
is to provide intuitive pictures of hadrons. With one specific model, the picture may be
too naive to reproduce all the properties, and the reality will be much more complicated.
Therefore, by comparing the experimental observables predicted by two or more models with
different pictures, we can extract the information of the structure of hadrons. Since we know
that the dynamics of hadrons are governed by QCD, we require the models to be connected
with underlying QCD. In order to construct models that share common features with QCD,
we follow the symmetry principle as a guidance.

There are various symmetries in QCD Lagrangian. In physical world, some of them are
approximate symmetries, but they become exact by taking a proper limit of the parameters.
For instance, when the masses of quarks are small compared with the mass of hadrons—this
is the case for the light quarks u and d—chiral symmetry and its spontaneous breaking govern
the dynamics. If the mass difference among Nf current quarks is sufficiently small, flavor
symmetry SU(Nf ) becomes exact. Symmetries give strong constraints in the masses and
interactions of particles, which are realized as model-independent relations. Results under
exact symmetry can be perturbed by taking into account symmetry breaking corrections
appropriately. Thus, we can perform a systematic expansion to obtain physical observables.

In this thesis, we investigate the hadron dynamics at low energies, using effective field
theories with hadronic degrees of freedom. We focus on two subjects, baryon resonances of
s-wave meson-baryon scatterings in the chiral unitary model (part II) and pentaquarks in
hadronic description with flavor symmetry (part III). Both subjects are related to each other,
in the sense that multi-quark states are dealt with in one way or another. The resonances
in the chiral unitary model are described by the meson-baryon quasi-bound states, which
have five quarks in their configuration. The pentaquarks contain minimally five quarks by
construction, but we can also study seven-quark components. Schematically, this viewpoint
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1.2. Baryon resonances in chiral unitary model

�

�

�

�

�
�

Figure 1.2: Diagrammatic representation of the Bethe-Salpeter equation for the chiral uni-
tary model. T is the scattering amplitude and V is the kernel interaction derived from the
chiral perturbation theory. Solid and dashed lines represent the baryon and meson fields,
respectively.

can be depicted in Fig. 1.1. These studies eventually reveal the rich structure of quark
and hadronic matter. Through the study of these exotics, we would like to emphasize the
connection of theories to experiments. It is important to extract the hadron structure from
existing experimental data, and to predict observables which reflect the properties of hadrons.

1.2 Baryon resonances in chiral unitary model

Chiral symmetry of QCD plays an important role in low energy hadron physics [1]. Various
low energy theorems are derived from chiral symmetry and its spontaneous breaking, which
have been known to dominate the low energy phenomena. Based on the nonlinear realization
of chiral symmetry, chiral perturbation theory [2, 3] was developed with a systematic expan-
sion in terms of small momenta of pseudoscalar mesons. Low energy behavior of hadrons
is successfully described by the chiral perturbation theory. However, the unitarity bound
restricts the applicability of the theory to the low energy region, and resonances are not
described unless they are introduced as elementary fields.

On the other hand, some resonances were found to be described by introducing the unitarity
condition for the scattering amplitude [4, 5], where the resonances were dynamically generated
in the non-perturbative resummation. The amplitude of the chiral unitary model can be
expressed as in Fig. 1.2, where the kernel interaction V is iterated infinitely to produce the
total scattering amplitude T . Baryon resonances are dynamically generated in the resulting
amplitude, and they are interpreted as quasi-bound states of mesons and baryons. This
picture works well especially for the non-conventional states in quark models, such as the
Λ(1405) resonance.

Utilizing the amplitude obtained in the chiral unitary model, we perform the following
studies. First, motivated by a large SU(3) breaking in the subtraction constants, we study
the flavor SU(3) breaking effect in the chiral unitary model [6, 7]. The SU(3) breaking
interaction is introduced based on chiral perturbation theory, and we study the effects of this
term to the observables. This subject will be discussed in chapter 4, together with the basic
formulation of the chiral unitary model and resonance structures.

The Λ(1405) resonance has kept the attention of researchers for a long time. As is well
known, it is difficult to reproduce the properties of this resonance in a constituent quark
model due to its light mass, while the resonance is naturally obtained in the coupled channel
scattering. As in the latter, the chiral unitary model also provides the Λ(1405) properly. An

5



Chapter 1. Introduction

interesting observation is that two poles exist around the Λ(1405) resonance energy region
with the same quantum numbers. It is important to verify this structure experimentally.
To do that, we study the π−p → K0πΣ reaction [8, 9, 10] and the γp → K∗B∗ → KπMB

reaction [11, 12] that lead to the Λ(1405) production. Each reaction turns out to enhance
one of the poles, leading to very different shapes for the invariant mass distribution of the
πΣ state. The result will be given in chapter 5.

By attaching one external current to a meson-baryon scattering amplitude in the chiral
unitary model, we can extract a coupling constant of the current to the dynamically gener-
ated resonance. Some of these couplings may not be directly measurable. For instance, the
magnetic moments of a particle which decays via strong interaction is difficult to measure.
The coupling constants of a resonance to kinematically forbidden channels cannot be ob-
served through the particle decay. However, these quantity may be important either for the
understanding of the internal structure of resonances, or in applications to various reaction
processes. We calculate the magnetic moments of the N(1535) resonance [13] which will be
discussed in chapter 6. The coupling constant of the Λ(1520) to the K̄∗N channel [14] is
evaluated in chapter 7.

1.3 Pentaquarks

The evidence for the strangeness S = +1 baryon Θ+ by the LEPS collaboration [15, 16]
has given a great impact on hadron physics. The S = +1 baryon cannot be constructed
by three valence quarks and the minimal quark content for the Θ+ is uudds̄, therefore it is
dubbed “pentaquark”. In the hadron spectroscopy, the Θ+ baryon is the first example which
is manifestly exotic. Let us briefly describe the basic properties of this particle. For more
detailed and comprehensive review, see chapter 3.

Apparently, there is no verification to forbid the existence of pentaquarks from the first
principle of QCD, although the searches for exotic states have not observed positive evidences
for a long time. A pentaquark state contains both qq and qq̄ in one system, which provides
a good test for effective interactions among quarks, since the conventional meson qq̄ and
baryon qqq only contain either qq or qq̄ interactions in one system. Moreover, qq pair in
three-quark state must be in 3̄ representation of color SU(3), in order to make color singlet
for qqq system. On the other hand, qq pair in five-quark system can be combined into color
6 state, which is absent in pure qqq system. In this way, the study of exotic states provides
deeper understanding of hadron dynamics.

Concerning the Θ+ state, the observed mass MΘ ∼ 1540 MeV is very low compared with
a naive estimation in a constituent quark model. The narrow width ΓΘ < 1 MeV appears
difficult to understand in our present knowledge of hadron physics. In experiments, negative
results of the Θ+ search with high statistics are also reported. However, it is worth noting
that any of the negative results cannot exclude the existence of exotic states at all. They
simply indicate the contradiction with the previous positive results claiming a narrow state at
low energies. For instance, they cannot exclude any broad resonances in exotic channels from
the invariant mass spectrum. Even narrow states may escape the detection when the states
have strong coupling to the other decay channels than the detecting one. Once again, QCD
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itself does not forbid the existence of exotic states, and absence of evidence is not evidence
of absence. Therefore, in spite of the controversial situation in experiments, the study of the
exotic states can bring us plenty of knowledge of the hadron physics and the subject is still
interesting to be studied.

In order to understand the properties and dynamics of the Θ+ state, we perform the
following studies. First, we calculate the reaction mechanism of K+p→ π+KN based on the
effective interactions derived from the chiral perturbation theory, assuming the s- or p-wave
KN resonance at 1540 MeV [17, 18, 19, 20]. Comparing the results with different spin-parity
assignment, we extract the observable which can be used as the experimental determination
of the pentaquark Θ+. We find that when we polarize the target and measure the polarization
of the recoiled nucleon, we can distinguish the JP = 1/2+ case from the others. This is the
topic in chapter 8.

Next we evaluate self-energies of the two-meson cloud in the Θ+ and antidecuplet baryons
as shown schematically in Fig. 1.1, using interaction Lagrangians constructed by the SU(3)
symmetry [21, 22, 23]. The study is motivated by the πKN bound state conjecture for the Θ+,
and the large ππN branching ratio of the N(1710) resonance, which is considered to belong
to the antidecuplet representation together with the Θ+. The interaction Lagrangians are the
four-point contact interaction of two mesons, one ground state baryon, and one antidecuplet
baryon, being constrained by the flavor SU(3) symmetry. We observe that the two-meson
cloud provides the attractive self-energy and provide about 20% of the empirical mass splitting
in the antidecuplet baryons. This will be discussed in chapter 9.

The assignment of pure antidecuplet nature for N(1710) and the Θ+ is no more than
an assumption. This point is clarified in more general framework including representation
mixing of antidecuplet 10 with an octet 8, for the possible spin parity assignments JP =
1/2±, 3/2± [24]. We derive flavor SU(3) relations for the masses and coupling constants,
which are examined by fitting the properties of experimentally known resonances with proper
quantum numbers. We obtain good descriptions of the mass spectra with JP = 1/2+ and
JP = 3/2− in 8-10 scheme. Using the SU(3) relation in coupling constants, we determine
the width of the Θ+ from the experimental width of the flavor partners of N∗ resonances.
A narrow decay width of the Θ+ is naturally obtained for the JP = 3/2− case, whereas the
width is somehow larger for the JP = 1/2+ assignment. The results are shown in chapter 10.

We then study the two-meson couplings for the Θ+ with the JP = 1/2+ and JP = 3/2−

assignments for the Θ+ in this mixing scheme [25]. Based on the study in Ref. [21], we include
two dominant interaction Lagrangians. The coupling constants are determined by the decay
widths of the corresponding nucleon resonances and further constrained by the evaluation
of the self-energy. We calculate the meson-induced reactions for the Θ+ production and
compare the results with experiments (chapter 11).
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Chapter 2

Effective field theory and
symmetries

In this chapter, we present a framework to construct effective theories of QCD. Strong inter-
action is described by QCD. However, at low energy, it is not easy to study the dynamics of
strong interaction directly from QCD. In such a situation, it is useful to construct a field the-
ory with effective degrees of freedom, respecting the symmetries of underlying theories. We
show the symmetries of QCD and the methods to incorporate the virtue of the symmetries
into effective Lagrangians.

2.1 Quantum chromodynamics

Quantum chromodynamics (QCD) is color SU(3) gauge theory of quarks and gluons. The
Nf flavor (massless) QCD Lagrangian is given by

L0
QCD = −1

2
tr[GµνG

µν ] + q̄iγµDµq, (2.1.1)

Gµν = ∂µAµ − ∂νAµ − ig[Aµ, Aν ], Dµ = ∂µ − igAµ, Aµ =
∑

a

T aAa
µ,

where q is the quark field, Aa
µ(a = 1 ∼ 8) are the gluon fields, T a = λa/2 are the generators

of the color SU(3) group with Gell-Mann matrices λa, and g is the gauge coupling constant.
The quark field is represented as a three-component column vector in color space, with Nf

components in flavor space.
It has been known that this theory is asymptotically free [26, 27], and it has been suc-

cessful to describe high energy (short distance) phenomena of strong interaction through
the perturbative calculation. On the other hand, it is formidable to apply QCD to the low
energy phenomena, namely hadron physics, because of the color confinement and chiral sym-
metry breaking. A lot of approaches to study the hadron physics have been developed, and
they have been fairly reproducing the observed phenomena. Through these phenomenolog-
ical studies, we have been observing various evidences that QCD controls the dynamics of
the strong interaction. Combining the direct comparison with high energy phenomena and
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indirect evidences in low energy physics, it is now accepted as being beyond doubt that QCD
is the theory of strong interaction. Therefore, the study of hadron physics at low energy is
in some sense strange; although we know the correct theory of strong interaction, i.e. QCD,
we can not apply it to the phenomena that we are interested in. This is in contrast to, for
instance, the quantum electrodynamics (QED); we know that QED is the correct theory of
the electromagnetic interaction, and it is applicable to calculate the cross section of Compton
scattering. The aim of the study of hadron physics is to provide the understanding of the
low energy dynamics of strong interaction in connection to QCD, as close as possible. To do
that, we shall employ the effective field theory, guided by the symmetry principle of QCD.

2.2 Introduction to effective field theory

An effective field theory is a way to describe the low energy dynamics, using phenomenological
Lagrangians restricted by symmetries of the underlying theory. Asymptotic fields in the
effective Lagrangian can be different from those of the fundamental theory, when we integrate
out the original degrees of freedom using the path integral formulation. Schematically, for
the QCD case, this procedure can be expressed as

exp{iZ} =
∫
DqDq̄DAµ exp

{
i

∫
d4xLQCD

}
=

∫
DU exp

{
i

∫
d4xLeff

}
,

where Leff is the Lagrangian of the effective theory with effective degrees of freedom U .
Notice, however, that this procedure is only schematic, and no theory has been derived from
QCD in the path integral method without introducing approximations. Instead, we follow
the guiding principle introduced by Weinberg [2] to construct the effective Lagrangian;

If one writes down the most general possible Lagrangian, including all terms con-
sistent with assumed symmetry principles, and then calculates matrix elements
with this Lagrangian to any given order of perturbation theory, the result will sim-
ply be the most general possible S-matrix consistent with analyticity, perturbative
unitarity, cluster decomposition and the assumed symmetry principles.

This is a “theorem” which has not been proved so far. In practice, it works, as we can see, for
instance, the success of the chiral perturbation theory, which was constructed following this
principle. In Leff, the effects from the original fields in the underlying theory are assumed to
be included in the low energy constants of the effective Lagrangian, that are not determined
by the symmetries.

In what follows, we construct the effective theory of QCD based on chiral symmetry. We
also assume the trivial symmetries such as Lorentz invariance and CPT invariance, that
the QCD Lagrangian (2.1.1) has. In principle, infinite number of terms are allowed by the
symmetry. There are several ways to restrict the number of terms. One way is to make the
theory renormalizable, and the other way is to introduce expansion parameters. The former
corresponds to the concept of linear sigma model, while the latter will be used for the chiral
perturbation theory, in the following.
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2.3 Symmetries of QCD Lagrangian

In this section we consider the symmetries of QCD. First we review the chiral symmetry ofNf

flavor QCD and its spontaneous breakdown. For massless quarks, the QCD Lagrangian (2.1.1)
is invariant under a global transformation, which is called chiral symmetry. In real world,
due to the non-perturbative vacuum, chiral symmetry is spontaneously broken, accompanied
by the appearance of the Nambu-Goldstone (NG) bosons [28, 29, 30], such as pions. Because
quarks have small but nonzero masses, chiral symmetry also breaks explicitly. Nevertheless,
it is important to discuss the low energy hadron physics respecting chiral symmetry, because
the explicit breaking effects are small, and we can neglect them at leading order and includ-
ing their effects as perturbative corrections. Phenomenological successes of the low energy
theorems and the current algebra also indicate the importance of the chiral symmetry in low
energy hadron physics [1, 31].

2.3.1 Chiral symmetry

Historically, before the establishment of QCD, the notion of the chiral symmetry has been de-
veloped in current algebra [31, 32]. Being started with the Goldberger-Treiman relation [33],
an idea of partially conserved axial current (PCAC) was introduced. PCAC was later un-
derstood by the spontaneous breaking of chiral symmetry, where pions were interpreted as
the NG bosons of the broken generators. Considering the process with more than one pion,
such as πN scatterings, commutation relations of the broken generators were determined, so
that the broken symmetry group was specified as SU(2)×SU(2). One of the reasons that
QCD had been accepted was that SU(2)×SU(2) could be understood by the results of small
masses of u and d quarks.

In general,a field theory with massless fermions has a global symmetry. To see this for the
case of QCD (2.1.1), it is useful to define the left-handed and right-handed quarks as

qL = PLq, PL =
1
2
(1− γ5),

qR = PRq, PR =
1
2
(1 + γ5),

where the projection operators PL,R have the properties

P 2
L,R = PL,R, PLPR = 0, PL + PR = 1.

The last equation indicates that q = qL + qR. For the antiquark,

q̄L = (PLq)†γ0 = q̄PR, q̄R = q̄PL.

Using left- and right-handed fields, the Lagrangian (2.1.1) can be expressed as

L0
QCD = −1

2
tr[GµνG

µν ] + q̄Liγ
µDµqL + q̄Riγ

µDµqR.

Here qL and qR are separated each other, and the Lagrangian is invariant under unitary
transformation of quark fields. Hence the theory has a global symmetry U(Nf )L×U(Nf )R.
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Among this symmetry, U(1)A is broken by axial anomaly by quantum correction [34], while
U(1)V holds trivially as the quark number conservation in strong interaction. Removing these
U(1) subgroups, the global SU(Nf )L×SU(Nf )R remains, that we refer to as chiral symmetry
of QCD. Under chiral transformations, the quark fields transform as

qL → LqL, L = eiθ
a
Lta ∈ SU(Nf )L

qR → RqR, R = eiθ
a
Rta ∈ SU(Nf )R

(a = 1 ∼ N2
f − 1),

where θa
L,R are arbitrary real parameters and ta are the generators of SU(Nf ). When we

consider the group G =SU(Nf )L×SU(Nf )R, it is convenient to write an element of G in two
component form as

g = (R,L), gR = (R, 1), gL = (1, L),

where we follow the notation in Ref. [1]. Note that R is an element of SU(Nf )R, while gR is
an element of G =SU(Nf )L×SU(Nf )R. Then we define generators of G as

taR = (ta, 0), taL = (0, ta),

with ta being the generators of SU(Nf ). The commutation relations among taL and taR are
given by

[taL, t
b
L] = ifab

ct
c
L,

[taR, t
b
R] = ifab

ct
c
R,

[taL, t
b
R] = 0,

where fab
c are the structure constants of SU(Nf ).

2.3.2 Spontaneous chiral symmetry breaking

In the previous subsection, the chiral symmetry is manifested among the field operators in
the Lagrangian (2.1.1). If an operator has a finite vacuum expectation value, which is not
invariant under chiral transformations, then the symmetry is spontaneously broken. In the
case of QCD, quark condensate q̄q = q̄RqL + q̄LqR has a finite vacuum expectation value v

〈0|q̄RqL + q̄LqR|0〉 = v. (2.3.1)

Under g = (R,L) ∈ SU(Nf )L×SU(Nf )R , the expectation value transforms

〈0|q̄RqL + q̄LqR|0〉 g→ 〈0|q̄RR†LqL + q̄LL
†RqR|0〉,

which is not invariant, because the parameters θa
L,R in L and R are arbitrary.

In order to consider the transformation which makes the expectation value invariant, we
define the generators taV and taA as

taV ≡ taR + taL = (ta, ta), taA ≡ taR − taL = (ta,−ta). (2.3.2)
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It is clear that the {taV , taA} is the basis of the same Lie algebra as {taL, taR}, both of which
generate the chiral group G. From Eq. (2.3.2), it is clear that the commutation relations
among taV and taA are given by

[taV , t
b
V ] = ifab

ct
c
V ,

[taV , t
b
A] = ifab

ct
c
A,

[taA, t
b
A] = ifab

ct
c
V .

It is seen that taV forms a closed algebra. In this case, the subspace of G generated by taV ,
namely, {(eiθa

V ta , eiθ
a
V ta)} ⊂ G forms a group. Under the transformation in this subgroup, the

condensate (2.3.1) is invariant, as we see

〈0|q̄RqL + q̄LqR|0〉 → 〈0|q̄Re−iθa
V taeiθ

a
V taqL + q̄Le

−iθa
V taeiθ

a
V taqR|0〉 = v.

In this way we see that the SU(Nf )L×SU(Nf )R symmetry is broken to the subgroup
SU(Nf )V . This is called spontaneous breaking of chiral symmetry, where the vacuum ex-
pectation value breaks the symmetry of the Lagrangian.

When the symmetry is spontaneously broken, Nambu-Goldstone theorem ensures that the
spectrum of physical particles must contain one particle of zero mass and spin for each broken
symmetry. These bosons are called the Nambu-Goldstone (NG) bosons. In the case of QCD
with two flavors (u and d), the NG bosons are three pions, while in the case of QCD with
three flavors (u, d and s), pions, kaons, and eta are generated as the NG bosons.

2.3.3 Flavor symmetry and explicit symmetry breaking

After spontaneous chiral symmetry breaking, only vector symmetry SU(Nf )V remains, which
is called flavor symmetry. The origin of the flavor symmetry is much older than the chiral
symmetry, as the isospin SU(2) symmetry was the symmetry of proton and neutron in nuclear
physics. The flavor SU(3) was introduced as an extension of the isospin SU(2) in order to
classify the particles [35, 36, 37]. A great success was the prediction of the Ω baryon and the
η meson, which were subsequently observed in experiments.

In reality, the quarks have masses, and QCD Lagrangian can be written as

Lmass
QCD = L0

QCD − q̄mq, m =



mu

md

ms


 , (2.3.3)

where the mass matrix is defined in flavor space, and we neglect the heavy flavor quarks, c,
b, and t. The mass term breaks the chiral symmetry explicitly. However, note that the flavor
symmetry SU(3)V holds when mu = md = ms. In practice, this symmetry is broken. The
masses of the u and d quarks are as light as several MeV, while the mass of the s quark is
about 150 MeV. This indicates that the flavor symmetry breaking is important for the SU(3)
case.

The explicit chiral symmetry breaking gives the small masses for the NG bosons, and
flavor symmetry breaking induces the mass difference among hadrons. These effects will be
incorporated in the chiral Lagrangian, introducing the mass term as in the same way with
QCD.
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Chapter 2. Effective field theory and symmetries

2.4 Chiral perturbation theory

Chiral perturbation theory is based on the nonlinear realization of chiral symmetry [32, 38,
39, 40]. The nonlinear realization provides a representation for a system with a global symme-
try G—in the present case, chiral symmetry SU(3)L×SU(3)R —which breaks spontaneously
down into a subgroup H ⊂ G—in the present case, SU(3)V . It is important that spontaneous
symmetry breaking of the system is already assumed from the beginning. In other words,
symmetry breaking is incorporated at the Lagrangian level.

2.4.1 Meson system

Following the constructions in Ref. [38, 39], we write the octet pseudoscalar mesons in the
SU(3) matrix form as [3, 41, 42]

Φ =




1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η


 ,

and the chiral fields U and ξ are defined by

U(Φ) = exp

{
i
√

2Φ
f

}
, ξ(Φ) = exp

{
iΦ√
2f

}
, U(Φ) = ξ2(Φ),

where f is a quantity of mass dimension, and will be identified with the meson decay constant.
The transformation lows of these fields under chiral transformation g ∈ SU(3)L×SU(3)R are
given by [38, 39]

U
g→ RUL†, U † g→ LU †R†,

ξ
g→ Rξh† = hξL†, ξ† g→ Lξ†h† = hξ†R†,

where L ∈ SU(3)L, R ∈ SU(3)R, and h(Φ, g0) ∈ SU(3)V , all of which are determined according
to g.

In order to construct an effective field theory, we organize the most general Lagrangians
using these fields, following the principle presented in section 2.2. For the systematic ex-
pansion, we define a chiral counting rule, as introduced in Refs. [3, 41, 42]. Since the octet
mesons are the NG bosons, their masses are zero in the chiral limit, and small even if the
explicit breaking effect is included. This means that if the spatial momentum of a meson p

is small, we can also regard the four momentum pµ as small.
In this way, possible structures are classified in powers of momenta, which is expressed by

derivatives acting on meson fields in the effective Lagrangian. In a low energy region, where
the momentum of each particle is small, lower order terms should be dominant and we can
neglect the higher order terms. Chiral Lagrangian should be invariant under chiral trans-
formation SU(3)L×SU(3)R , Lorentz transformation, charge conjugation, parity, and time
reversal. Due to the Lorentz invariance, the Lagrangian contains even number of derivatives

Leff(U) =
∑
n

LM
2n(U), (2.4.1)
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2.4. Chiral perturbation theory

where 2n denotes the number of derivatives. Defining U as a quantity of order O(1), a term
with n derivative is counted as O(pn). In Eq. (2.4.1), the terms with n = 0 provide unity,
because of the unitarity of the field U . Therefore the lowest order Lagrangian consists of two
derivatives of U field and is uniquely given as

LM
2 =

f2

4
Tr(∂µU

†∂µU), (2.4.2)

which is of orderO(p2). In the same way, we can construct a series of the effective Lagrangians
LM

2n(U) up to desired chiral order. For the low energy problem, the leading order term (2.4.2)
becomes dominant, thanks to the chiral counting rule.

In general, the factors in front of the effective Lagrangian are called as the low energy
constants, which can not be determined by the symmetry itself. However, the constant for
the leading order term (2.4.2) has been determined by the normalization of the kinetic term.
Since the Φ field is included in the exponential, by expanding the U field in Eq. (2.4.2), we
obtain the terms including two Φ fields, four Φ fields, and so on:

LM
2 =

1
2
Tr(∂µΦ∂µΦ) +

1
12f2

Tr
(
(Φ∂µΦ− ∂µΦΦ)2

)
+ · · · .

The first term with two Φ fields represents the kinetic term of mesons, while the second
term is responsible for the meson four-point interaction. This means that we can relate the
strength of the meson-meson interaction to the normalization of the kinetic term. This is
an advantage of the chiral Lagrangian, that is, the relation between the terms with different
number of mesons is determined by the symmetry. Indeed, the factor f2/4 in Eq. (2.4.2) has
been chosen such that the kinetic term appears with correct normalization, which determines
the strength of the meson-meson interaction.

Another virtue of the chiral Lagrangian is the renormalizability at given chiral order.
Apparently, since the lowest order Lagrangian contains terms with any number of meson
field, the theory is non-renormalizable. However, we can define the chiral counting rule for
the amplitude. It is shown that the divergence that arises from the loop diagram can be
tamed by the counter term in the higher order Lagrangians, namely, the renormalization can
be performed order by order.

Since we are considering the flavor SU(3) case, it is important to introduce the SU(3)
breaking term as in Eq. (2.3.3). This procedure can be interpreted as the introduction
of scalar external field into the Lagrangian (2.1.1), which can be generalized for arbitrary
external fields as

Lext
QCD = L0

QCD + q̄γµ(vµ + γ5aµ)q − q̄(s− iγ5p)q, (2.4.3)

where the external fields vµ, aµ, s and p are vector current, axial vector current, scalar and
pseudo scalar field, respectively. Using qL and qR, this can be written as

Lext
QCD =L0

QCD + q̄Lγ
µ(vµ − aµ)qL + q̄Rγ

µ(vµ + aµ)qR − q̄R(s+ ip)qL − q̄L(s− ip)qR.
Defining lµ and rµ as

lµ ≡ vµ − aµ, rµ ≡ vµ + aµ, (2.4.4)

15



Chapter 2. Effective field theory and symmetries

it is easy to derive the transformation lows for the external fields:

s+ ip
g→ R(s+ ip)L†, s− ip g→ L(s− ip)R†,

lµ
g→ LlµL

† + iL∂µL
†,

rµ
g→ RrµR

† + iR∂µR
†.

(2.4.5)

In this case, the Lagrangian (2.4.3) is invariant under SU(3)L×SU(3)R . Note that the
transformation lows are local because they contain derivatives. We then incorporate the
external fields and their transformation laws with the effective chiral Lagrangian (2.4.1). As
a consequence of the local transformation, derivatives of the field U(Φ) should be replaced
by covariant derivatives, which are given by [3, 41, 42]

DµU = ∂µU − irµU + iUlµ, DµU
† = ∂µU

† + iU †rµ − ilµU †.

For convenience, we define χ and field strength tensors as

χ =2B0(s+ ip), χ† = 2B0(s− ip),
Lµν = ∂µlν − ∂ν lµ − i[lµ, lν ], Rµν = ∂µrν − ∂νrµ − i[rµ, rν ] (2.4.6)

with a constant B0, which will be determined later. Their transformation lows are given by

χ
g→ RχL†, χ† g→ Lχ†R†, Lµν g→ LLµνL†, Rµν g→ RRµνR†.

Using these external fields, we can introduce SU(3) breaking effects and photon couplings.
For example, in order to include the quark mass term, we choose

s = m, m =



mu

md

ms


 . (2.4.7)

The photon field Aµ can be introduced as

lµ = rµ = eQAµ, Q =
1
3




2
−1

−1


 , (2.4.8)

where e is the unit electric charge. Substituting this current into Eq. (2.4.3), we see that
the kinetic term is properly gauged as ∂µ → ∂µ − ieAµ. It is worth noting that once specific
directions in flavor space are selected in this way, chiral symmetry is explicitly broken. Indeed,
the expressions (2.4.7) and (2.4.8) do not satisfy the transformation laws (2.4.5). However,
when we construct the effective Lagrangian invariant under the transformation laws (2.4.5), it
is ensured that the way we break the symmetry is exactly the same as that in the underlying
QCD Lagrangian (2.4.3).

The chiral order of the external fields is assigned as

U, ξ : O(1), aµ, vµ, lµ, rµ, : O(p), s, p, χ : O(p2). (2.4.9)
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2.4. Chiral perturbation theory

Let us remark that there is no a priori reason to assign the chiral order of the external fields
in this way. There are some indirect reasons. For instance, in order to construct Lorentz
vectors from the combination of meson field Φ, a derivative is necessary, which introduces
O(p) in the currents vµ and aµ. The scalar quantity s is identified as the quark mass term
m as in Eq. (2.4.7), and the Gell-Mann–Oakes–Renner (GMOR) relation [43] requires that
this quantity should be O(p2), as we will see below.

Once the counting rule (2.4.9) is accepted, it is straightforward to write down the effective
Lagrangian at leading order as

LM
2 =

f2

4
Tr(DµU

†DµU + U †χ+ χ†U). (2.4.10)

In this Lagrangian, there are two low energy constants f and B0. By taking the derivatives
with respect to the external field for the classical action SM

2 =
∫
d4xLM

2 , we can read the
physical meanings of the low energy constants.

δSM
2

δaµ
= −
√

2fDµΦ + · · · ,

δSM
2

δs
= −f2B0 + · · · .

Taking the matrix elements, we can identify f as the pion decay constant fπ and B0 is related
with quark condensate 〈 0 |q̄q| 0 〉 = −f2B0. Expanding the chiral field in Eq. (2.4.10), we
obtain the kinetic terms and mass terms for mesons:

LM
2 =

1
2
Tr(∂µΦ∂µΦ)−B0Tr

(
mΦ2

)
+ · · · .

The second term appears when we include the explicit symmetry breaking effect (2.4.7).
From this term, we can read the meson masses as

M2
π± =2m̂B0, M2

π0 = 2m̂B0 − ε+O(ε2), M2
η =

3
2
(m̂+ 2ms)B0 + ε+O(ε2),

M2
K± =(mu +ms)B0, M2

K0 = (md +ms)B0,

where m̂ = (mu + md)/2 and ε = B0(mu −md)2/4(ms − m̂), which originate in the small
mixing between π0 and η. Ignoring the isospin breaking effect (mu = md = m̂) and higher
order corrections, the meson masses are given by

M2
π = 2m̂B0, M2

K = (m̂+ms)B0, M2
η =

3
2
(m̂+ 2ms)B0. (2.4.11)

From these equations, we obtain the Gell-Mann–Okubo mass relation for mesons

3M2
η = 4M2

K −M2
π .

Eq. (2.4.11) also suggests that

χ = 2B0m =



m2

π

m2
π

2m2
K −m2

π


 .

For completeness, we also present the O(p4) Lagrangian in Appendix B.1, together with the
summary of definition of fields and their transformation lows.
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Chapter 2. Effective field theory and symmetries

2.4.2 Meson-baryon system

In this subsection, we introduce SU(3) octet baryon fields in the chiral Lagrangian [44]. From
the viewpoint of the nonlinear realization, it is possible to introduce the matter fields, which
transforms under h ∈ SU(3)V [38, 39]. Let us introduce the octet baryon fields, as the adjoint
representation of SU(3),

B ≡
8∑

a=1

λaBa =




1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ


 , B̄ = B†γ0.

Because B and B̄ are adjoint representations, they transform under SU(3)L×SU(3)R as

B
g→ hBh†, B̄

g→ (hBh†)†γ0 = hB̄h†. (2.4.12)

When we introduce the baryon fields, a problem arises concerning the chiral counting rule.
As a consequence of the transformation law (2.4.12), a chiral invariant mass term M0Tr(B̄B)
can exist, even if the quark mass is absent:

M0Tr(B̄B)
g→M0Tr(hB̄h†hBh†) = M0Tr(B̄B).

The presence of the mass term in baryon sector can be understood by the spontaneous
breaking of chiral symmetry, but this is an important difference from the pseudoscalar meson
case. In the pseudoscalar meson sector, we define chiral counting rule using the fact that
the meson mass is zero or very small. However, we see that in the baryon sector a large
mass can exist, of the order of 1 GeV, in practice. This means that the energy of the baryon
p0 =

√
M2

0 + p2 is not small even if |p| is small. Hence we cannot treat the four-momentum
of the baryons as a small quantity any more. This fact also causes the complicated counting
for loops. In the meson sector, there is a one-to-one correspondence between the diverging
amplitude and the counter terms in Lagrangian. However, in the baryon sector, the baryon
propagator gives a contribution of the baryon mass instead of typical low momenta, since the
baryon mass is not small.

Actually there is a method which allows us to perform power counting in a consistent
way [44]. In that case the counting rule becomes more complicated and many terms appear
even in the next-to-leading order. Another way to avoid this difficulty is to adopt the heavy
baryon chiral perturbation theory [45, 46, 47], taking the limit p/M0 ¿ 1. In this limit, the
number of terms is suppressed and counting rule becomes much simpler. Here we however
take the approaches in Ref. [44] for the counting rule for baryons. In practice, two approaches
give the same terms for the leading order, that we are going to use.

In order to introduce the coupling with external fields with matter fields, it is convenient
to use the quantities, which transforms

O
g→ hOh†, (2.4.13)

because of the transformation lows of B and B̄ (2.4.12). Using χ field, we construct scalar
(σ) and pseudoscalar (ρ) quantities defined as

σ ≡ ξχ†ξ + ξ†χξ†, ρ ≡ ξχ†ξ − ξ†χξ†.
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2.4. Chiral perturbation theory

Vector (Vµ) and axial vector (Aµ) currents are given by

Vµ =− i

2
(ξ†∂µξ + ξ∂µξ

†)− 1
2
(ξ†rµξ + ξlµξ

†),

Aµ =− i

2
(ξ†∂µξ − ξ∂µξ

†)− 1
2
(ξ†rµξ − ξlµξ†).

Using the field strength tensors (2.4.6), we define

Fµν
R = ξ†Rµνξ, Fµν

L = ξLµνξ†.

From the chiral transformation lows of ξ fields, it is straightforward to show that σ, ρ, Aµ,
Fµν

R , and Fµν
L satisfy the transformation (2.4.13). The vector current transforms as

Vµ
g→ hVµh

† − ih∂µh
†.

Thanks to this properties, covariant derivatives can be defined for the octet matter fields as

DµB = ∂µB + i[Vµ, B], (2.4.14)

which transform as

DµB
g→ hDµBh

†.

According to the detailed discussion of chiral power counting for the baryons in Ref. [44],
the quantities we defined above are counted as

σ, ρ : O(p2), Aµ, Vµ : O(p), Fµν
R , Fµν

L : O(p2),

and baryon fields are

B, B̄ : O(1), DµB : O(1), iγµDµB −M0B : O(p).

With these counting rules, we can construct the most general effective Lagrangian as in the
meson sector. Couplings between mesons and baryons are introduced in the expansion of the
ξ field, which is governed by the chiral symmetry.

In baryon case, an effective Lagrangian can contain the terms of order odd number of
momentum,

Leff(B,Φ) =
∑

n

LB
n (B,Φ).

Considering the Lorentz structure of the currents, the most general Lagrangian with baryons
in the lowest order of the chiral expansion is given by

LB
1 = Tr

(
B̄(i/D −M0)B −D(B̄γµγ5{Aµ, B})− F (B̄γµγ5[Aµ, B])

)
,

whereD and F are low energy constants andM0 denotes a common mass of the octet baryons.
Here we follow the notation in Ref. [48].
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Chapter 2. Effective field theory and symmetries

In next-to-leading order O(p2), we have twenty one terms in the most general effective
Lagrangian [44]. Among them, here we show the terms that we will use in later chapters.
Flavor SU(3) breaking terms are given by

LB
SB = b0Tr(B̄B)Tr(σ) + bdTr

(
B̄{σ,B}) + bfTr

(
B̄[σ,B]

)
, (2.4.15)

and photon coupling terms by

LB
(γ) =

bD6
8Mp

Tr
(
B̄σµν{F+

µν , B}
)

+
bF6

8Mp
Tr

(
B̄σµν [F+

µν , B]
)
, (2.4.16)

where Mp is the mass of proton and we have defined

Fµν
+ = Fµν

L + Fµν
R , σµν =

i

2
[γµ, γν ].

In practical calculations, we will use slightly modified forms from Eqs. (2.4.15) and (2.4.16).
Details on the convention of chiral Lagrangian are summarized in Appendix B.1.
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Chapter 3

Overview of pentaquarks

It has been three years since the evidence for the Θ+ resonance was reported [16]. Since then,
the studies of exotic baryons have been continuously excited by new results from experiments
and new ideas from theory side. There are more than 500 papers on the web concerning the
exotic states so far.

In this chapter, the studies devoted to the exotic baryons are reviewed. These studies are
usually based on the models and approaches which have been developed for the description
of hadrons and applied to the studies of their properties. Therefore, reviewing the studies
on exotic baryons will provide a guidance for various techniques in hadron physics. On the
other hand, through the intensive studies of five-quark states, we have encountered several
problems and questions which have not been appeared in the case of three-quark baryons.
These lessons urge us to revisit the studies for the non-exotic states and basis of our model
constructions.

Because there are already many review articles available, we list some of them in the
following. Ref. [49] gives a detail and comprehensive review of existing studies up to the time
of publication. It also surveys the old searches of Z∗ resonances. A review by the one of the
authors of the prediction of the Θ+ can be found in Ref. [50], where the basis of the chiral
soliton models and connection to QCD were discussed. A discussion on constituent quark
models can be found in Ref. [51]. Ref. [52] is a review of pentaquarks and various related
topics, emphasizing the diquark correlation in hadrons. Summary of experimental status can
be found in Ref. [53].

3.1 Researches before the first evidence

Before the first experimental evidence for the Θ+ was announced in Ref. [16], there were
several studies of possible exotic states in quark models and chiral soliton models, as well as
the experimental searches for them. In this section, we summarize the researches which were
performed before the first evidence. One may also refer to recent review articles [49, 54, 55].

Experimental searches for S = +1 states (called Z∗ resonances at that time) were per-
formed in K+ beam experiments. Relevant data and references are summarized in the KN
phase shift analyses in Refs. [56, 57]. In these studies, the authors could find some “resonance
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Chapter 3. Overview of pentaquarks

Table 3.1: Summary of the Z∗ search in Ref. [57]. Masses and widths are extracted from the
positions of poles found in the partial wave analysis of the KN scattering.

Amplitude (JP ) Mass [MeV] Width [MeV]
D03 (3/2−) 1788 340
P13 (3/2+) 1811 236
P01 (1/2+) 1831 190
D15 (5/2+) 2074 506

like structures”, which had large widths, but the phase motions were not very convincing.
The pole positions found in the latest analysis [57] are summarized in Table 3.1. Note, how-
ever, that in these old searches in KN scattering, data of the energy region around 1540 MeV
were rather sparse, and there was inconsistency between different measurements at the same
energies. These may be caused by the difficulty of producing the low energy kaon beam in
experiments [53]. The experimental Ξ∗ searches including exotic channels were summarized
in Ref. [58], where no prominent structure has been observed. Motivated by the quark model
prediction, an experimental search for heavy pentaquark uudsc̄ was performed in φπp [59]
and K∗0K−p [60] decay modes, but the results were negative.

Theoretical studies for the exotic baryons have been started in the scattering theory, even
before the establishment of QCD. The existence of a baryon with exotic flavor quantum
numbers was first argued in the context of a general assumption of the duality of Regge
trajectory and s-channel resonance contributions [61]. The existence of baryon antidecuplet
was discussed by analyzing the KN scattering data in 60’s [62], where the Z∗ candidate
was studied in connection with corresponding N∗ partner, with JP = 1/2+. Flavor SU(3)
selection rules such as N10 9 π∆ were already mentioned there.

Explicit five-quark states were studied within the constituent quark models [63, 64, 65],
although the existence of such states was already “mentioned” by Gell-Mann much earlier [66].
In the models of Refs. [63, 64, 65], negative parity pentaquarks were considered, since all
quarks were in s orbit, and therefore, naively expected to be the lightest. Non-triviality of the
color configuration in qqqqq̄ system was pointed out in Ref. [64], together with the possibility
of having a narrow width into meson-baryon channel due to the color configurations. In
Ref. [65], a systematic calculation for the pentaquarks and seven-quark states qqqqqq̄q̄ was
performed, assigning the known negative parity resonances as these multi-quark states in the
MIT bag model.

In Refs. [67, 68] pentaquark states including one heavy quark were studied based on quark
models with color-magnetic interaction. In these studies, uudsQ̄ states with Q = c or b,
were found to be stable against the strong decay. Subsequent studies and experimental
efforts [59, 60] were summarized in Ref. [69].

The heavy pentaquarks were also studied in the constituent quark model with Goldstone
boson exchange interaction [70]. In this model, ground state was found to be positive parity
with one quark in p state, in contrast to the previous studies with one gluon exchange model.
Non-strange (but heavy) pentaquarks like uuddc̄ were predicted to be stable, while the states
with strange quarks uudsc̄ were unbound. The reversal of the level ordering of (0s)5 states
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and states with one orbital excitation was observed for the light quark sector as well, when
the Goldstone boson exchange was used as the hyperfine interaction [71]. This observation
was reconsidered again in recent studies.

In the chiral soliton models, the appearance of the 10 (and 27) was sometimes mentioned
soon after the generalization of the model to the SU(3) sector [72, 73], but the exotic states
were not studied in detail, probably because of the lack of experimental evidences and very
the exotic nature of the states. In Ref. [74], meson-baryon scattering was studied based on
the Skyrmion model, including the KN scattering. Some structures were observed in the
KN amplitude, being consistent with the experimental observation, but no prominent state
was found.

Explicit calculation of the exotic state in the chiral soliton models was performed in
Ref. [75], which was not published at that time and the essential argument can be found
in Ref. [76]. In this work, the mass of the baryon antidecuplet was estimated in the Skyrme
model, providing the light value of 1530 MeV for the S = +1 particle. More striking result
was obtained by Diakonov et al. [77], namely the narrow width of Γ < 15 MeV and a light
mass of 1540 MeV. The prediction of the light and narrow state partly motivated the recent
experimental searches for the Θ+. We will discuss these predictions in section 3.5.

Heavy pentaquarks were also studied in the bound state approach of the Skyrmion [78],
predicting several stable states against strong decay. In the quark language, the states cor-
responded to uuddQ̄, which were not accompanied by the strange quark in contrast to the
states predicted in the quark models with one gluon exchange [67, 68].

Within the chiral soliton model, the effect of the collective radial excitations was studied in
addition to the flavor rotation mode of rigid rotor quantization [79, 80]. Coupling between two
modes was deduced by flavor symmetry breaking. In this approach, several radial excitations
of the ground states were predicted. For the Θ+, state mixing with higher dimensional
representations and radially excited states was found to be important, and the mass and
width of the lowest state were obtained as 1580 MeV and 100 MeV, respectively.

Based on the model predictions of mass and width of the S = +1 state, several production
reactions were proposed in order to detect it experimentally. In Ref. [81], the pp→ nΣ+K+

reaction was studied. The possibility to observe an S = +1 baryon as predicted in the
chiral soliton model [77] was demonstrated in this reaction close to the production threshold.
Electroproduction of K− off proton target was proposed in Ref. [82].

3.2 Experiments

In this section, we summarize the current status of the experiments. The evidences for the
Θ+(uudds̄) state are shown first, followed by the studies imposing the upper limit of the
decay width based on the old KN scattering data. We then mention the status of searches
for other pentaquark candidates, Ξ−−(ddssū), Θc(uuddc̄), and Θ++(uuuds̄). The negative
results for the pentaquarks are also reviewed, with the discussions trying to explain the
positive/negative results by theoretical speculations. For an review of this subject, one may
refer to Ref. [53].
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Figure 3.1: The result by LEPS collaboration taken from Ref. [16]. Solid histogram shows
the fermi motion corrected missing mass spectrum MM c

γK− , explained in the text. Dotted
histogram represents the normalized spectrum for events from LH2 target.

3.2.1 Evidences for the Θ(uudds̄) state

Here the experimental evidences for the Θ+ state are reviewed. Searches for the possible
Θ++ state will be given later. As a summary of the positive results, the reaction, obtained
mass, and width for each experiment are shown in Table 3.2.

The first experimental evidence for the Θ+ was reported by LEPS collaboration [16]. The
reaction γn → K+K−n was carried out at SPring-8 on 12C target. Events for the φ(1020)
production in K+K− system were removed, as they were the background processes. Since
the target neutron was bound in 12C, Fermi motion of the initial neutron should be corrected
for the accurate missing mass spectrum. Using the correlation between the missing mass of
K+K− system MMγK+K− and the K± missing mass MMγK± , the Fermi motion corrected
missing mass MM c

γK± was obtained as

MM c
γK± = MMγK± −MMγK+K− +MN ,

with MN being the nucleon mass. In the MM c
γK± spectrum, a sharp peak was observed at

1540± 10 MeV as shown in Fig. 3.1. The width of the resonance was estimated to be smaller
than 25 MeV, being consistent with the experimental resolution. Notice that the LEPS
detector covers forward angle and acceptance is symmetric for positive and negative particles.
The result was reported first at PANIC02 conference [15], and also given in Refs. [83, 84, 85].
New preliminary results on deuteron target from LEPS can be found in Refs. [86, 87, 88].

DIANA collaboration studied the K+Xe collisions in Xenon bubble chamber [89]. A peak
of K0p invariant mass spectrum was observed in K+Xe → K0pX reaction, where K0 was
detected via K0

s decays into π+π−. Background shape was estimated by mixed-event tech-
nique. In order to make the signal clean, they applied two event selections: θp < 100◦ and
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θK0 < 100◦ with respect to beam direction, and cos ΦpK < 0 for the azimuthal angle be-
tween p and K0 in Laboratory frame. These event cuts reduced the K0p rescattering, and
signal became more prominent with the cuts. Validity of these cuts were verified theoretically
by meson-exchange model calculation [90]. The mass and the width of the resonance were
reported as M = 1539± 2 MeV and Γ < 9 MeV.

An experiment on deuteron target was reported by CLAS collaboration [91]. which was
an exclusive reaction γd → K+K−pn with all the charged particles being detected, so that
the Fermi motion correction of the initial nucleon was not necessary. After applying several
cuts, the nK+ invariant mass spectrum showed a peak at 1542 ± 5 MeV, with a width
of 21 MeV, consistent with the instrumental resolution. The result was also reported in
Refs. [92, 93, 94, 95]. However, new result with high statistics by the same collaboration [96]
was in contradiction to the result in Ref. [91], finding no peak.

In Ref. [97], SAPHIR collaboration studied the γp → K̄0K+(n) reaction, where K̄0 was
detected as K0

s → π+π− and the neutron momentum was reconstructed from kinematics.
This is the simplest reaction for the Θ+ production, free from the Fermi motion of initial
state and complicated kinematical mechanism. A peak for the Θ+ was found in the invariant
mass spectrum of nK+ system at 1540± 6 MeV. However, the same reaction was tested by
CLAS collaboration with high statistics [98], which found no structure for the Θ+.

Ref. [99] reported the evidence in neutrino interactions. They combined data of neutrino
and antineutrino collisions with hydrogen, deuterium and neon in bubble chambers. In an
inclusive experiment of this kind, where a signal is searched for in the K0

sp spectrum, the
strangeness of the final state can not be tagged, and both S = +1 and S = −1 particles
can contribute, namely, Θ+ and Σ∗+. Background shape was estimated by the events of the
same final states randomly, which were normalized at the non-resonant region m(K0

sp) > 2
GeV. A narrow enhancement was observed at 1533 ± 5 MeV, whose width was consistent
with experimental resolution, estimated as < 20 MeV. A broad excess was also found in
1650 < m(K0

sp) < 1850 MeV, which was interpreted as the contribution from Σ∗ resonances.
In Ref. [100], the result of further analysis was reported. The state observed above was still
there, and its mass and width were given by M = 1532.2± 1.3 MeV and Γ < 12 MeV.

The reaction γp→ π+K−K+n was studied by CLAS collaboration [101]. This is considered
as the one of the best positive results [53], since the reaction is exclusive and the significance
of the peak is above 7σ. First they excluded the φ production in K+K− channel, removing
the invariant mass less than 1.06 GeV. With this cut only, no obvious peak was found in the
K+n spectrum. In order to remove the background events, the angle cuts were applied as
cos θ∗π+ > 0.8 and cos θ∗K+ < 0.6, namely the selection of the forward going π+ and backward
K+. Then the spectrum showed a clear peak at M = 1555 ± 10 MeV and Γ < 26 MeV, as
shown in Fig. 3.2. Further structure was found in the Θ+K− channel, where S = 0 baryon
resonance can be seen. An excess of events near 2.4 GeV was observed, although the statistics
was very low. The result was first reported in Ref. [93], and also presented in Refs. [95, 102].
After the above two published works by CLAS, the up-to-date status of the analysis and
future perspective were presented in Refs. [95, 103, 104, 105, 106, 107].

The evidence for an |S| = 1 narrow resonance in quasi-real photoproduction was reported
by HERMES collaboration [108]. With 27.6 GeV positron beam on deuterium target, a
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Figure 3.2: The result by CLAS collaboration taken from Ref. [101]. The nK+ invariant mass
spectrum in the reaction γp → π+K−K+(n) with the cut cos θ∗π+ > 0.8 and cos θ∗K+ < 0.6.
θ∗π+ and θ∗K+ are the angles between the π+ andK+ mesons and photon beam in the center-of-
mass system. The background function we used in the fit was obtained from the simulation.
The inset shows the nK+ invariant mass spectrum with only the cos θ∗π+ > 0.8 cut.

signal was searched for in the invariant mass of K0
sp channel. To study the peak structure,

three different methods for the background estimation were used: (i) known Σ∗ resonances
on top of the Monte Carlo simulation, (ii) known Σ∗ resonances on top of the background by
mixed event technique, and (iii) polynomial. Mass and width of the state were estimated as
M = 1528± 2.6± 2.1 MeV and Γ = 17± 9± 3 MeV. The cross section of γ∗D → Θ+X was
estimated as 100-220 nb ±25%, while that for the Λ(1520) production was 62± 11 nb. The
result was also reported in Ref. [109], where the Λπ+ spectrum was further studied, which
suggested that the observed signal was not a Σ∗ resonance. K0p spectrum with additional
pion detection was also shown, in which the signal to noise ratio was improved. One may
find results in Refs. [110, 111].

In Ref. [112], the reaction pA → pK0
sX was studied with 70 GeV proton beam by SVD

collaboration. Applying event selection of the pK0 system to be forward of 90◦ in the center of
mass frame, a narrow structure was observed. Above the background estimated by simulation,
the peak was found at 1526± 3 ± 3 MeV with the width of < 24 MeV. The result was also
reported in Ref. [113]. A further analysis with new data sample [114] confirmed the peak,
giving the mass and width of 1523± 2± 3 MeV and < 14 MeV, respectively.

An evidence in low-energy proton-proton collision was reported by COSY-TOF collabora-
tion [115]. The experiment of pp→ Σ+K0p was performed with the 2.95 GeV proton beam,
and a clear signal was seen in the K0p invariant mass spectrum. In this case, the strangeness
of the signal was tagged by the simultaneous detection of the Σ+. By applying the efficiency
correction, the observed spectrum was fitted by the gaussian for the peak on top of polyno-
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mial background. The mass and width of the peak were extracted as M = 1530±5 MeV and
Γ < 18± 4 MeV. Cross section for the Θ+ production was estimated as 0.4± 0.1± 0.1µb, by
comparing the number of events with those of the elastic reaction whose total cross section
was known. The result was also reported in Ref. [116], where the improved results with
further measurement with 3.05 GeV beam was briefly described.

A study of the reaction pA → K0pX was reported in Ref. [117]. The experiment was
performed with 10 GeV proton beam on C3H8 target in bubble chamber, and a signal was
searched for in the K0

sp invariant mass spectrum. A peak was found at 1540± 8 MeV with
the width of 9.2± 1.8 MeV. Result can be found in Ref. [118].

ZEUS collaboration at HERA reported an evidence for the Θ+ in e+p deep inelastic scat-
tering at center-of-mass energy of 300-318 GeV with the virtual photon of Q2 > 1 GeV2 [119].
In K0

sp and K0
s p̄ spectra, they observed a peak around the mass of 1522± 3 MeV, which was

more clearly seen in higher Q2 region. The fitting was improved when another gaussian was
included for lower energy region, which would be identified as the Σ(1480) bump. Applying
several background estimation, the width was estimated to be 8 ± 4 MeV. Based on the
Monte Carlo simulation, they also investigate the probability of having a fake signal due to
statistical fluctuation, which was turned out to be 6× 10−5. The result was also reported in
Refs. [120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130].

In Ref. [131], the hadronic reaction π−p→ K−X was studied at KEK. Using the 1.87 and
1.92 GeV π− beam, the Θ+ signal was searched for in the missing mass of the K−. A bump
structure was found at 1530 MeV, although the statistical significance is low. The upper
limit of the cross section of this reaction was estimated as 4.3 µb for 1.92 GeV, by comparing
the number of events of signal with that of background.

In addition to the above evidences, yet preliminary, but positive results were reported. As
we mentioned before, new results on deuteron target from LEPS can be found in Refs. [86,
87, 88]. The Θ+ search from NA49 was reported in Ref. [132], where a peak structure was
observed at 1526 MeV in pp collisions at

√
s = 17.2 GeV. NOMAD collaboration reconstructed

the K0
sp spectrum in neutrino experiment [133], finding a peak at 1528.7± 2.5 MeV with the

width of a few MeV. These experiments may provide further evidences in near future.
In summary, we have seen many experimental evidences for the existence of the Θ+, as

listed in Table 3.2. The evidences were found in a variety of experiments with different
beams, different reactions, different energy region, and different collaborations. Therefore, it
is hard to believe that all the signals in these experiments were produced due to statistical
fluctuations or improper analyses. In order to claim the absence of the Θ+, we should explain
the observed structures in all these positive results. On the other hand, from a critical
point of view, these evidences have common problems: relatively low statistics, deviations
in masses beyond the uncertainties, and ambiguities in background estimation. Indeed, we
have seen that two of positive evidences [91, 97] were denied by the new experiments with
higher statistics. Therefore, in order to establish the Θ+ state, it is necessary to confirm the
existence in experiments with higher statistics, which will be brought by some of the above
experiments.
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Table 3.2: Summary of experimental evidences for the Θ+ resonance. Two of them,
CLAS [91]∗ and SAPHIR [97]∗ are challenged by the high statistics experiments by CLAS in
Refs. [96] and [98], respectively.

Collaboration [Ref.] reaction mass [MeV] width [MeV]
LEPS [16] γC → K+K−X 1540± 10 < 25
DIANA [89] K+Xe → K0pX 1539± 2 < 9
CLAS [91]∗ γd→ K+K−p(n) 1542± 5 < 21
SAPHIR [97]∗ γp→ K̄0K+(n) 1540± 6 < 25
ITEP [99] ν(ν̄)A→ K0pX 1533± 5 < 20
CLAS [101] γp→ π+K−K+(n) 1555± 10 < 26
HERMES [108] e+d→ K0pX 1528± 2.6± 2.1 17± 9± 3
SVD [112] pA→ pK0X 1526± 3± 3 < 24
COSY-TOF [115] pp→ Σ+K0p 1530± 5 < 18± 4
JINR [117] pA→ pK0X 1540± 8 9.2± 1.8
ZEUS [119] e+p→ K0p(p̄)X 1522± 3 8± 4
SVD(2) [114] pA→ pK0X 1523± 2± 3 < 14
KEK [131] π−p→ K−X 1530.6 +2.2

−1.9
+1.9
−1.3 9.8+7.1

−3.4

3.2.2 Restriction on the decay width

The existence of the Θ+ should have implication in the experimental data of the KN scat-
tering, where no indication of the narrow state has been found around 1540 MeV. The reason
for the non-observation may be understood by the coarseness of data points, momentum
spread of the low energy K+ beam, and too narrow decay width of the Θ+. The last point
provides a way to impose an upper limit for the width ΓΘ, by analyzing the KN scattering
data carefully.

An analysis of the KN scattering data in this direction was done by Nussinov [134] for the
first time. Analyzing the K+d total cross section at resonance energy, and the upper limit of
ΓΘ < 6 MeV was obtained for the JP = 1/2+ and I = 0 state.

Partial wave analysis of theK+-nucleon elastic scattering process was performed in Refs. [135,
136]. The previous analysis [57] was modified by including a Breit-Wigner amplitude for pos-
sible narrow resonance in s, p, and d waves. A tighter limit of ΓΘ < 1-2 MeV for the Θ+

width was obtained.
The total cross section of KN elastic scattering and KN phase shift in the P01 partial wave

were studied by using Jülich potential [137]. In order to be compatible with experiments,
it was concluded that the width should be less than 5 MeV or the resonance should lie at
much lower energy. A similar method was applied to the K+d → K0pp reaction [138] and
K+Xe→ K0pX reaction of DIANA experiment [90]. The former analysis gave an upper limit
for the width of ΓΘ < 1 MeV , while the latter provided the comparable descriptions with
and without the Θ+.

In Ref. [139], the total cross section of the K+d scattering and result of DIANA experi-
ment [89] were analyzed. By counting the number of events of the signal and background
in DIANA experiment, the width of the Θ+ was estimated as ΓΘ = 0.9± 0.3 MeV. K+d
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Figure 3.3: Total cross sections of K+d reaction, taken from Ref. [142]. The dash-dotted,
solid and dashed curves correspond to widths of 1.2, 0.9, and 0.6 MeV, respectively.

experiment was analyzed with proper Fermi motion correction, leading to the upper limit of
1-4 MeV for the ΓΘ.

From a different point of view, total cross section of the K0
Lp scattering was analyzed in

Ref. [140], which can be obtained by analyzing the K̄N and KN data. In the K0
Lp scattering,

we can avoid the problem of Fermi motion correction, unlike in the K+ beam experiments.
However, the present data set was not sufficient to provide a quantitative conclusions. In
the same way, total cross sections of K+p and K0

Lp scatterings were analyzed to restrict the
width of the Θ+ and Θ++ [141].

An interesting observation was reported in Ref. [142] that the resonance structure of the
Θ+ was indeed seen in the K+d total cross section data. Based on a weak scattering approx-
imation, and taking into account the Fermi motions in the deuteron, total cross section was
calculated with a resonances with assumed width and mass. Experimental bump structure
was well reproduced by the assumption of a resonance, as shown in Fig. 3.3. The extracted
masses were 1559± 3 MeV for JP = 1/2+ resonance and 1547± 2 MeV for 1/2− resonance.
In both cases, the width should be Γ = 0.9± 0.3 MeV.

In summary, the KN database provides a strict upper limit for the ΓΘ of the order of
1 MeV or less. A possible structure at 1540 MeV may be found even in these data. On
the other hand, it was also pointed out that a too small width was not consistent with the
observed peak of photoproductions, when the t-channel exchange diagrams were dominant
mechanisms [143]. In general, one should keep in mind that the KN scattering data at low
energy are not of good quality, because of the experimental difficulties. Therefore, precise
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measurements for the low energy KN scattering in modern technique are strongly desired.

3.2.3 Searches for other exotic candidates

Here we review the searches for other candidates for pentaquarks, Ξ−−A), Θc, and Θ++,
which are described by the minimal quark contents ddssū, uuddc̄, and uuuds̄, respectively.
Unfortunately, so far only one experiment for each state claimed the existence, while no other
experiments could confirm the evidence. Of course, cross section for a state generally depends
on the production reaction and energy, therefore the sensitivity for the observation should be
different in each experiment.

If the Θ+ belongs to the flavor antidecuplet representation, we naively expect the flavor
partner with S = −2 and I = 3/2, which contains manifestly exotic states of Ξ−− and Ξ+.
An evidence for the exotic cascade Ξ3/2(1860) was reported by NA49 collaboration [145]. In
proton-proton collisions at

√
s = 17.2 GeV, a signal was searched for in the Ξ−π−, Ξ−π+,

Ξ+
π−, and Ξ+

π+ spectra, followed by subsequent decays Ξ → Λπ and Λ → pπ−. An angle
cut was applied as θ > 4.5◦ with θ being the opening angle between the Ξ and the π in
laboratory frame. A peak was observed at 1862±2 MeV, the width being below the detector
resolution of about 18 MeV. The result can be found in Refs. [146, 132].

In Ref. [58], however, the existence of Ξ−−(1860) was critically argued. The authors
summarized data on Ξ∗ searches in previous experiments, mostly with K− beam of energies
2 ∼ 6 GeV. In these experiments, the peak structure at 1860 MeV was absent both in Ξ−π+

and Ξ−π− channels, in spite of the fact that some of them had higher statistics than NA49.
Subsequently, several searches for the signal around 1860 MeV were performed, but none of
them could confirm the peak reported by NA49. Negative results were reported by WA89 (Σ−-
nucleus collisions at 340 GeV) [147], HERA-B (920 GeV (

√
s = 41.6 GeV) pA collisions) [148],

ALEPH (Z decay in e+e−) [149], CDF (pp̄ at
√
s = 1.96 TeV) [150], FOCUS (γBeO) [151],

HERMES (quasi-real photoproduction) [152], ZEUS (300 GeV e+p collisions) [153], BABAR
(Υ(4S) decay in e+e−) [154], COMPASS (µ6LiD at 160 GeV) [155], and Fermilab (800 GeV
pp) [156].

The evidence of the anti-charmed pentaquark Θc was reported in Ref. [157] by H1 col-
laboration. The search was performed in the electron proton scattering with center-of-mass
energy of 300 and 320 GeV, both in deep inelastic scattering (1 < Q2 < 100 GeV2) and
quasi-real photoproduction (Q2 . 1 GeV2). A narrow state was observed in D∗−p and D∗+p̄
spectra at 3099 ± 3 ± 5 MeV with width of 12 ± 3 MeV, compatible with the experimental
resolution. The result was also reported in Refs. [158, 126, 127, 128, 159]. On the other
hand, no evidence was found by ZEUS (300 GeV e+p collisions) [160], ALEPH (Z decay in
e+e−) [149], CDF (pp̄ at

√
s = 1.96 TeV) [150], FOCUS (γBeO) [161], and BABAR (Υ(4S)

decay in e+e−) [162].
Doubly charged Θ++ can be searched for in the pK+ spectrum, which has an advantage

for detection since the final states are all charged particles. If the Θ+ has I = 1 or I = 2,
there must be the isospin partner in this channel at the same energy with the Θ+. Several

A)The exotic state with S = −2 and I = 3/2 is denoted as Φ(1860) in PDG [144], but we call it Ξ3/2 or
Ξ−− in this thesis, because these symbols are more informative.

30



3.2. Experiments

groups that reported the evidence for the Θ+ also investigated the pK+ channel in order to
determine the isospin. For instance, CLAS collaboration looked at the pK+ system both in
deuteron target [91] and in proton target [101], finding no peak. A detailed discussion on
the Θ++ search at CLAS can be found in Ref. [163]. In the pK+ spectrum of γp→ K−K+p

reaction. Some structure was seen around 1590 MeV, but it turned out to be mainly due
to reflection of φ production in K+K− system. Another search was performed by HERMES
collaboration [108]. The pK+ spectrum showed no structure for the Θ++, which ruled out the
I = 2 candidate based on the isospin analysis. On the other hand, isospin symmetry can not
relate the strength of Θ+ and Θ++ production for the I = 1 assignment, and therefore the
cancellation of the amplitudes might occur, although unlikely. In addition, BABAR found
no evidence for this state [164].

However, a positive evidence was reported by STAR at RHIC [165]. In d+Au collision at√
sNN = 200 GeV, about 20,000 of pK+ and p̄K− events were summarized. After subtracting

the background contribution estimated by the mixed-event technique, they found a signal at
1528 ± 2 ± 5 MeV with the width less than 15 MeV in the spectra, which still contained
several hundreds of events. A weak signal was also found in Au+Au at 62.4 GeV.

3.2.4 Negative results for the Θ+ and interpretation of experimental results

Let us describe the experiments that could not see the peak for the Θ+. These are mostly high
energy experiments with huge number of events. Among them, we will address two typical
experiments of e+e− collision by BES [166] and pA collision by HERA-B [148]. We also
list the works which explain possible reasons for the non-observations in these experiments.
Then we present discussions which regard the observed peak in positive results as kinematical
artifacts.

BES collaboration searched for the the Θ+ signal in the K0
spK

−n̄ and K0
s p̄K

+n spectra
in hadronic decay of charmonia produced by e+e− collision [166]. Among the total 10 ∼ 20
events, no clear signal for the Θ+ was observed. The upper limit of the branching ratio was
estimated by the number of events and detector efficiencies, leading to B(J/ψ → ΘΘ <

1.1 × 10−5). Decay from ψ(2S) gave a result with the same order. In proton induced
reactions on C, Ti, W targets at midrapidity and

√
s = 41.6 GeV, a null result for the

Θ+ was reported by HERA-B collaboration [148]. No clear signal for the Θ(1540) candidate
was found in pK0

s → pπ+π− mass spectrum. On the other hand, they observed the Λ(1520)
clearly in K−p spectrum. Since the acceptance for K0

sp and K−p combinations was expected
to be similar at mid-rapidity (∼4%), the yield ratio was estimated as Θ+/Λ(1520) < (3-12)%,
which was significantly lower than theoretical model predictions.

Subsequently, negative results were reported by PHENIX (Au+Au,
√
sNN = 200 GeV) [167],

SPHINX (pC at 70 GeV) [168], BELLE (B̄0B0 decay in e+e−) [149], ALEPH (Z decay in
e+e−) [149], CDF (pp̄ at

√
s = 1.96 TeV) [150], HyperCP (pCu at 800 GeV) [169], FOCUS

(γBeO) [151], LASS (K+p→ K+nπ+) [170], BABAR (Υ(4S) decay in e+e−) [154], BELLE
(secondary interaction) [171], COMPASS (µ6LiD at 160 GeV) [172], and WA89 (Σ−-nucleus
at 340GeV) [173].

All these experiments showed no structure for the Θ+ in the spectra, giving upper limits
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on the production rates. However, in these high statistics experiments, the spectra of K0
sp

were extremely flat, where the Σ∗ resonances could in principle contribute [53]. The same
argument can be applied to theK−p spectra, where no evidence for the Λ∗ resonances was seen
other than an excellent Λ(1520) (and sometimes Λc) peak. Strictly speaking, the production
mechanism of the particles, especially for the excited states in high energy experiment is not
well known yet. For instance, the production rate of anti-deuteron in LEP experiments is
significantly lower than expected [174]. Therefore, before concluding the absence of the Θ+

by these null results, we should understand the production mechanism for the Θ+ in high
energy experiments.

Of course, as the proof of the absence of the Θ+ requires the explanation of positive
evidences, in order to establish the presence of the Θ+, one should explain why the negative
experiments could not find the signal. There were several attempts, for instance, a possible
explanation of the non-observations was presented in Ref. [174] by assuming the crypto-
exotic N(2400) resonance which decayed into Θ+K−. The BES experiment was analyzed in
Ref. [175], and the sensitivity turned out not to be so good for the Θ+ search. The decrease of
the production ratio of the Θ+ with reaction energy was found in Ref. [176], which indicated
that the high energy experiments were not suitable to produce the Θ+ (or five-quark) states.
The estimation was consistent with the null result by, for instance, HERA-B [148]. A similar
idea can be found in Ref. [177]. In Ref. [178], there was a discussion on the ZEUS result,
which was a high energy experiment with positive evidence. The best condition to observe
the Θ+ in e+p experiment was found to be in the forward region of pseudorapidity, at low
pT and at medium or high Q2 regions. An explanation for the systematic lowering in mass
in pK0 channel was suggested in Ref. [179] by association of another Σ∗ resonance.

A recent CLAS experiment [98] imposed a very small upper limit for the cross section of
the γp→ K̄0Θ+ reaction. In order to explain this result and the positive evidence on neutron
target simultaneously, there must be a large difference between cross section for γp→ K̄0Θ+

and that of γn→ K−Θ+. A solution was reported in Ref. [180]. It was found that the cross
section for the proton target case was strongly suppressed, when the spin of the Θ+ was 3/2.
This was because a large cross section was produced by the Kroll-Ruderman contact term,
which was present for the proton target case, but was absent for the neutron target. For the
JP = 3/2+ case, the ratio of the cross sections was about 25, while for the 3/2− case, it was
about 50. From a different point of view, p/n asymmetry was explained in Ref. [181]. Since
the argument is based on the isospin analysis, it can be applied to the Θ+ with arbitrary spin
and parity.

On the other hand, there are some arguments that the observed peak in the positive
experiments could be explained as an artifact which has kinematical origin. Ref. [182] discuss
the possibilities of the Θ+ signal as kinematic reflections resulting from the decay of mesons
in K̄K system, by taking an example of CLAS data [91]. For a given three-body system
(for instance, NK̄K), an enhancement of the invariant mass of a two-body system (NK)
can be influenced by the decay of a resonance in another two-body system (K̄K), due to the
decay angular distribution. This is called the kinematic reflection. It is worth noting that
if a peak is generated by the reflection, the position of the peak changes with changing the
initial energy of the beam. For the Θ+ in NK channel, reflection of f2(1275), a2(1320), and
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ρ3(1690) in K̄K system could play a role. Similar argument of the kinematic reflection can
be found in Ref. [183]. Ref. [184] discussed the kinematic reflection on charmed pentaquark.
However, the kinematical reflection can not account for the very narrow resonance, and the
analysis in Ref. [182] was criticized by the model dependence, neglect of detector acceptance,
determination of parameters, and so on [185]. Despite the quantitative uncertainties in the
analysis, however, presence of a resonance in K̄K system could affect the invariant mass
distribution of KN system [186]. In Ref. [187], the author argued that the narrow signal
of Ξ(1860) was due to a threshold cusp in Σ(1385)K̄ coupled to Ξπ and ΣK̄ channels. In
general, scattering amplitude has a cusp singularity at threshold of a channel, induced by
the step of imaginary part. In any event, estimation of background effects for the production
experiments is important, though hard to control.

3.3 Theoretical studies on reaction mechanism

Here we summarize the theoretical studies on reaction mechanism for the Θ+ production and
possible method to determine the quantum numbers in experiments. Adopting the effective
models, total and differential cross sections can be estimated. The spin and parity of the Θ+

can be extracted from qualitative differences in the results, which may be implemented by the
use of the polarization of initial and final states. These studies are important in connection
with interpretation of existing data and future plans for experiments, but we should keep in
mind the model dependence in these analyses. There are several unknown parameters such as
ΘK∗N coupling constant and cutoff value of form factor, so that the results can be different
depending on details of the model employed. Nevertheless, qualitative understanding of the
experiments is important and model-independent selection rules can be obtained, by taking
certain limits.

3.3.1 Photoproduction

There are many studies for photoproduction of Θ+, since the first evidence for the Θ+ was
observed in a photoproduction experiment, and it has been confirmed in other experiments
with photon beam. In general, at low energies, effective Lagrangian approaches with Born
approximation are applicable to describe the reaction, while the Regge formulation will be
needed to reproduce the higher energy behavior.

The basic reaction of γN → K̄Θ was first studied in Refs. [188, 189, 190], where the
Born diagrams shown in Fig. 3.4 were calculated by the effective hadronic Lagrangians.
In Ref. [188], pseudoscalar (PS) type coupling was adopted for the KNΘ vertex, which is
schematically written as

LPS = −igB̄γ5MB, (3.3.1)

where B and M are the baryon and meson fields, and g is the coupling constant. The PS
coupling is based on the linear representation of the chiral symmetry. Note that the diagram
(d) in Fig. 3.4 is absent for the PS scheme. In Ref. [188] only the positive parity state
with spin 1/2 was considered with s- and u-channel diagrams, and the calculation was later

33



Chapter 3. Overview of pentaquarks

(a) (b ) (c) (d)

=

+ + +

γ(k) K-(k')

Θ+(p')n(p)

Figure 3.4: The tree diagrams for the γn→ K−Θ+ taken from Ref. [189]. (a) the direct Born
Diagram (s-channel), (b) the exchange Born diagram (u-channel), (c) the meson exchange
diagram (t-channel), and (d) the contact (Kroll-Ruderman ≡ KR) term.

extended for more general cases [191]. A systematic study for this reaction with the Born
approximation was performed in Ref. [189], with both the JP = 1/2± cases on the neutron
target. For the KNΘ coupling, pseudovector (PV) scheme was also considered

LPV = gB̄γµγ5∂
µMB. (3.3.2)

This is related to the nonlinear realization of the chiral symmetry, as we have seen in chapter 2.
The authors of Ref. [189] studied not only the PS and PV schemes, but also the hybrid
model using the gauge invariant form factor. In Ref. [190] the K∗ vector meson exchange
was introduced in addition to the pseudoscalar K exchange in t-channel. A similar study
based on the prescription for the gauge invariance was performed in Ref. [192] where the
axial vector K1 meson exchange was also introduced. In these studies, total cross sections
and angular distributions were calculated. In spite of the quantitative differences depending
on the uncertainties and model parameters, it was commonly confirmed [189, 190, 191, 192]
that the positive parity assignment predicts about ten times larger cross section than the
negative parity does. More comprehensive calculations can be found in Refs. [193, 194],
where γN → KK̄N reaction was studied with hyperon resonances in the intermediate state
as well as the nonresonant background processes. In Ref. [193], spin 3/2± cases were also
considered.

Regge treatment was introduced in the t-channel K and K∗ exchange terms in Refs. [195,
196]. In Ref. [195], the effect of the hadronic form factor in the Born approximation was
estimated by comparing with the Regge model. It was found that the soft form factor
0.6 ≤ Λ ≤ 0.8 GeV was favorable for the consistency with the Regge amplitude. A compre-
hensive calculation can be found in Ref. [196], including the spin 3/2 cases and polarization
observables.

Several attempts were proposed in order to determine the spin and parity using the po-
larization of beam and target in photoproduction. The determination of spin and parity
using polarized photon beam asymmetry was suggested [197]. The polarized photon beam
asymmetry is defined by

ΣA ≡
σ‖ − σ⊥
σ‖ + σ⊥

, (3.3.3)

where σ‖(σ⊥) are the cross sections of the linearly polarized photon beam with polarization
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vector lying in (perpendicular to) the reaction plane. Photoproduction of the Θ+ states with
JP = 1/2±, 3/2+ states was examined by the Born approximation in Ref. [197]. It was found
that the quantity could be used to distinguish the parity of the spin 1/2 states, but the result
was sensitive to the K∗ exchange contribution, which contained an unknown ΘNK∗ coupling
constant. The photon asymmetry in Eq. (3.3.3) was also proposed in Ref. [198], taking
into account the background processes as well. The effect of the background contributions
appeared to mask the possible signal for the parity determination. Beam-Target double
polarization asymmetry was then proposed to determine the parity of the Θ+ with J =
1/2 [199]. Near the threshold, this quantity was less ambiguous than the single asymmetry
studied in Ref. [197], and would be useful to filter the parity of the Θ+ state.

However, a model-independent analysis for the determination of the Θ+ parity in K pho-
toproduction process was performed in Ref. [200]. It was found that the parity of the Θ+ can
be determined model independently, only when we measure the polarization of the produced
Θ+ (and hence, that of the nucleon in decay channel). The detection of the polarization of
the particle in the final state is experimentally difficult. The spin observable was further
considered in Ref. [201], confirming the above conclusion. The polarization observables were
evaluated in a detailed model calculation [202], including several background processes.

In Ref. [203], the photon induced reaction with K∗ production γN → K∗Θ+ was analyzed.
This is the reaction of CLAS experiment [101]. The cross section for the negative parity
case was turned out to be smaller than the positive parity case. Spin asymmetries in K∗

photoproduction case were extensively studied in Ref. [204]. Target-recoil double asymmetries
were found to be sensitive to the parity of the Θ+, although the measurement would be
difficult. Extension to the spin 3/2 cases and inclusion of the scalar kaon exchange for the
K∗ photoproduction were performed in Ref. [205].

As we have described before, explanations for the recent negative result by CLAS col-
laboration [98] were proposed in Refs. [180, 181]. One is based on the dominance of the
Kroll-Ruderman term [180], while the other is derived from the isospin of photon [181].

Let us mention the case with the deuteron target. Photoproduction of Θ+ from the
deuteron was studied in Ref. [206], through Λ and Σ associate reactions with neutron specta-
tor background processes. The reaction was described by combining the measured amplitudes
of photoproduction of Λ and Σ off proton, phenomenologically parametrized amplitudes of
photoproduction off neutron, and the deuteron wave function. The cross sections of the
Λ and Σ associated reactions turned out to be sensitive to the isospin of the Θ+, so the
isospin of Θ+ could be identified by comparing these reactions. Coherent Θ+ and Λ(1520)
photoproduction off the deuteron was studied in Ref. [207], where productions of either of
the resonances as well as the non-resonant background processes were analyzed in the same
framework. It was found that the coherent Θ and Λ(1520) photoproduction was enhanced
relative to the background processes in the forward hemisphere of pK− pair photoproduction.
The result did not depend on the photoproduction amplitude of Θ+ subprocess, since the
Θ+ was produced via hadronic subprocess when the Λ(1520) came forward. This observation
seems compatible with the recent LEPS result.
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3.3.2 Hadron-induced reactions

Hadron-induced production has an advantage of relatively large cross section, because all the
vertices are described by the strong interaction. For the meson-induced case, in addition, the
momentum transfer of the reaction is relatively small, compared with the photoproduction.
On the other hand, in general, quality of the beam is not very good, especially for the
low energy region, and the non-resonant background terms also have large cross sections.
However, since the confirmation by various reactions is crucial to establish a new state, it is
important to study the meson-induced reactions from theoretical point of view.

The first study for the meson-induced reaction was performed in Ref. [17] in order to
determine the spin and parity of the Θ+. The production of Θ+ with JP = 1/2±, 3/2+ in
the K+p → π+KN reaction was calculated based on the chiral Lagrangians, assuming the
momentum of π+ as small. It was found that the combined examination of the peak strength
with polarization observation could help to determine the JP of the state. Details of this
study will be discussed in chapter 8.

Effective Lagrangian approaches for the meson-induced reactions with Born approximation
were performed in Refs. [188, 190, 208]. In Ref. [188] several reactions were calculated for pos-
itive parity Θ+, but only baryon pole terms were included. Adopting the PS coupling (3.3.1)
the cross sections close to the threshold were estimated as 1.5 mb for KN → πΘ, 0.05 mb for
πN → K̄Θ, and 0.1 mb for ρN → K̄Θ. Oh et al., calculated the pion-induced reaction [190]
and the kaon-induced reaction [208]. They evaluated the t-channel K∗ meson exchange in
addition to the s- or u-channel baryon pole terms. PS coupling was used for KNΘ, while
PV scheme (3.3.2) was adopted for πNN . They found that the cross section was sensitive
to the choice of the form factor and the K∗ exchange diagram, which contained an unknown
coupling constant of ΘK∗N vertex. For π−p→ K−Θ+ reaction, both positive and negative
parity cases were examined, finding that the cross section was suppressed in the negative
parity case. This is a similar tendency as in the photoproduction case.

In Ref. [25], the π−p→ K−Θ+ andK+p→ π+Θ+ reactions were studied based on the two-
meson coupling of the Θ+ with JP = 1/2+ and 3/2−. Since the two reactions were treated on
the same footing, the ratio of the cross sections could be estimated. For the JP = 1/2+ case,
the difference between two reactions was large, while the 3/2− case it was rather moderate.
We will discuss this subject in chapter 11. The πD → Θ+Σ reaction was studied in Ref. [209]
focusing on the spin correlation observables. The spin-transfer coefficients and the deuteron
spin anisotropy were found to be sensitive to the parity of the Θ+, in a model-independent
manner.

Low energy NN collision is one of the most interesting reactions for the Θ+ production,
since it is possible to determine the parity of the Θ+ using experimentally feasible method
with polarized beam and target. As we mentioned above, the pp → nΣ+K+ reaction was
already studied in Ref. [81]. In the following, we list studies after LEPS experiment.

The pp collisions with two- and three-body final states were studied in Ref. [188] by the
effective Lagrangian approach with K exchange diagrams. For the positive parity Θ+ with
the width 20 MeV, the cross sections were estimated as 2 µb for pp → Σ+Θ+, 3 µb for
pp→ π+ΛΘ+, and 13 µb for pp→ K̄0pΘ+. In Ref. [208], np→ ΛΘ+ was studied in addition

36



3.3. Theoretical studies on reaction mechanism

to np → Σ0Θ+ with taking into account the K∗ exchange diagrams. It was found that the
cross section for the np → ΛΘ+ was about 5 times larger than that of the Σ0 production.
The np collision was studied in Ref. [210] for both positive and negative parities.

A model-independent method to determine the parity of Θ+ in pp collision was presented in
Ref. [211]. At the threshold of the production reaction pp→ Σ+Θ+ where l = 0 component is
dominant, one obtains a selection rule which depends on the spin of the initial pp state and the
parity of the Θ+. Therefore, clear distinction of parity would be possible by the cross sections
with different initial pp states, which could be achieved by polarizing the beam and target.
The same idea of polarized pp collision for the determination of the parity of Θ+ was given
in Ref. [212], where the spin correlation coefficient Axx was proposed for a suited observable
for this method. In addition to the method proposed in Refs. [211, 212], polarization transfer
coefficient Dxx was also suggested as another measurable quantity [213, 214]. This can be
obtained by the single polarization of the initial state and it is possible to perform in the
np → ΛΘ+ reaction. The spin observables in NN collisions were extensively summarized in
Ref. [215]. The above arguments were essentially based on the conservation lows and Pauli
exclusion principle, and therefore the results were model independent.

These selection rules were then numerically examined. The spin correlation Axx was eval-
uated in Ref. [216], as well as the total cross section of the pp→ Σ+Θ+ reaction with K and
K∗ exchanges. The total cross section was of the order of 0.1-1 mb, which was accessible by
experiment. Up to center-of-mass energy

√
s < 2750 MeV, s-wave dominance was observed

so that the l = 0 assumption could be valid. It was numerically shown that Axx indeed
reflected the selection rule close to threshold. Numerical estimation of the spin transfer Dxx

was performed in Ref. [217] as well as Axx. Energy dependences of these quantities were also
evaluated. Angular distribution and azimuthal asymmetry in the pp→ Σ+Θ+ reaction were
evaluated in Ref. [218] where the spin 3/2 cases were taken into account.

3.3.3 High energy reaction

Apart from the above low-energy reactions, Θ+ production in high energy inclusive processes
has also been studied. As we mentioned in section 3.2, the Θ+ may be observed in the K0

sp

mass spectrum in this kind of reactions.
In Ref. [219], production rate of the Θ+ in relativistic heavy ion collision was studied at

midrapidity region in central Au + Au collisions. Based on the statistical considerations,
production abundance ratios of the Θ+ to Λ, p, K+, and π+ were estimated. The production
and absorption in subsequent hadronic matter were included in Ref. [220]. It was found that
the effect of the interaction was small, and therefore, the yield of the Θ+ was determined
by the initial number produced in the Quark-Gluon plasma. The statistical hadronization
model was applied to the Θ+ [221] and Ξ−− [222] productions in heavy ion collisions. It
was shown that the production yields depend on the collision energy, and the detection for
Θ+ was promising at lower energy. The detection of the other pentaquarks was found to be
difficult. Subsequently, estimation of the production yield in pp collision such as SPS and
RHIC was also performed using the Gribov-Regge theory [223], microcanonical statistical
approach [224], quark combination model [225], and quark molecular dynamics model [226].
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Possible exotics searches in high energy e+e− and γγ collisions were discussed in Refs. [227,
228, 229]. Decay mechanism from B mesons into exotics was discussed in Ref. [227], and
several decay channels from exotic candidates were listed in Ref. [228]. The pentaquark
production in charmed and bottomed hadrons was discussed in Ref. [229], including the
possibilities of I = 3/2 isovector pentaquarks state. The probability of finding Θc signal in
the decay of bottom hadrons was also discussed. These works would be compared with the
inclusive production experiment of the high energy e+e− collisions.

Production of the heavy pentaquarks was studied in fragmentation model [230]. Θc produc-
tion was also studied in coalescence model [231]. Based on the observation at H1 experiment,
the number of events at LEP and the Tevatron ware estimated.

3.3.4 Other studies on reaction mechanisms

The time delay and speed plot of the KN scattering was studied in Ref. [232], in order to
search for the resonance signal in the KN scattering data. The time delay and the speed
plot are essentially the energy derivative of the T-matrix, which shows a peak when there is a
resonance. Using a model-dependent T-matrix amplitude of KN scattering, a possible signal
of the Θ(1540) was searched for, as well as the resonances previously found in the partial
wave analysis [57]. The signal was further purchased in Ref. [233] by using the phase shift of
the KN scattering, where the signal was found in D03 partial wave, indicating the existence
of a 3/2− resonance around 1540 MeV.

Exclusive electroproduction of Θ+ was studied in Ref. [234], which was useful to extract
the information of internal structure of the Θ+. A modest value for Q2 was found to be
appropriate to have large cross section. Parity determination within the electroproduction
was discussed in Ref. [235].

An nucleon partner suggested in Ref. [236] was searched for by the partial wave analy-
sis [237]. In addition to the nominal N(1710), two candidates with JP = 1/2+ were found at
1680 MeV and/or 1730 MeV, both of which were narrow and highly inelastic. However, see
also Ref. [238].

Exotic Ξ production in exclusive processes has been studied in photon-induced reac-
tion [239] and kaon-induced reaction [240, 241]. These studies have been performed after
the report by NA49 [145], so the mass of Ξ was fixed at 1860 MeV. Using effective La-
grangians, total cross sections and angular distributions for these exclusive experiments were
estimated.

Kinematics of two-body decay in high energy reactions were studied in Ref. [242]. Several
method to increase the efficiency of the detection were suggested. In Ref. [243], a method
was suggested in order to distinguish a resonance from the nonresonant terms by choosing
proper kinematics.

An attempt to relate the cross sections of different processes were performed in Ref. [244].
Using the five-quark wave functions of positive parity pentaquarks, relations between Θ pro-
duction with Σ5, Λ5, and N5 were derived. Importance to measure the cross section for these
non-exotic pentaquark productions were emphasized. In the same direction, in Ref. [245],
γp, πp, and pp reactions for the Θ+ production were studied as well as the other hyperon
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productions, based on the regge analysis. The hyperon productions showed a universality in
these reactions, due to the formulation of the Regge model. On the other hand, the Θ+ pro-
duction does not follow the universality, which indicate the different structure and production
mechanism of the Θ+ from the ordinary hyperons.

3.4 Analysis based on the symmetry principle

As we have emphasized in chapter 2, symmetries can restrict the properties of hadrons in
certain limits. Here we summarize the studies based on the symmetries of QCD.

3.4.1 Flavor symmetry

Using the flavor symmetry, we can derive several relations between masses and coupling
constants. For instance, a formula of the ratio between two decay modes K+n and K0p was
derived for general isospin (and spin) states of the Θ+ in Ref. [246].

Properties of the baryon antidecuplet were systematically studied in Ref. [247] for the cases
without representation mixing and with ideal mixing with an octet. Mass formulae up to
linear order in ms were derived. For the pure antidecuplet, it leads the equal-spacing formula

M(10;Y ) = M10 − aY, (3.4.1)

where Y is the hypercharge of the state, M10 and a are the masses parameters that can
not be determined from the symmetry. In addition, the SU(3) symmetric Lagrangian of
the coupling of antidecuplet to octet meson and octet baryon was presented. The decay of
antidecuplet baryon to the octet meson and decuplet baryon was shown to be forbidden. The
identification of N(1710) as in pure antidecuplet seemed to be ruled out, since the N(1710)
has empirical decay width into π∆.

Along the same line with Ref. [247], classification of the five quark states and their effective
interaction Lagrangians was performed in Ref. [248] for the ideal mixing case and in Ref. [249]
for the complete set including 27 and 35 representations. Flavor symmetry relations and
various selection rules were obtained. The same tables for the decays were given in Ref. [250],
but with including the SU(3) breaking interactions. Tables for the couplings with decuplet
baryons can be found in Ref. [251].

Following the formula (3.4.1), it is possible to argue that the nucleon partner of the Θ+.
For instance, a putative low-lying nucleon state around 1200 MeV was suggested as a flavor
partner of the Θ+ [252], in order to explain the narrow width of the Θ+. In Ref. [236],
using Eq. (3.4.1) and the mass of exotic Ξ−−, a nucleon state was predicted around 1650-
1690 MeV. The decay of exotic Ξ(1860) was studied using flavor SU(3) argument [253].
Several selection rules and branching ratio was provided by the symmetry consideration,
which were compared with the observation in NA49 experiment. An absence of the decay of
Ξ+(1860)→ Ξ0(1530)π+ would support the interpretation of Ξ(1860) as a member of flavor
antidecuplet. A similar argument can be found in Ref. [254]. Various decays of the heavy
pentaquarks were studied using effective Lagrangians based on flavor SU(3) symmetry [255].
The B meson decays into pentaquarks were also evaluated.
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3.4.2 Chiral symmetry

A simple way to incorporate the chiral symmetry for exotic state is to write down the La-
grangian in chiral perturbation theory. In this direction, chiral Lagrangian was introduced
first in Ref. [256], by assuming the Θ+ belongs to the antidecuplet. They gave the lowest
order Lagrangians for JP = 1/2±, which were applied to the π−p→ K−Θ+ and γn→ K−Θ+

reactions. Extension to the JP = 3/2± cases was done in Ref. [254], and strong decay widths
of the Ξ−− were estimated as functions of the width of the Θ+. Photoproduction and ra-
diative decay were studied in Ref. [257]. Chiral Lagrangian for the heavy-light pentaquarks
were introduced in Ref. [258].

A systematic evaluation of the mass in heavy baryon chiral perturbation theory was given
in Ref. [259]. The masses of the members of baryon antidecuplet was calculated up to next-
to-next-to leading order for JP = 1/2± states. The coupling constants between antidecuplet
pentaquarks and nonexotic octet baryons were used as expansion parameters. Corrections to
the Gell-Mann–Okubo rule at NNLO turned out to be negligible. The representation mixing
was also considered later in Ref. [260].

In Ref. [261], chiral doubling scenario was applied to the Θc found by H1 collaboration,
predicting the lighter Θc state as a doubling partner. Size of the mass splitting in the doublets
were estimated by the D meson spectrum, and the doubling partner of the Θc was predicted
to appear around 2700 MeV.

There are discussions on the narrow width of the Θ+ using chiral symmetry. The chiral
multiplet for the Θ+ was considered in Ref. [262]. It was found that the 8 and 10 multiplets
of SU(3) degenerated in the chiral limit, when the multiplets were constructed as in the Jaffe-
Wilczek model. As consequences, the ideal mixing is manifested in the chiral limit, and the
axial current coupling to the other multiplets vanishes, which indicates the narrow width for
the Θ+.

In Ref. [263], a suppression mechanisms was suggested for the decay width of a local
operator of Θ+ into KN state, by chiral symmetry. Its decay width vanishes at chiral limit,
and spontaneous chiral symmetry breaking may provide the width proportional to the quark
condensate. Therefore, the decay of a local five-quark field is in general suppressed by the
chiral symmetry. The decay width of the Θ+ in chiral symmetric limit was further discussed
in Ref. [264]. It was confirmed that a local operator with two chirally different diquarks was
shown not to decay into KN state at chiral limit, but the effect of quark condensate was large
enough to make a wide width. In addition, a p-wave positive parity state was also examined,
and its coupling to KN can be constructed in chirally invariant way. Hence, the conclusion
was that chiral symmetry should not be an origin of the small decay width for these cases,
once the spontaneous symmetry breaking happened.

3.4.3 Large Nc analysis

The idea of the large Nc was introduced by ‘t Hooft in Ref. [265] which have been extensively
applied to the baryon sector [266]. The large Nc argument is closely related to the soliton
picture of the baryons. Indeed, through the consistency condition of the meson-baryon scat-
tering, it was found that baryons have an exact contracted spin-flavor SU(2NF ) symmetry
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in the large Nc limit [267, 268, 269], where NF is the number of the flavor. The SU(2NF )
symmetry is the same with that of the Skyrmion, but also the same with that in constituent
quark models. In general, taking the large Nc limit, simple relations can be derived, which
is exact in this limit and physical world of Nc = 3 can be approached by including the 1/Nc

corrections systematically.
The existence of S = +1 states with different spin and isospin were discussed by assuming

the existence of Θ+ [270]. In large Nc limit, several scattering amplitudes of meson and
baryon are related with one reduced matrix element, and therefore, the resonances appearing
in the different amplitudes become degenerate. This means that the existence of a resonance
in one particular channel implies the existence of other poles in different partial waves and
isospin. Assuming quantum numbers of Θ+, several possible partners were discussed, which
would have similar masses as Θ+ within ∼ 100 MeV, due to 1/Nc corrections. The existence
of the SU(2) rotational partner of Θ+ was also discussed in a similar way in Ref. [271]. The
mass splitting among these partners were determined by the SU(2) moment of inertia, which
was constrained by the N -∆ splitting.

Quantum numbers of baryon exotics in constituent quark models and the Skyrme models
were studied in Ref. [272, 273]. It was shown that the exotic states in two approaches should
have the same quantum number. The equivalence was shown to hold in arbitrary numbers
of color and flavor. This is an extension of the conclusion in Refs. [267, 268, 269], where
the common symmetry SU(2NF ) appears in the large Nc limit. Quantum numbers for the
allowed state for three flavor case were derived.

Large Nc analyses for the pentaquarks including heavy states based on the quark oper-
ator method [274] were performed in Ref. [275] for the positive parity pentaquarks and in
Refs. [276, 277] for the negative parity cases. Properties of the exotic states such as mass
spectrum and coupling constants were derived in 1/Nc expansion.

A particularly interesting result was obtained in Ref. [278]. It was shown that the heavy
pentaquark uuddQ̄ should exist in the large Nc and heavy quark mQ → ∞ limits. The
proof is exact in the limits, but the 1/Nc and 1/mQ corrections should be included in reality.
Utilizing effective models, such corrections were studied, and it was found that the existence
of the pentaquark state depended strongly on the model details, indicating the real world
was not so close to the both heavy quark and large Nc limits.

3.5 Chiral soliton models

Here the studies based on chiral soliton models are summarized. We use the word “chiral
soliton models” for those regard the nucleons as solitons of the chiral field, namely, Skyrme
models, chiral quark soliton models, and other variants. The idea itself is rather old [279], but
it has been developed in connection with the QCD via largeNc and chiral symmetry [280, 281].

3.5.1 Rigid rotator quantization in flavor SU(3)

The Skyrmion model was developed in the SU(2) sector. It was generalized to the SU(3) sec-
tor [282] as a natural extension of the collective quantization of SU(2) Skyrmion [280]. The

41



Chapter 3. Overview of pentaquarks

quantization method is called as rigid-rotator quantization. Since the rigid-rotator quantiza-
tion was employed in the prediction and has been discussed later extensively, let us review
the essential point here.

The classical soliton field of SU(2) hedgehog was embedded in the SU(3) space as

U0 =
(
ein·τP (r) 0

0 1

)
, (3.5.1)

where P (r) is the profile function of the soliton, τ are the Pauli matrices in flavor space and
n is the unit vector in coordinate space. This field is rotated in SU(3) space by U = AU0A

†

with SU(3) matrices A. This rotation is quantized, leading to the rotational Hamiltonian

Hrot =
1

2I1

3∑

A=1

J2
A +

1
2I2

7∑

A=4

J2
A, (3.5.2)

where I1(I2) is the moment of inertia within (out of) the SU(2) subspace. These moments
can be calculated numerically when the model is specified, while the result becomes “model
independent” when we treat them as free parameters. Notice that in Eq. (3.5.2), there are
only seven axes of the rotation, since λ8 commute with U0 in Eq. (3.5.1). Instead, there is
an additional quantization prescription,

J8 = −NcB

2
√

3
= −
√

3
2
, Y ′ = − 2√

3
J8 = 1, (3.5.3)

where B is the baryon number, B = 1. This quantization was derived from the Wess-Zumino-
Witten term in Skyrmion model to incorporate the anomaly, or originated in “valence” quarks
in chiral quark soliton model [283]. Then the excitation spectrum of this rotation can be
written as

EJ
(p,q) = Mcl +

1
6I2

[p2 + q2 + pq + 3(p+ q)] +
(

1
2I1
− 1

2I2

)
J(J + 1)− (NcB)2

24I2
, (3.5.4)

where J is the spin and (p, q) denotes the SU(3) representation and we have explicitly written
the quadratic Casimir by p and q. This provides the mass splittings of SU(3) multiplets as

∆10−8 =
3

2I1
, ∆10−8 =

3
2I2

. (3.5.5)

The flavor SU(3) breaking effect can be incorporated with the Hamiltonian

∆Hm = αD
(8)
88 + βY +

γ√
3

3∑

i=1

D
(8)
8i Ji, (3.5.6)

where the first term is of the order of Nc while the rest terms are of N0
c . This provides the

mass splittings among the SU(3) multiplet, leading to the Gell-Mann–Okubo mass formulae,
which take the form of Eq. (3.4.1) for the antidecuplet. In addition, thanks to Eq. (3.5.4),
there is a relation between two masses of the different flavor multiplet. A famous example is
obtained for the

8(mΞ∗ +mN ) + 3mΣ = 11mΛ + 8mΣ∗ , (3.5.7)

which is known as Guadagnini relation, and well satisfied up to 1% level.
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3.5.2 Predictions and related studies

Among many studies of the exotic baryons, the paper by Diakonov et al. in 1997 [77] gave a
strong influence on the later researches. They calculated the mass and width of the baryon
antidecuplet in the chiral quark soliton model. The Θ+ baryon (called Z+ baryon at that
time) was predicted with light mass (1540 MeV) and narrow width (less than 15 MeV), which
partly motivated the experimental search by LEPS [16]. The important features in Ref. [77]
are

(i) N(1710) as an anchor,

(ii) Rigid rotator quantization, and

(iii) narrow width.

In the following, we consider these issues listing the related studies.
(i) In the rigid rotator approach the decuplet baryons are identified as the rotational

excitation of the classical soliton. Therefore, it is natural to consider the next rotational
excitation states. In flavor SU(3) case, this is the antidecuplet with JP = 1/2+. Whether
this excitation really exists or not is the issue of (ii) and let us agree with the existence
here. Then the mass of the antidecuplet is related with that of the octet by Eq. (3.5.5). The
moment of inertia I2 can be calculated by specifying a model, but it depends on the dynamics.
In Ref. [77], it was assumed that the N(1710) belongs to the antidecuplet representation, in
order to determine the ∆10−8.

Once we accept this point, the mass of the Θ+ can be derived automatically by the Gell-
Mann–Okubo rule. The mass splitting among the antidecuplet was determined by setting
the SU(3) breaking parameters so as to reproduce the phenomenological inputs. As we see in
Eq. (3.5.6), there are three parameters, α, β, and γ. Two constraints came from the empirical
splitting of baryon octet and decuplet. The last constraint was fixed by the knowledge of the
nucleon sigma term and the ratio of current quark masses. Using ΣπN = 45 MeV, the mass
of the Θ+ appeared at 1530 MeV, accompanied by the other exotic cascade at 2070 MeV.

After the exotic Ξ was observed by NA49, the masses and widths of baryons were examined
including Ξ−−(1860) in the antidecuplet [236]. Following the general mass formulae for the
antidecuplet as in Ref. [247], experimentally known resonances of JP = 1/2+ were examined,
but no satisfactory identification was obtained. Based on this fact, to complete the antidecu-
plet, they concluded that the N and Σ partners of exotic states should be in the mass range
of 1650-1690 and 1760-1810 MeV, respectively.

Instead of assigning the nucleon partner, more general result in the chiral soliton model
was analyzed in Ref. [284]. With the moment of inertia I2 calculated in the chiral soliton
model and the recent determinations of nucleon sigma term ΣπN = 64± 8(79± 7) MeV, the
masses of the exotic states were found to be 1430 MeV < mΘ < 1660 MeV and 1790 MeV
< mΞ3/2

< 1970 MeV, which were consistent with the experimental observations, but more
precise determination required the additional assumptions. Representation mixing due to the
SU(3) breaking effects was also studied. The effect found to suppress the Θ+ decay width,
while the width of the Ξ3/2 was enhanced.
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(ii) There are extensive discussion on the validity of the rigid rotator quantization in flavor
SU(3) sector. It was argued in the context of the consistency with large Nc expansion [285].
The point was that the excitation energy of the Θ+ due to the collective rotation is of the
order of N0

c , while the collective quantization of the classical soliton is valid for the excitation
of N−1

c . Indeed, in the large Nc limit, the mass difference between “10” (which coincides
with the antidecuplet in Nc = 3) and ”8” (coincides with octet) is

∆“10”−”8” =
3 +Nc

4I2
, (3.5.8)

which reduces to Eq. (3.5.5) when Nc = 3. The rotational excitation energy of order Nc

is outside regime of validity of the collective quantization. More detailed discussion can be
found in Ref. [286]. This problem was further discussed in Ref. [287]. They introduced
the label “exoticness” XB), the number of extra q̄q pair needed to construct the multiplet.
The splitting among multiplets with same X was of the order of O(1/Nc), while that for
the different X was O(1). Actually, the mass difference agrees with Eq. (3.5.8), and it was
systematically generalized to the higher multiplets. However, the rotational angular velocities
for exotic multiplets were of the order of 1/

√
Nc, and the mixing of the rotational mode with

the other degrees of freedom goes 1/Nc, then they concluded that the description of the exotic
multiplet was possible by the rotational quantization.

The validity of the rigid rotor quantization was studied in connection with the Skyrmion
bound state approach [271], which is another quantization scheme of SU(3) Skyrmion [288].
These two approaches should coincide with each other when mK → 0. It was found that
for small mK , there was no bond state or resonance with S = +1, which might indicate the
exotic state was an artifact of the rigid rotor quantization, at least for large Nc and small
mK . In this approach, the Θ+ could be accommodated only when the large SU(3) breaking
effect was introduced. On the other hand, the bound state approach was further extended
in the vector manifestation scenario in the hidden local symmetry [289]. It was shown that
the S = +1 bound state could be formed in the vector manifestation due to the vector K∗

meson effect.
Using toy models [290, 291], the rigid rotator quantization scheme has been further tested.

In Ref. [290] several toy models were examined, which had exact solutions and shared main
symmetries with QCD. The rigid rotator approximation was then compared with the sys-
tematic large Nc expansion. The analysis raised doubts on the relevance of the rigid rotator
approximation and existence of exotic states, at least within toy models used there. Compari-
son of the rigid rotor quantization with the bound state approach was made in Ref. [291] using
a toy model. It was found that the Callan-Klebanov bound state approach was consistent
with the numerical solution, while the rigid rotor approach was not.

On the other hand, there were studies to construct a correct quantization scheme along
the same line with the rigid-rotator approach. In Ref. [292], collective quantization scheme in
Skyrmion model was examined, focusing on the zero-modes of rotations. It was shown that
four zero-mods out of seven in Eq. (3.5.2) would be eliminated by the Wess-Zumino term.
This led to the absence of the S > 0 states in the rotational spectrum, and hence the Θ+ did

B)The definition of the Exoticness was later corrected in Ref. [272].
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not arise as a collective excitation in this approach. In Ref. [293] (see also Refs. [294, 295]),
it was shown that once the modification of the rotational-vibrational approach was included,
the rigid rotator quantization agreed with the bound state approach in the large Nc limit.
Within this approach, the mass and width of the Θ+ were calculated.

(iii) One of the influential results in Ref. [77] was the narrow width of the Θ+. This was
calculated including the 1/Nc correction. The narrow width was obtained by the cancellation
of the two coupling constant

G1̄0 ∼ G0 −G1 ∼ 9.5. (3.5.9)

This value actually vanishes in the nonrelativistic quark model limit of the chiral quark soliton
model.

Notice, however, that the coupling constants are leading (G0) and next to leading (G1)
orders of 1/Nc expansion. In Ref. [296], it was shown that the small width of the due to
cancellation (3.5.9) could be valid when the flavor structure was properly taken into account.
The narrowness of the width of the Θ+ relative to the ∆ was shown by estimating the Nc

counting of the phase space factors.
There was a discussion on the arithmetic in Ref. [77]. Ref. [297] argued that the width

of the Θ+ predicted in Ref. [77] should be less than 30 MeV, not 15 MeV as written in the
original paper. One can trace the subsequent discussions in Refs. [298, 299]. In any event,
30 MeV is still small compared with the ordinal resonances, and the conclusion of a narrow
width in soliton model of Ref. [77] would not be changed.

In Ref. [300], wave functions for baryons were derived in the chiral quark soliton model. The
presence of higher Fock components in baryons were discussed in both exotic and nonexotic
baryons. The approach was further extended in Ref. [301], where the width of the Θ+ was
estimated as very small.

3.5.3 Skyrmion model

The Skyrmion model is one of the simplest approaches in the chiral soliton models. Here we
show the results with this scheme. The mass of the Θ+ was studied in the Skyrme model in
Ref. [76], which was based on the results presented in 1987. [75]. The mass of the antidecuplet
was calculated up to m2

s order, with which the absolute mass of the Θ+ could be calculated
without using the phenomenological input such as the N(1710). In the Skyrme model, the
SU(3) breaking effect was encoded by the first term of Eq. (3.5.6), and perturbation was
performed up to the second order. Then the masses of the particles in octet and decuplet
were expressed in terms of 4 parameters, and the mass of the Θ+ could be calculated by
the same parameters. Taking ΣπN = 60 MeV and ms = 200 MeV, the mass of the Θ+ was
obtained as 1534 MeV. Although the result was sensitive to the values of ΣπN and ms, the
light exotic state was naturally obtained in the Skyrme model framework.

Bound state approach for the Skyrmion was discussed in Ref. [271]. It was found that the
Θ+ could be accommodated only when the large SU(3) breaking effect was introduced. It
s extension to the theory with vector meson in the hidden local symmetry was studied in
Ref. [289], where the Θ+ could be formed in the vector manifestation scenario.
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Systematic calculations based on the minimal extension of the Skyrme model to SU(3)
sector were performed in Refs. [302, 303, 304]. Mass spectra and splittings among different
multiplets were evaluated with exotic sectors 10 [302] and 27 [303] in addition to 8 and 10.
Moments of inertia, nucleon axial coupling were also calculated in Ref. [304].

Skyrmion model was applied to charmed states in Ref. [305] using flavor SU(4) collective
quantization and the bound state approach for the heavy quark. Several charmed pentaquarks
were predicted within this model.

The Skyrmion was studied in the context of the quark-hadron continuity [306]. It was
shown that both the chiral soliton and Nambu-Goldstone bosons can exist in the region
between the color-flavor-locking phase and the hypernuclear phase.

Representation mixing effect due to the flavor symmetry breaking was studied in the
Skyrmion [307]. The masses and the decay widths of the 8, 10, and 10 were evaluated
in the second order perturbation. The mixing with the 27 representation was found to be
important for the states in 10.

In Ref. [308], the Lagrangian of the Skyrmion model was generalized to include more terms.
The coefficients were fitted to reproduce the spectrum of the low-lying baryons, and the model
was applied to the antidecuplet baryons.

3.5.4 Other calculations

Using the mass of Θ(1540), the spectrum of other states in higher dimensional representation
(exotic and nonexotic) were estimated in chiral soliton model [309]. In this scheme, not only
the symmetry breaking term of leading order in ms, next to leading order operator were
tested. It was found that the next to leading order term might not be negligible.

The mass spectrum of 27-plet was studied by fitting the parameters α, β, γ, I1 and I2
to experimental data [310]. To fix the parameters, in addition to the masses of octet and
decuplet, masses of Θ+(1540) and Ξ−−(1860) were adopted. The obtained masses agree well
with the experimentally known non-exotic resonances of spin 3/2+, including Ξ(1950), whose
spin and parity are not yet known. The width of the 27-plet was then studied in the same
framework [311], up to linear order in ms and 1/Nc. The width of the Θ∗ with spin 3/2+

and isospin I = 1 turned out to be less than 43 MeV. The 35-plet was also studied along the
same line in Ref. [312].

In the same way as that in Ref. [236], the properties of the antidecuplet was studied, but
with negative parity as well [313]. Since the symmetry relation was free form the parity, the
negative parity states are assigned to the antidecuplet with Θ+(1540) and Ξ−−(1860). The
masses of N(1650) and Σ(1450) were well reproduced with these exotic states. The widths
of the N(1650) was too wide to be a partner with the Θ+, while the widths of the Σ(1750)
agree with the experiment. Therefore, if the scheme was correct, there should be a new
negative parity resonance around 1.65 GeV, or the large SU(3) breaking effect takes place.
Note however that the determination of the parameters in soliton model was based on the
properties of the octet and decuplet baryons with positive parity.

In the chiral quark soliton model, the masses of flavor 27 states were calculated with the
parameters determined in the paper by Diakonov et al. [314]. The mass and width of the
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I = 1 Θ∗ state in 27 was found to be 1595 MeV and 80 MeV, respectively. This scheme was
further extended to calculate the 35 states as well [315], where the masses of Θ(1540) and
Ξ(1860) were used to determine the parameters. In this case, the I = 1 Θ∗ state had a mass
of 1599 MeV and became somewhat broad. A similar approach for the estimation of 27 but
with the parameters in updated version of Diakonov et al. [236] can be found in Ref. [49].

In Ref. [316], using the observed mass of Θ+, the pion-nucleon sigma term was extracted
in the chiral quark soliton model. The masses of the Θ+ and Ξ−− determined the value
σπN = (74 ± 12) MeV which was consistent with the recent determination from the pion
nucleon scattering data as well as the lattice QCD simulation.

Decay widths of decuplet and antidecuplet with representation mixing introduced by the
SU(3) breaking effect were discussed in Ref. [317]. The importance of the mixing with 27-plet
in the antidecuplet baryons was emphasized. The O(ms) correction to the decay widths of
baryon decuplet was found to be a factor 3 or more. Furthermore, O(ms) correction was
found to suppress the decay width of Θ by factor 0.17, relative to the width of ∆.

Corrections to the Gell-Mann–Okubo mass splitting for the ground state octet and decuplet
were studied in the Skyrme model up to next to leading order of ms [318]. The small
experimental deviations from the GMO rule in these multiplets could be complemented by
the correction terms with the mixture of the higher dimensional multiplets. This could be
interpreted as an evidence for the existence of higher multiplets.

Radial excitations of the chiral soliton and their interplay with the rotational excitations
were studied in Ref. [319]. The flavor SU(3) symmetry breaking was introduced, which led
to the 8-10 mixing as suggested by the Jaffe-Wilczek model. The predicted masses were in
good agreement with observed spectrum.

Multi-baryon state was studied in the soliton model in Ref. [320]. Properties of possible
Θ+ hypernuclei were evaluated, as well as the anti-charmed and anti-bottomed states.

In Ref. [321], the soliton model was examined in the two-dimensional QCD, where the
rotational and vibrational excitations were absent in the strong-coupling regime. Because
of the absence of these modes, the analysis would be free from the controversial arguments
on the quantization method in soliton models. The mass of the classical soliton and leading
quantum corrections were evaluated.

Electromagnetic properties were also studied in the soliton models. Transition magnetic
moments of the antidecuplet baryons to the octet baryons were evaluated in Ref. [322]. It
was found that the transition of n∗ → n and Σ∗ → Σ were forbidden in the chiral limit, and
would be small when the symmetry breaking effects were taken into account. This property
was suggested to distinguish the nucleon resonance of the antidecuplet from others.

The magnetic moments of the Θ+ and antidecuplet baryons were calculated in Ref. [323], in
the context of the chiral quark soliton model in the chiral limit. Model-independent relations
between magnetic moments were derived. By calculating the unknown parameter by the
chiral quark soliton model, the magnetic moment of the Θ+ was estimated as µΘ+ = 0.2-
0.3µN . The calculation was later extended to include the symmetry breaking correction [324]
and in the context of recent measurements of baryon resonance [325] by SELEX [326] and
GRAAL [327].
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3.6 Constituent quark models

3.6.1 General features and interactions

Here we summarize the studies based on constituent quark models, in which the hadrons are
constructed by the valence quarks with the constituent mass. Started in Ref. [328], the quark
models have been providing a good description for overall spectra of mesons and baryons
including excited states [329, 330, 331]. On the other hand, there are several problems in
quark models. Several states such as pseudoscalar mesons, Roper resonance, Λ(1405), etc.
are not well reproduced in naive treatment. These states are considered to have other origin,
say, goldstone bosons of symmetry breaking and chiral dynamics. The models predict many
states which are not yet observed in experiments. There is no clear justification of the
non-relativistic treatment of the quarks with schematic hyperfine interaction. Nevertheless,
a great advantage of the quark model is that one can extract an intuitive information of
hadrons.

In general, quarks are confined in a potential, and interacting each other via hyperfine
interactions. The mass of a state in the constituent quark model is given by

M =
∑

i

mi + δMk + δMc + δMhf (3.6.1)

where mi is the mass of the constituent quark i, δMk is the contribution coming from the
kinetic energy of quarks, δMc is the contribution from the confining force, and δMhf is the
contribution from the hyperfine interactions. These δM contributions are calculated by taking
the matrix element of the interaction Hamiltonian with the wave function of the state, which
is constructed based on color-flavor-spin-orbital symmetry. A typical hyperfine interaction is
the Color-Spin (CS) interaction, which originates in the one-gluon exchange between quarks.
The effective hamiltonian for the CS interaction can be written as

HCS = −fCS(r)
mimj

(λc
i · λc

j)(σi · σj), (3.6.2)

where λc
i (−(λc

i )
∗) is the Gell-Mann matrix in color SU(3) space for quark (antiquark) labeled

i, and σi are the Pauli spin matrix, and mi is the constituent mass. fCS(r) governs the
interaction range and strength. Another choice is the Flavor-Spin (FS) interaction [330],
which is generated by effective Goldstone boson exchange between quarks:

HFS = −fFS(r)
mimj

(λF
i · λF

j )(σi · σj), (3.6.3)

where λF
i is the Gell-Mann matrix of flavor SU(3).

Concerning the pentaquark uudds̄ state, the sum of the masses of the five quarks are∑
imi ∼ 1800 MeV, when we choose mu,d ∼ 300 MeV and ms ∼ 500 MeV. This is rather

high compared with the observed mass of the Θ+ of 1540 MeV. In order to achieve the
experimental value, we should expect the large attraction from the rest terms in Eq. (3.6.1).
Since the quarks have parity P = + and antiquarks have P = −, five-quark system without
orbital excitation would have negative parity. For the state with angular momentum l, we
will have P = (−)l+1.
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3.6.2 Hyperfine interactions in five-quark system

In Ref. [332], the mass of the uudds̄ state was studied with FS interaction in Eq. (3.6.3). It
was found that the energy of the l = 1 state with totally symmetric four quarks in flavor-spin
space becomes lower than that of l = 0 state, overcoming the kinetic energy. This led to
the JP = 1/2+ for the ground state for uudds̄ pentaquark. Hence the ground state was the
positive parity.

Comparison between CS and FS interactions for negative parity pentaquarks was made in
Ref. [333], using the MIT bag model. For the mass splitting among the antidecuplet mem-
bers, CS interaction provided the small value of 52 MeV, while the CS model gave rather
large splitting of 155 MeV. The authors constructed general expression of wave functions of
five-quark states in flavor antidecuplet. It was found that because of hidden ss̄ component,
the nucleon state was heavier than the Θ+, in accordance with the GMO rule for the antide-
cuplet (3.4.1). The positive parity case was also considered by the same authors, utilizing
the FS interaction [334]. Calculating the hyperfine interaction, mass splitting of ∼ 120 MeV
was obtained for the antidecuplet.

In Ref. [335], pentaquark states with JP = 1/2± and I = 0, 1, and 2 were studied with both
FS and CS interactions as well as the quark-antiquark interaction. It was found that the I = 0
state becomes the lowest one for both parities. In contrast to the results in Ref. [332], the
negative parity state became lower than the positive parity state, when the quark-antiquark
interaction through annihilation terms were included. The mass of the lowest JP = 1/2−

state was about 200-300 MeV higher than the experimental value of 1540 MeV. Further
modifications were performed in Ref. [336], however the mass appeared still 200 MeV higher
than the observed one. This might indicate the necessity of the dynamical calculation. In
this direction, KN scattering state was studied by resonating group method based on the
same model for s- and p-waves [337], and later for d- and f -waves as well [338], providing a
good agreement with experimental data.

Excited states of heavy pentaquarks with positive parity were studied in Ref. [339] using
CS and FS interactions. It was found that a denser level structure appeared above the
ground state than the non-exotic baryons, because of the larger number of Pauli-allowed
states in five-quark channels. Pattern of the excitations showed difference between CS and
FS interactions.

In Ref. [340], the effect of the instanton induced (‘t Hooft) interaction [341] was discussed
using the MIT bag model. A strong attraction was obtained from the two-body part of the
interaction, while the three-body force was repulsive. The mass of the JP = 1/2− state was
lowered about 100 MeV when the instanton induced interaction was introduced. Along the
same line, JP = 1/2+ states were also studied in Ref. [342].

In the quark model study for the pentaquarks, importance of the quark-antiquark inter-
action and the role of the ‘t Hooft interaction were discussed in Ref. [343]. Reviewing the
previous analyses, it was pointed out that the FS interaction did not affect very much the
exotic states, once the q̄q interaction was taken into account.
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Table 3.3: Quark correlations for the Θ+ in Jaffe-Wilczek (JW), Karliner-Lipkin (KL), and
Shuryak-Zahed (SZ) models.

model Ref. structure orbital excitation total JP

JW [344] [ud]3̄c3̄f0s
⊗ [ud]3̄c3̄f0s

⊗ s̄ l = 1 between diquarks 1/2+

KL [345] [ud]3̄c3̄f0s
⊗ [uds̄]3c6̄f1/2s

l = 1 between clusters 1/2+

SZ [346] [ud]3̄c6f1s
⊗ [ud]3̄c3̄f0s

⊗ s̄ l = 1 in tensor diquark 1/2+

3.6.3 Quark correlations

The problem of the light mass and the narrow width may be resolved by introducing spe-
cific inter-quark correlations. Various effective quark interactions as well as phenomenolog-
ical analysis predicts the strong correlation between quarks [52]. In the following, we show
typical models of this kind, namely Jaffe-Wilczek (JW) model [344], Karliner-Lipkin (KL)
model [345], and Shuryak-Zahed (SZ) model [346]. The structures of these models are sum-
marized in Table 3.3.

JW model was proposed in Ref. [344]. An essential ingredient of this model was the strong
quark-quark correlation in spin 0, color 3̄ and flavor 3̄ channel, which formed the diquark
QQC). This channel is attractive either CS or FS interactions, as well as the instanton induced
interaction [341]. In the JW model, the ud pair in uudds̄ state were correlated to construct
two QQs. Two diquarks should be combined in l = 1 state, because color should be 3 for
two-diquark system in order to make color singlet with antiquark. This led to the JP = 1/2+

for the Θ+. In this case, this state differs from the KN state in color, spin and spatial
wave functions, so that the decay width is expected to be small. A similar idea for this
configuration was also presented in Ref. [134].

Another important point introduced here is the representation mixing of flavor octet and
antidecuplet, which naturally appears in the diquark model with flavor SU(3) breaking, since
the four-quark state in this picture is in flavor 6, which produces 8 and 10 by combining with
the 3 antiquark. These 8 and 10 are degenerate in the SU(3) limit. If the SU(3) breaking is
introduced by the schematic Hamiltonian

Hs = M0 + (ns + ns̄)ms + nsα, (3.6.4)

the ideal mixing takes place where the ss̄ component is diagonalized. Thus the N(1440)
and N(1710) resonances were well fit in this simple scheme, and exotic Ξ state appeared at
1750 MeV, which was significantly lower than the prediction by chiral soliton model [77]. By
assuming the same structure for the heavy pentaquarks Θc and Θb, the states were predicted
to appear below thresholds for the strong decay and become bound states.

This scenario looks attractive, since it explains not only the low mass of the Θ+, but also
the Roper resonance, whose interpretation is still controversial. However, the inclusion of the
N(1440) in this scheme contain a difficulty to reproduce the large decay width of theN(1440).
It was pointed out in qualitative manner in a comment [347] to the original paper, and studied
more quantitatively in Refs. [348, 349, 350]. In Ref. [348], An inequality was derived for the

C)The symbol QQ will be used for the diquark in spin 0, color 3̄ and flavor 3̄ channel.
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widths of the nucleon resonances and the Θ+ under the ideal mixing. This inequality was
badly broken by the experimental decay widths of N(1440) and N(1710) together with the
width of Θ+, if it is less than 1 MeV. It was also found that the wave functions of octet and
antidecuplet should be identical (except for the flavor) for the ideal mixing. Assignment of
the experimentally observed JP = 1/2+ resonances to the 8-10 mixing scheme was done in
Ref. [349] for general mixing angle. They found an inconsistency between the mixing angle
obtained from the mass spectrum and that from the decay widths. More comprehensive
study including the mixing with ground state octet and another octet at higher energy can
be found in Ref. [351]. Application to the spin 3/2 particles was performed in Ref. [24], which
we will explain later in chapter 10.

For the JW model with point like QQ diquarks, QCD inequality was derived [352], which
gave the lower limit for the mass of the Θ+. In Ref. [353], JP = 1/2− pentaquarks were
studied in the JW model without orbital excitation. Two QQs were combined in relative
l = 0, then the flavor of four quark system became 3, which was combined with 3̄ of the
antiquark to construct the 1 and 8. As a result, several low lying pentaquark states with
JP = 1/2− were predicted. Mixing between the same charge members of exotic Ξ3/2 and
ordinary Ξ was discussed in Ref. [354]. A comparison of the quark model and soliton model
was made in Ref. [355]. It was found that the quark model preferred large representation
mixing, while the soliton model favored a small mixing.

KL model was given in Ref. [345], which was based on an unpublished paper [356]. This
model describes the Θ+ as a molecule of two clusters, a ud diquark and a uds̄ triquark, which
are in relative p wave and are separated by a distance larger than the range of the color-
magnetic force. The ud in the triquark is color 6, flavor 3̄ and spin 1, which is combined
with an antiquark to form the triquark of color 3, flavor 6̄ and spin 1/2. Then the triquark
is bound with another diquark with color 3̄, flavor 3̄ and spin 0, via the color-electric force.
Naive mass estimation in Ref. [345] was about 1592 MeV. The study of the heavy flavored
pentaquarks in this model was performed in Ref [357].

The masses of Θ+ in JW and KL models were compared with the CS interaction [358]. It
was found that the JW model gives a smaller mass than the KL model does. In KL model, the
hyperfine interaction between diquark and triquark was shown to lower the energy further,
which was not considered in the original KL treatment. The mass of charmed and bottomed
pentaquark was also estimated in the JW framework.

This idea of KL model was examined with the instanton-induced interaction in Ref. [359].
The masses of the ud diquark and the uds̄ triquark were estimated as 440 and 750 MeV,
respectively, which was reasonable to construct the Θ+ in a relative l = 1 state. The triquark
was also examined with the color-magnetic interaction in Ref. [360].

In quark cluster model with CS interaction, the favored configuration was found to be
KL model [361]. Within the same model, masses and magnetic moments of the antidecuplet
baryons were estimated. In Ref. [362] the triquark correlation was also investigated in the
QCD sum rule approach including the direct instanton contributions.

A relativistic calculation for the width of the Θ+ was performed in Ref. [363] based on
the KL model. Varying a parameter for the size of the state, width was found to be very
small. The method was applied to other pentaquarks [364] and also the structure of the
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triquark [365].
Another description of the Θ+ was proposed by Shuryak and Zahed in Ref. [346]. The

diquark correlation was estimated based on the instanton liquid model. It was found that
the Jaffe-Wilczek model has a large p-wave excitation energy, leading to mΘ ∼ 1880 MeV.
On the other hand, it was more reasonable to construct the Θ+ state with one scalar diquark
and one tensor diquark in relative s wave, where the tensor diquark is color 3̄, flavor 6 and
spin 1. The mass of this state was found to be 1550 MeV, closer to experimental value. This
is because the absence of the relative angular momentum among clusters.

This idea was studied in the semi-relativistic effective QCD Hamiltonian approach assum-
ing the diquark clustering [366]. It was shown that the SZ model indeed gave the lower mass
than the JW model, when the mass of the tensor diquark was as small as that of the scalar
diquark.

3.6.4 Diquark effective models

There are models which treat the diquarks as effective degrees of freedom in the field theory.
In Ref. [367], diquark chiral effective theory was applied to the pentaquarks. The parameters
in the model was fixed by the chiral symmetry and random instanton model. The model
predicted the decay widths of the Θ+ and Ξ−− to be very narrow, due to a large tunneling
suppression of a quark between a pair of diquarks. Strong and radiative decays of the members
of the octet-antidecuplet mixing scheme was studied in Ref. [368].

In Ref. [369], an estimate for the heavy pentaquarks based on diquark picture was per-
formed. The mass of heavy pentaquarks with two diquarks of flavor SU(3) in relative s wave
could be lower than the strong decay threshold. Possible weak decay modes of these states
were discussed.

Treating the diquark as a point like particle, the form factors and magnetic moments were
evaluated for the Θ+ and Θc by solving the three-body problem in Ref. [370]. The valence
antiquark was found to be embedded in the four-quark core, in contrast to the nucleon case.

Group theoretical point of view, the diquark QQ is something similar to the antiquark. In
this sense, it is possible to discuss the other related exotics by the replacement of QQ↔ q̄ in
the diquark model for the pentaquarks.

Pentaquark states were discussed in connection with dibaryon, replacing an antiquark by
a diquark [371]. Based on the diquark clustering, mass of a pentaquark state was estimated
by the energy coming from orbital excitation, from Pauli blocking effect between quarks, and
from pair annihilation effect of qq̄, in addition to the sum of constituent quark and diquark
masses. In this framework, pentaquarks with parity P = − and flavor F = 8 and 10 were
related with dibaryons with P = + and F = 8. In the same way, pentaquarks with parity
P = + and flavor F = 8 and 1 were related with dibaryons with P = − and F = 1.

Possible exotic tetraquark state uds̄s̄ was considered by replacing ud in the Θ+ by s̄. In
Ref. [372], based on the KL model of triquark-diquark, a bound state of uds̄ and s̄ was
suggested as a candidate. A similar idea can be found in Ref. [373]. Other members of flavor
multiplet was also studied. A dynamical calculation was performed in Ref. [374] for this
state, and the mass was predicted as 1.4 GeV.
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3.6.5 Calculations in quark models

The Θ+ was interpreted as an isotensor I = 2 state in Ref. [375]. In this case, the decay
of Θ+(I = 2) into KN(I = 0, 1) is isospin breaking, which is naturally suppressed down to
a fraction of MeV. By constructing the I = 2 pentaquark state from quark model, possible
assignment of spin and parity was found to be JP = 1/2− or 3/2−. The result was further
discussed in Ref. [376], in connection with the SAPHIR experiment[97], which did not see
the Θ++, possible production mechanisms, and Ξ−− decays in 35-plet.

In Ref. [377], it was found that the parity of the ground state of uudds̄ system depends
on the strength of the pion field in the chiral bag model [378]. The single particle energy
of quarks in chiral bag was affected by the strength of the pion coupling at the bag surface.
When the strength is small, which was close to the constituent quark model picture, the
ground state was negative parity, while for the strong pion interaction, which was close to
the Skyrmion, positive parity state becomes the lowest.

Magnetic moments of Θ+ and exotic Ξ were studied in quark models [379]. They as-
sume several inter-quark correlations such as Jaffe-Wilczek type, Karliner-Lipkin type, and
Shuryak-Zahed type, in addition to the calculation based on MIT bag model. Comparison
with several other approaches were also tabulated. Extension to the JP = 3/2+ states was
performed in Ref. [380]. The similar calculation for the heavy pentaquarks were performed
in Ref. [381].

In Ref. [382], the Θ+ state was studied with FS interaction, which made the JP = 1/2+

lower than the negative parity state, as shown in Ref. [332]. A list of interpolating fields for
Θ+ was presented. The existence of spin-orbit partner with J = 3/2 was proposed, which
was an inherent feature of the five-quark picture, and it made the difference from the chiral
soliton models.

A complete classification of the five-quark wave functions was constructed in Ref. [383]
based on the spin-flavor SU(6) symmetry. The lowest state was found to be isosinglet in
antidecuplet representation. The magnetic moments of the antidecuplet baryons for the
JP = 1/2± and 3/2+ cases were calculated in this model [384]. A similar calculation but
with the 3/2− case can be found in Ref. [385].

A spin-orbit partner of Θ+ with JP = 1/2+ was discussed in Ref. [386]. It was shown that
the Θ+ described by five-quark with JP = 1/2+ should imply the Θ∗ state with JP = 3/2+,
as mentioned in Ref. [382]. The mass of the Θ∗ was estimated to be 100 MeV above the Θ
state, and width was at least three times larger than that of the Θ.

In constituent quark models, the decay width of the Θ+ into KN channel can be estimated,
when the wave function of the initial state is known. In Ref. [387], width was calculated for
the lightest configuration with the FS interaction [334], which was the positive parity state
with spin 1/2. The overlap of the Θ+ wave function with the KN state was found to be
5/96. Estimated width for this state was about 4.4 MeV, while the width of the negative
parity state was about 1 GeV order. The decay width of JP = 1/2+ pentaquark with Jaffe-
Wilczek type was studied in Ref. [388]. It was found that the spatial structure was essential
for the decay width. When the size of pentaquark was similar to the usual hadrons, the decay
width becomes of the order of 100 MeV, while an distorted “peanut” structure could lead to
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the narrow width of ∼ 1 MeV. In Ref. [389], decay of the Θ+ was studied in quark model.
Results for the JP = 1/2± were qualitatively consistent with previous works, while a strong
suppression of the Θ+ decay for the JP = 3/2− was pointed out.

Selection rules based on the SU(6) spin-flavor symmetry were derived in Ref. [390] for the
l = 1 five-quark states. Observed Θ+ and Ξ−− were assigned in the antidecuplet represen-
tation. Based on the wave functions of five-quark states in antidecuplet and octet, selection
rules and relations between coupling constants were derived in Ref. [391]. Mass difference
between Θ and Ξ was estimated in Ref. [392] using the phenomenological inputs.

The pentaquark states in antidecuplet representation were studied in the perturbative
chiral quark model [393] for JP = 1/2− and 3/2− cases. The mass splitting of the states
were evaluated by the sum of the contributions from quark masses, meson loops, and gluon
loops. It was found that the spin 3/2− state appeared about 185 MeV above the 1/2− state,
due to the gluon effects.

In Ref. [394] the width of the Θ+ was investigated using the color molecular dynamics
simulation. It was found that the probability of forming color singlet N and K was small, so
that the width of the Θ+ was suppressed.

The Θ+ state was studied in Ref. [395], utilizing the Fock space expansion model, quark
delocalization color screening model, and Jaffe-Wilczek inspired model. All the models were
based on the constituent quark model with variational calculation, and the minimum of the
Θ+ mass was found at 1620 MeV, for the JP = 1/2± states.

In Ref. [396], the magnetic moment of the strange quark was discussed in the JW, KL,
and SZ models.

Dynamical study based on the flavor-spin interaction was performed in Ref. [397]. The
mass of the antidecuplet including Θ+ was studied by the interaction given in Ref. [332], and
the mass of Θ+ was adjusted by flavor-independent attraction, which was induced by the η
meson exchange between s̄ and light quarks. Then the mass of the Ξ−− appeared at 1962
MeV. The representation mixing with 8 was also introduce in this framework, in which the
mixing could be induced by the hyperfine interaction as well as the mass term. The resulting
mixing angle showed the value close to the ideal one.

In Ref. [398], the Θ+ state was studied in the antisymmetrized molecular dynamics tech-
nique. They used the one-gluon exchange potential and linear confining potential, and cal-
culated the masses of JP = 1/2±, 3/2±, and 5/2± states. The masses of the JP = 1/2± and
3/2± states appeared nearly degenerated. The widths of the JP = 1/2+ and 3/2+ states
were predicted to be narrow, and interpreted as the candidate for the observed Θ+.

In Ref. [399], mass of the uudds̄ state was calculated for TJP = 01
2

−, 03
2

− and 11
2

−, which
were considered to be the three lowest states from the group theoretical point of view. With
the exchange of the gluon and chiral mesons, parameters were set to reproduce the observed
masses of baryon octet, decuplet and vector mesons. The zero-point energy of the pentaquark
was taken to be twice as large as that of the three-quark states. Among three states, the
JP = 3/2− state could have a very narrow width, so the authors identified this state as the
Θ+. The mass was about ∼ 1680 MeV, which was 80 MeV higher than the mass of the
JP = 1/2− state. The qq correlation was also investigated, and the effect was important to
reduce the mass up to 1680 MeV. The result was also presented in Ref. [400], with the result
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of 1/2+ states.
The KN scattering state was also included in the dynamical calculation for the Θ+ with

color magnetic interaction in Ref. [401]. The mass was obtained around 2 GeV for the
JP = 1/2± states. The widths of the states were evaluated in the phase shift, and the 1/2−

state had a very narrow width of 0.12 MeV, in spite of the large phase space.
The Θ+ with JP = 1/2± were studied in Ref. [402] with FS and CS interactions. A

dynamical study with one-gluon exchange can be found in Ref. [403]. In view of these
dynamical calculations, the light mass of 1540 MeV for the uudds̄ system seems to be difficult.

3.7 Other models and approaches

3.7.1 Hadronic molecule

The interactions among hadrons have been studied for long time. Chiral perturbation theory
allows us to calculate the interactions systematically. It is possible to observe, for instance,
the scattering lengths directly in experiments. This is an advantage compared with the
quark pictures, where the effective interaction of quarks is not directly tested. Therefore,
it is natural to expect that the Θ+ can also be described in terms of hadronic degrees of
freedom.

The simplest way to describe Θ+ in hadronic molecule is the resonance of K and N . A
resonance state of KN system was discussed in non-relativistic potential model [404]. It was
shown that the centrifugal barrier in l = 1 state was not enough to reproduce the width of
Θ+. Possibilities of resonances in higher partial waves were discussed. The decay width of
Θ+ was studied by low energy scattering theory of K and N [405]. It was found that the
orbital angular momentum should be two or greater in order to have very narrow width < 1
MeV. A qualitative discussion on this issue was already presented in Ref. [344].

Mixing of the five-quark state and meson-baryon molecule state was discussed in Ref. [406]
using an effective potential. In this scheme, the narrow width can be naturally explained by
the destructive interference effect.

As we have seen, by considering the interaction at hadron level, it is hard to construct the
Θ+ by K and N , unless they are in relatively higher partial waves. On the other hand, there
is a possibility of constructing πKN three-body bound state, since the mass of Θ+ is only
30 MeV below the πKN energy. In addition, the decay width is suppressed because of the
absorption of π, which requires the l = 1 excitation.

This idea of the πKN bound state was first explored by resonating group method in
Ref. [407]. It was found that the repulsive interaction between K and N in s wave was
compensated by the attraction in other channels of πN(I = 1/2) and πK(I = 1/2). This
combination leads to the I = 0 and JP = 1/2+ state for the Θ+, which coincides with the
prediction by the chiral soliton models. However, the strength of the attraction was not
enough to bind the total three-body system. The model was applied for the exotic cascade
Ξ−−(1860) [408] and for the heavy quark sectors [409].

The πKN bound state was studied in detail by chiral unitary model [410]. Two-body
interactions of meson-meson and meson-baryon, as well as the three-body forces were derived
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from the chiral Lagrangians, and the amplitude was iterated infinitely by the Bethe-Salpeter
equation. An attraction was found in I = 0 and JP = 1/2+ channel, but the interaction was
not enough to provide the binding energy observed in experiment, if the Θ+ were the three
body bound state.

In Ref. [411] KπN bound state conjecture was studied with hypothetical Kπ bound state
X, which had not been detected experimentally. The Kπ interaction was assumed to be so
strong that there was the bound state. Then the properties of the Θ+ could be naturally
explained.

The similar idea for the KπN bound state but with I = 1 and JP = 3/2− was examined
in Ref. [412] based on the resonating group method. Possible configuration mixing with ∆K
state was introduced. The energy of this state appeared close to the threshold of the KπN
system.

Based on the three-body bound state picture, the effect of two-meson cloud for the Θ+ [413]
with JP = 1/2+ and for the antidecuplet baryons [21] were studied, by estimating the self-
energies for two-meson loop. The self-energies turned out to be attractive, with the strengths
compatible with the previous attempt in a different point of view [410]. We will discuss this
topic in chapter 9. The two-meson couplings were studied in the JP = 3/2− case and with
the representation mixing in Ref. [23], which were applied to the reaction processes of the
Θ+ productions. The topic will be discussed in chapter 11.

In the chiral unitary model of the scattering of an octet meson and a decuplet baryon,
the S = +1 state with I = 1 and JP = 3/2− was studied in Ref. [414], which was later
extended to more general cases [415]. Based on the chiral Lagrangians, an attraction was
found in ∆K channel, which led to the generation of a pole dynamically. However, the
existence of the pole was found to be sensitive to the input parameters. The attraction in
∆K channel was consistent with that found by resonating group method based on the chiral
quark model [338, 416], which also led to the formation of bound state in this channel.

Molecule state of a vector meson with a baryon was considered in Ref. [417], as in the similar
approach with the chiral unitary model. The Weinberg-Tomozawa interaction was extended
to the interaction between vector mesons and baryons, and iterated using the Bethe-Salpeter
equation. A bound state of K∗N was found around 1.7-1.8 GeV, which had JP = 2/3−.

The meson-baryon molecule picture for the charm sector was studied in Ref. [418]. An
exotic state was found at 2.78 GeV, below the DN threshold.

3.7.2 Flux tube picture

Hadronic flux tube picture of the Jaffe-Wilczek model was first mentioned in Refs. [252, 143] as
a possible structure of the Θ+. This picture was examined by effective Hamiltonian approach
to QCD [419, 420]. Assuming the ud diquark clustering, they solved a three-body problem
using string tension and strong coupling constants [419] or instanton-induced force [420].
The mass for Θ+ was obtained above 2 GeV for both parities. Non-exotic ududd̄ state was
predicted also above 2 GeV, which was too high to be assigned for N(1440). The model was
also applied to the heavy quark sectors [421]. On the other hand, the mass of the Θ+ can
be lower than 1.7 GeV with color 3̄ and 6 diquarks, when the masses of two diquarks are
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similar [366].
Pentaquark states were studied in the dual gravity theory of QCD based on the AdS/CFT

correspondence in the string theory [422]. The masses of pentaquarks were calculated by the
length of the string between quarks in the theories dual to the supersymmetric and ordinal
QCD. The narrow decay width of the Θ+ was explained by the cost to make a flux loop in
the recombination from Θ state to the NK state.

An explanation of the narrow width of the Θ+ was made in Ref. [423] based on the
string picture of the hadrons. In this picture, the decay of the pentaquark state required
the creation of a pair of Y-shaped junctions. A large excitation energy was needed for such
gluonic excitation processes and therefore the decay width should be suppressed.

The Θ+ was discussed in the hadron string model [424]. Assuming the Jaffe-Wilczek type
structure, the mass of the Θ+ appeared 290 MeV above the observed mass. A structure in
which the s̄ was not at the end of the string was suggested to reproduce the low mass of the
Θ+.

3.7.3 Miscellaneous studies

There was a discussion on the narrow width of the Θ+. In Ref. [425], super-radiance mech-
anism was proposed for a possible explanation of the narrow width. When two overlapping
resonances exist and interact each other through the coupling to the continuum, a narrow
state (and a broad state) can be produced. A similar idea was proposed in Ref. [426].

Relativistic five-body equations were studied for the Θ+ states with spin 1/2± and 3/2± [427]
and for 5/2− [428]. The formulation was also applied to the widths of the Θ+ [429].

In the context of duality between Regge pole and s-channel resonance contribution, the
existence of exotic baryons was argued [54], based on the study in Ref. [61]. A consistent
description of baryon-antibaryon scattering required the presence of mesons with exotic flavor
quantum numbers, which had a small decay width due to the generalized OZI rule. In
the same way, consistent description of the scattering of these exotic mesons with baryons
demanded the existence of exotic baryons. The generalized OZI rule indicated the small
coupling of the exotic baryon to ordinary meson and baryon, while it gave large coupling to
the two mesons and one baryon state. A similar argumentation can be found in Ref. [430].

Non-leptonic decay of heavy pentaquarks was discussed in Ref. [431] by soft-collinear ef-
fective theory. Possible decay channels such as Θ+

b → Θ0
cπ

+ and Θ0
c → Θ+π− preserve the

diquark structure of these states. Since the decays were Cabibbo-allowed and the all final
states were charged particles, search for these states were promising.

The five-quark state can have spatially non-planar structure, which was absent for two-
or three-quark states. A diamond structure for the Θ+ was investigated [432], where the s̄
was in the center of the regular tetrahedron and the u and d quarks are at the corners of the
tetrahedron.

The decays of the pentaquarks were studied in the light-front quark model. The week
decays of heavy pentaquarks [433] and strong decays for light and heavy pentaquarks [434]
were evaluated, based on the Jaffe-Wilczek model.

The calculation based on a schematic model [435] was performed for the pentaquark [436].
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In the model, the constituent quarks and gluons interact via phenomenological interaction,
which is fixed by the observed states. The uudds̄ state with JP = 1/2− was predicted to be
1.5 GeV, which was assigned to the Θ+.

3.8 In-medium properties and Θ+ hypernuclei

At finite temperature and density, properties of hadrons such as masses, widths, and coupling
constants can change from the values in vacuum, due to medium effects. In this section, we
discuss the in-medium properties of the Θ+ and possible formation of Θ+ hypernuclei based
on the medium effects.

In Ref. [437], medium effects on Θ+ were investigated for negative and positive parity
states. The authors estimated the in-medium self-energy of Θ+ into KN channel, with Pauli
blocking on nucleon propagator and mass modification of the nucleon. The mass modification
of Θ+ depending on the density was observed. Obtained potential was not strong enough
to make bound states at normal nucleon density, but relatively large binding energy was
observed at higher density region.

A schematic model for nucleon with qq̄ pair excitation was developed to describe the Θ+

with positive parity [438]. Collective excitation of qq̄ pair led to the low mass of Θ+, and
accounted for the small decay width into the KN channel. Virtual coupling to K∗N was
found to be large compared with the KN mode. Within this model, it was found that ΘN
interaction could be strongly attractive, and the Θ+ hypernuclei became stable against the
strong decay.

Cabrera et al. [413] calculated the medium effects due to the πKN intermediate state, in
addition to KN channel studied previously [437]. The coupling constants for the new channel
were determined by assuming that the N(1710) was an SU(3) partner of Θ+. This new
channel gave appreciable attractive potential, indicating the appearance of well separated
bound states of Θ+ in nuclei. On the other hand, the KN channel gave only tiny effect,
consistent with the previous works qualitatively, reflecting the small decay width of Θ+ in
vacuum. The Θ+ potential at normal nuclear density was obtained as −60 to −120 MeV,
where uncertainty came from those in cutoff parameter and inputs. Solving the Schrödinger
equation with obtained potential, many bound states were found in 12C and 40Ca.

With the model developed in Ref. [413], the production of Θ+ hypernuclei was studied in
Ref. [439]. The reaction was (K+, π+) on the 12C target, with the initial kaon kinetic energy
TK = 300 MeV in Laboratory frame. This reaction was suitable for the Θ+ hypernuclei,
since the momentum transfer was small compared with the (γ,K−) and (π−,K−) reactions.
In the obtained spectrum, reasonably large separation between states was observed, which
could be detected in experiments. Several recoilless productions for the Θ+ hypernuclei were
suggested in Ref. [440].

In Ref. [441], the Θ+ hypernuclei was studied within relativistic mean field (RMF) formu-
lation [442], as in the same way with usual Λ hypernuclei. Lagrangian for Θ was introduced
with the similar structure as that of nucleons. The coupling constants of σ- and ω-Θ were

58



3.8. In-medium properties and Θ+ hypernuclei

deduced from the quark meson coupling model as

gΘ
σ =

4
3
gN
σ , gΘ

ω =
4
3
gN
ω , (3.8.1)

essentially reflecting the number of u and d quarks. Several quantities were calculated for Θ
in 6Li, 12C, 16O, 40Ca, and 208Pb. Large separation between two deepest bound states were
observed, which makes the experimental detection easier. The shrinking effect was found for
light nuclei, as in the Λ hypernuclei. Although the result was depending on the unknown
parameters, such as the ratio of the nucleon mass in the medium and the coupling constants,
the Θ potential was estimated as −50 to −90 MeV at normal nuclear density. In the same
framework, the πKN structure was also studied in Ref. [443]. It was found that a shallower
potential than the point like treatment was obtained for this structure.

The medium effect of the Θ+ in the QCD sum rule framework was studied in Ref. [444].
The scalar and vector self-energies were estimated by the sum rule with the medium effect
included in the condensates [445]. The interpolating current was the same as that in Ref. [446],
and the sharp pole hypothesis was adopted in the medium. They found that the scalar self-
energy was positive and vector one was negative, which was originated from the existence of
the antiquark in the Θ+ interpolating field. The cancellation of scalar and vector terms led
to the moderate size attraction of the Θ+ in the medium.

Modification of Θ+ mass and width with respect to temperature was studied as well as the
density dependence [447]. They evaluated the self-energy atKN one loop level as in Ref. [437],
but with the modification of nucleon mass based on the NJL model. With ΘKN coupling,
pseudoscalar and pseudovector were used. In general, the modification was prominent in
positive parity case, and the density dependence of the width was rather large.

In Ref. [448], quark mean field model [449, 450] was applied to the Θ+ hypernuclei. The
framework was similar to the RMF approach [441], but the coupling constants of σ- and
ω-Θ were calculated within the quark mean field approach, which gave the different value for
gΘ
σ = (∂M∗

Θ/∂σ) from Eq. (3.8.1), reflecting the self-consistent equations. It was found in
Ref. [441] that the single particle energy was sensitive to this coupling constant. Furthermore,
in the QMF framework, since the Θ+ was constructed from five quarks in the ground state,
the parity of the Θ+ was negative, while it was not fixed in RMF. The Θ+ bound states were
calculated for 16

Θ O, 41
Θ Ca and 209

Θ Pb were calculated.
The K+-nucleus interaction was studied in Ref. [451], where the deviation from the impulse

approximation has been discussed for long time. The authors argued that the discrepancy
could be resolved by the kaon absorption via K+nN → Θ+N . The cross section of some
reactions for pentaquark production were estimated. An extended discussion can be found
in Ref. [452].

Kaon optical potential was studied in Ref. [453], based on the Jülich potential and including
the effect of the Θ+. The effect of the Θ+ due to the two-nucleon absorption KNN → Θ+N

was found to be important, which was derived from the two-meson coupling developed in
Ref. [413].

In Ref. [454] mass formula for the hypernuclei was derived from spin-flavor SU(6) symmetry.
The formula was used to predict the Θ+ hypernuclei.
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Table 3.4: In-medium Θ+ potential around ρ ∼ ρ0 (kF ∼ 270 MeV) found in several models.

JP V [MeV] model
Kim et al. [437] 1/2± −(a few) in-medium self-energy (KN)
Miller [438] 1/2+ −490 schematic q̄q interaction
Cabrera et al. [413] 1/2+ −60 to −120 in-medium self-energy (KN and KπN)
Zhong et al. [441] 1/2± −50 to −90 Relativistic Mean Field
Navarra et al. [444] 1/2− −40 to −90 QCD sum rule
Shen et al. [448] 1/2− −50 Quark Mean Field
Zhong et al. [443] 1/2− −37.5 Relativistic Mean Field (KπN structure)

In-medium properties of the Θ+ was studied in quark meson coupling model in Ref. [455]
for difference strange quark masses. The KN decay channel of the Θ+ was considered, which
gave a small correction to the width. The properties of the Ξ3/2 state in nuclear matter was
also studied in Ref. [456].

The obtained values for Θ+ potential are summarized in Table 3.4. It is interesting to note
that the potential becomes reasonably attractive when the coupling of Θ+ to the channels
other than KN are taken into account. The strength of potential is not very strong with KN
channel only. Therefore, strictly speaking, the strong attractive potential can be obtained
with some coupling constants that can not be determined directly from experiments. On
the other hand, the experimental observation of Θ+ hypernuclei imply the existence of the
coupling of Θ+ to various channels. Hence, the estimation of such coupling constants is
important for the study of in-medium properties of Θ+.

3.9 QCD sum rule approaches

In the QCD sum rule approach [457, 458, 459], the correlation function of an interpolating
operator can be calculated using the operator product expansion (OPE) in the deeply Eu-
clidean region, which is compared with the phenomenological parametrization. The two-point
correlation function can be written as

Π(p) = i

∫
d4xeipx〈 0 |T{η(x)η̄(0)}| 0 〉, (3.9.1)

where η(x) represents the interpolating field of the state of interest. This correlation function
is evaluated in phenomenological side and OPE side. Thus the properties of hadrons are
related with the QCD through vacuum condensates. The approach has been applied to the
baryon sector [460, 461, 462]. It is also possible to extract the quantities such as magnetic
moment and the coupling constants. One way is to introduce an external source field, and
the other way is to evaluate the three-point function.

There are some subtleness in the approach, such as the choice of the interpolating operator,
convergence of the OPE, value of higher dimensional condensates, dependence of the result
on Borel mass and threshold energy, and so on. In principle, these problems are common
with the study of the ordinary three-quark baryons. On the other hand, it has turned out to
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be important that there is a problem peculiar to the five-quark state, namely, the existence
of the meson-baryon continuum state in the correlator.

3.9.1 Mass of spin 1/2 Θ+ state

The pentaquark Θ(uudds̄) state was first studied with the QCD sum rule approach in
Ref. [463]. The colored NK type operator with I = 0 was used as interpolating field, as
well as the I = 1 and 2 operators. Taking the chiral even terms into account, sum rule was
obtained up to dimension (to be). All the masses of I = 0, 1, and 2 states appeared close to
1.5 GeV.

In Ref. [464], the uuddū states were examined in addition to Θ+, with the linear combina-
tion of two interpolating currents which were products of two scalar ud diquarks and products
of two pseudoscalar diquarks. Taking the chiral even terms, sum rule was derived up to linear
order to ms. The Θ+ state appeared at 1.55 GeV, while the uuddū state appeared at 1.44
GeV. Thus, the uuddū state was interpreted as the Roper resonance N(1440), as indicated
by the Jaffe-Wilczek model.

In the QCD sum rule approach, the parity projection was first performed in Ref. [446]
The projection is important since the two-point correlation function contains contributions
from both parity states. The authors used operator of the product of scalar and pseudoscalar
diquarks, and took chiral odd terms into account, in addition to the chiral even terms. The
contribution from chiral odd terms had opposite sign for the negative and positive parity
states, and therefore, the effect was essential for parity projection. The negative parity state
appeared at around 1.5 GeV, while for the positive parity state, the spectral weight became
negative.

Diquark clustering in the Θ+ was also studied in Ref. [465], but with a different interpo-
lating operator, which include a derivative in the field. The mass of Θ+ was obtained at
1.64 ± 0.15 GeV, and uuddū state at about 70 ± 50 MeV below the Θ+, which would be
identified as the N(1440).

The above approaches were criticized in Ref. [466], where the importance of two-hadron
reducible contribution was discussed. The problem is characteristic for the study of exotic
particles, such as Θ+, whose interpolating field can be decomposed into the product of color
singlet meson and singlet baryon. In this case, the correlation function contains propagation
of two particles without interaction, which was called two-hadron-reducible (2HR) part. It
was pointed out that the correlation functions in previous works [463, 464, 446] had included
large amount of the 2HR parts. Taking the correlation function in Ref. [446] as an exam-
ple, numerical calculation was performed, leading to the opposite conclusion of parity after
removing the 2HR contribution.

An analysis based on QCD sum rule was performed in Ref. [263] with a new operator of
KN type but with tensor diquark in N part. This operator had an advantage of not having
the 2HR contribution, because the tensor diquark had dldl or drdr quark components and
the nucleon operator had dldr. With sum rule up to dimension 13 operators, the mass of Θ+

was obtained about 1.6± 0.2 GeV, and parity was positive.
The problem of the KN scattering state was further considered in Refs. [467, 468]. The
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soft-kaon theorem was used in order to extract the KN contribution. The contribution from
KN state was found to be 10% in the sum rule, and the conclusion in Ref. [446] was again
considered to be valid.

Application of the finite energy sum rule to the Θ+ was performed in Ref. [469], where the
importance of finding Borel window was emphasized.

3.9.2 Studies for other pentaquarks

Here we summarize the QCD sum rule analyses for other pentaquarks.
The anti-charmed pentaquark state Θc was studied in Ref. [470] using the interpolating

operator used in Ref. [446] with replacement s̄ → c̄. They obtained the mass around 3.1
GeV, which was consistent with the H1 experiment [157]. The parity of the state turned out
to be positive, in contrast to the Θ+ case [446]. This was mainly due to the difference of the
treatment of the charm quark mass, which was kept finite. A more comprehensive analysis
can be found in Ref. [471], where the uudsc̄ states were studied as well. After subtracting the
DN continuum, a signal for stable uuddc̄ state with positive parity was found, where OPE
was convergent.

The Ξ−− state was also studied in the QCD sum rule approach [472], using two diquark
type interpolating currents analogous to those used in Refs. [464, 446]. The mass around
1.9 GeV was obtained from both currents. Although the mass was in agreement with the
experiment [145], some properties such as OPE convergence and pole dominance were different
from each other.

Doubly charged Θ++ state was studied in Ref. [473]. It was found that the J = 3/2 and
I = 1, negative parity state could exist at 1.5 ∼ 1.6 GeV. Since its decay into KN state
was strongly suppressed because it was in d wave. There was a possibility of the existence of
the JP = 3/2+ state, which appeared close to the 3/2− signal, but its decay width might be
broad, due to p-wave nature of the decay. Spin 3/2 states were further purchased in Ref. [474]
for I = 0 state as well. In addition to the previously obtained I = 1 negative parity state,
isoscalar state with JP = 3/2− was also found at slightly higher mass region: 1.5-1.7 GeV. It
was pointed out that the higher spin state appeared in the same energy region as the J = 1/2
states obtained by other groups.

In Ref. [475], finite energy sum rule was applied to the spin 3/2 pentaquarks. It was found
that the OPE convergence could take place only when the threshold parameter s0 was chosen
above 10 GeV2.

The sum rule was obtained up to dimension d = 13 operators in Ref. [476], including direct
instantons. The sum rule converged and the evidence was found for the positive parity state.

As noted by the authors in Refs. [469, 475] an important process of the QCD sum rule is
to find the Borel window, in which the sum rule is reliable.

3.9.3 Estimation of coupling constants

Using an external source field, or evaluating the three-point function, it is possible to extract
the information of the coupling constants in the QCD sum rule approach.
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In Ref. [477], magnetic moment of Θ+ was calculated within the QCD sum rule approach.
The interpolating field and correlator were calculated based on the mass sum rule developed
in Ref. [463]. Introducing the electromagnetic vertex, magnetic moment was extracted using
the light cone QCD sum rule, where the photon light cone distribution amplitude was used
as an input. The result was obtained as |µΘ+ | = (0.12± 0.06)µN . A different approach was
taken in Refs. [478, 479] to estimate the magnetic moment of the Θ+, obtaining |µΘ+ | =
(0.24± 0.02)µN [478] and |µΘ+ | = −(0.11± 0.02)µN [479].

The decay width of the Θ+ was studied by evaluating the three-point function to extract the
coupling constant in Ref. [480]. It was found that the width could be narrow for the positive
parity state, while the narrow width was difficult to reproduce for the negative parity state.
In Ref. [481], however, the width Γ < 4 MeV was obtained for the negative parity case.

3.10 Lattice QCD simulation

In this section, we overview the studies of pentaquark baryons with lattice QCD simulations.
Lattice QCD [482, 483] is a powerful tool to study the non-perturbative phenomena from
first principle of QCD. Discretizing the space and time, one can numerically evaluate the
expectation value of given operator by path-integral method in Euclidean space. It has also
been successful in the hadron spectroscopy. All the studies for the pentaquarks available so
far have been done in quenched approximation, in which the pair creation and annihilation
of quarks do not occur. In general, one should keep in mind that there should be some
quenching errors. Although the quenched simulation has been successfully reproducing the
spectrum of three-quark baryons, it is not trivial that the approximation also works for the
pentaquark state.

3.10.1 Mass of the pentaquark states

In this subsection, we review the lattice calculations for the masses of the pentaquark states,
which are extracted from the correlation function of some pentaquark interpolating opera-
tors. Pentaquark spectroscopy is complicated due to the presence of two-particle scattering
state below the resonance energy, which can couple to any operators even in the quenched
approximation. This is in contrast to the three-quark baryons on the lattice, which cannot
decay. Therefore, the discrimination of the signal from the scattering state is essential in
these studies. The details of the simulations in these studies are summarized in Table 3.5 for
J = 1/2 and in Table 3.6 for J = 3/2.

Csikor et al. [484] calculated the isoscalar and isovector states in both parity channels.
The interpolating operator used there was the colored NK type:

η0/1 = εabc[uT
aCγ5db]{ues̄eiγ5dc ∓ (u↔ d)}, (3.10.1)

which is the product of the N and K operators but with the color indices of N and K

are exchanged. The parity projection was performed by applying the projection operator to
the correlator, which was confirmed by independent method using periodic and antiperiodic
boundary conditions. Possibilities of scattering state was investigated by checking the volume
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Table 3.5: Summary of the simulation setup of lattice QCD studies for spin J = 1/2 pen-
taquark Θ+ states. We represent “Dw” for the domain-wall fermion, “LW” for the Luscher-
Weisz plaquette plus rectangle action, and “FLIC” for the fat-link irrelevant action.

Ref. gauge fermion size configs. lowest mπ

Csikor [484] Wilson Wilson (10-20)3 × (24-36) 90-726 420
Sasaki [485] Wilson Wilson 323 × 48 240 600
Chiu [486] Wilson Dw 203 × 40 100 440
Mathur [487] Iwasaki overlap (12,16)3 × 28 80 180
Ishii [488] Wilson clover 123 × 96 504 656
Lasscock [489] LW FLIC 203 × 40 200-340 464
Takahashi [490] Wilson Wilson (8-12)3 × 24 950-2900 440

Table 3.6: Summary of the simulation setup of lattice QCD studies for spin J = 3/2 pen-
taquark Θ+ states.

Ref. gauge fermion size configs. lowest mπ

Lasscock [491] LW FLIC 203 × 40 290 464
Ishii [492] Wilson clover 123 × 96 1000 658

dependence and 2×2 correlation matrix method with the NK type operator. Finally, they
concluded that the isospin 0 and negative parity state had the lowest mass, which was close
to the observed mass of Θ+.

In Ref. [485], the diquark-diquark type operator

Θ1
+ = εabcεaefεbgh(uT

e Cdf )(uT
g Cγ5dh)Cs̄T

c , (3.10.2)

was introduced to calculate the I = 0 pentaquark states in both parity channels. Notice that
the local operator with scalar and pseudoscalar diquarks was used, in contrast to the original
Jaffe-Wilczek model, which was the combination of two scalar diquarks with orbital angular
momentum l = 1. The lowest state was negative parity state, which located slightly above
the NK threshold. The positive parity state had much heavier mass and the assignment for
Θ(1540) was not possible. Therefore, the conclusion was that the parity of the observed state
should be negative. In this work, the anti-charmed pentaquark Θc(uuddc̄) was also studied.
The interpolating operator was the diquark type with replacement of s̄ by c̄. The lower state
was the negative parity state, and it appeared above the DN threshold.

Pentaquark states were studied by using the domain-wall fermion in Ref. [486]. This action
has the (extended) chiral symmetry in the continuum limit. Signals were found in both parity
channels. The state in negative parity was at 1424±57 MeV, being consistent with mK +mN .
Therefore, it was identified as the KN scattering state. On the other hand, the signal in
positive parity did not behave as any of possible scattering state, so they concluded that the
pentaquark state observed in experiment had positive parity.

The study in Ref. [487] used the chiral fermion action for I = 0, 1 states with parity P = ±.
The overlap fermion preserves exact chiral symmetry on the lattice, and allows one to work
at small quark masses mπ ∼ 180 MeV. The operator adopted in this study was the simple
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KN type operator:

χ∓1 = εabc
(
uTaCγ5d

b
)

[uc(s̄eγ5d
e)∓ {u↔ d}] . (3.10.3)

The mass of lowest-lying state was extracted by using the Bayesian fitting technique. The
calculation was done in two different size of lattices, and the volume dependence of the
spectral weights was studied, which could be used to distinguish a resonance from scattering
states. It was found that the lowest lying states in all channels showed the volume dependence
of the scattering state. Therefore, they concluded the non-observation of any states in these
channels.

In Ref. [488], the Θ was calculated in anisotropic lattice with diquark type operator (3.10.2).
In order to discriminate the resonance state from the scattering state, the authors developed
the hybrid boundary condition method, which used an artificial boundary condition in spatial
direction to raise up the threshold energy of the scattering state, reflecting the minimum
momenta allowed by the boundary condition. A signal in negative parity channel had lower
mass, but the state was identified as the scattering state by applying the hybrid boundary
condition. The positive parity state was much heavier than the observed mass of 1540 MeV.
Thus they concluded that there was no signal for the Θ(1540) in these channels.

The study in Ref. [489] adopted a different strategy to search for the resonance state from
others. They tried to find the lowest energy state in the pentaquark channel, and identify
the signal as the resonance state if it appeared below the lowest two particle threshold. This
is a sufficient condition to indicate a resonance, but the absence of binding cannot rigorously
exclude the possibility of a resonance. However, the known three-quark resonances have
appeared in that way, due to the large mass of pion. Whether the pentaquark signal should
be bound in large quark mass region or not was later examined in Ref. [493], and it was
found that the sufficiently large hyperfine interaction among quarks could bound the system
in this region. The correlation matrix method was used in order to reach the ground state.
They adopted the results with correlation matrix method only when the obtained mass was
lower than the one in standard analysis. Resonances in JP = 1/2 with both parity and
isospin I = 1 and 0 were searched for, finding no signal of binding of quarks. A comparison
of different studies were made for I(JP ) = 0(1/2−) channel. It was found that the results
in Refs. [484, 485, 487, 488, 489] for this channel agreed with each other, despite the use of
different interpolating fields, lattice size, lattice actions, and so on.

Takahashi et al. [490] performed 2× 2 correlation matrix calculation of NK- and colored
NK- type operators in four different sizes with good statistics. This setup enabled them
to separate the lowest- and 2nd-lowest-states. Volume dependence of both the energy and
spectral weight were studied in order to distinguish a resonance state from the scattering
states. The spatially spread “wall” operator was used as well as the standard point like
operator. It was found that the color variant point operators, NK, colored NK, and Dq,
gave a similar results, while larger difference was observed when the spatial structure of
operators were changed from point to wall. In the negative parity channel, the lowest-lying
state was found to be the NK scattering state, while the second-lowest state was difficult to
be regarded as the scattering state. In the positive parity channel, the diagonalization was
unstable so that the extraction of second-lowest state was not possible. The lowest state was
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identified as s-wave N∗K scattering state. Hence, the possible interpretation of low Θ+ was
the negative parity.

There are yet unpublished lattice studies in Refs. [494, 495, 496, 497, 498]. In Ref. [494], A
large correlation matrix was used to extract the resonance signal from the scattering states.
Detailed study of the volume dependence of the spectral weights were performed in Ref. [495].
In Ref. [496], the fixed point action was used for the pentaquark state. Complete set of 19
local operators was constructed in Ref. [497]. In Ref. [498], a chirally improved fermion was
adopted. The final results from these studies will bring more information on the pentaquark
search on the lattice.

All the above studies are for the spin 1/2 states. The spin 3/2 state of Θ has been
investigated in Refs. [491, 492]. The study in Ref. [491] was based on the calculation in
Ref. [489]. The authors used the operator of the product of vector K∗ meson and a nucleon.
The isospin 0 and 1 with both parity channels were calculated. They found an evidence
of a bound state in isoscalar channel of positive parity I(J)P = 0(3/2)+, which would be
a candidate of the Θ+ observed experimentally. However, the signal was not found in the
study with higher statistics [492], where two more operators were used in addition to that of
Ref. [491]. In Ref. [492], all the measured states were either found to be scattering states by
the hybrid boundary condition, or appeared at higher energy than the observed mass of the
Θ+.

In summary, the status of the pentaquark on the lattice is still controversial and inconclu-
sive. At a glance, the conclusions of different groups are diverging. However, for instance,
the effective mass plots by different groups agree with each other, in spite of the different
simulation details as shown in Ref. [489]. This indicates the consistency among the lattice
simulations. Therefore, the difference in the conclusions mainly comes from the interpretation
of the results. As stated by some authors, it is crucial to find an operator which has maximal
overlap with the desired signal and minimal overlap with competing unwanted states. For
the conclusive study, clear separation of the signal from the scattering state is indispensable,
using cross correlator method and investigation of the volume dependence of the energy and
spectral weight.

On the other hand, it is interesting to see whether lattice QCD predicts exotic states or
not, apart from the experimental evidences. For instance, the positive parity state for the
Θ+ have been not investigated very much, since it locates at higher energy than the observed
mass of 1540 MeV. Apparently, there is no reason to exclude the higher energy states in
QCD. Since lattice QCD is the method closest to the first principle, precise predictions for
the exotic states would stimulate the experimental searches.

3.10.2 Pentaquark potential

The static pentaquark potential was studied in Ref. [499] as an extension of the two- and
three-quark potentials by evaluating the Wilson loop for some geometries of five quarks.
Note that there are many possibilities for the geometry of five quarks including non-planar
structures. The authors studied the configurations for multi-Y shape flux tube, with spatially
twisted configurations. The obtained potential was well described by the sum of one gluon
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exchange Coulomb term plus minimal total length of the flux tube linking the five quarks.
The universality of the string tension σQQ̄ ∼ σ3Q ∼ σ5Q was also observed.

A study for the pentaquark potential can be found in Ref. [500]. Lattice data was compared
with the pentaquark potential V 5q

min and the sum of the meson and baryon potentials Vqqq+Vqq̄.
It was found that the transition from Vqqq+Vqq̄ to V 5q

min occurs as the separation of two diquark
cluster becomes larger.
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Baryon resonances in chiral unitary
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Chapter 4

Chiral unitary model and flavor
SU(3) breaking effect

In this chapter, we describe the framework of the chiral unitary model for the s-wave meson-
baryon scattering, which will be used in the following chapters 5, 6, and 7 for the study of
the properties of baryon resonances. We focus on the flavor SU(3) and JP = 1/2− baryon
resonances, which appear as quasi-bound states of the low lying octet mesons (π,K, η) and
octet baryons (N,Λ,Σ,Ξ). Since there are experimental data from K̄N and πN scatterings,
we study the S = −1 and S = 0 channels, in which the Λ(1405), Λ(1670), and N(1535)
resonances are dynamically generated.

The model successfully reproduces the properties of the resonances, but the subtraction
constants in loop integral need to be fitted. In order to clarify the meaning of the subtraction
constants, we introduce the flavor SU(3) breaking interaction based on the chiral perturbation
theory. It is found, however, that the observed SU(3) breaking in subtraction constants
cannot be explained by the present SU(3) breaking interactions. The role and importance of
the subtraction constants in the present framework are discussed. This topic is reported in
Refs. [6, 7].

After an introduction, the formulation of our model is presented in section 4.2. Numerical
results with a common subtraction constant as well as comparison with the results of previous
works are given in section 4.3. We then introduce the flavor SU(3) breaking effects in the
interaction kernel and present numerical results in section 4.5. Section 4.6 is devoted to the
summary and discussion. For completeness, we review several variants of this approach and
applications of the obtained amplitude to various subjects in section 4.7.

4.1 Introduction

A unified study of meson-baryon scattering in various channels is important to understand
hadron dynamics in low and intermediate energy regions from the viewpoint of QCD. In par-
ticular, the properties of excited baryons observed in meson-baryon scattering as resonances
have been investigated with great interest both theoretically and experimentally. At this time,
there are several established approaches to describe the properties of baryon resonances. A
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recent development in this field is the introduction of the chiral unitary model [4, 5], in which
the s-wave baryon resonances are dynamically generated in meson-baryon scattering, while
the conventional quark model approach describes the baryon resonances as three-quark states
with an excitation of the quarks.

The chiral unitary model is based on chiral perturbation theory (ChPT) [2, 3], which is
a low energy effective field theory based on the nonlinear realization of chiral symmetry of
underlying QCD. ChPT is very successful to reproduce the hadron properties in the low
energy region, because the low energy theorems of chiral symmetry are properly encoded
in the theory. On the other hand, the scattering amplitude obtained by ChPT violates the
unitarity of scattering theory at intermediate energy region, and the resonances appearing in
the hadron scattering cannot be generated by the perturbative calculation, unless they are
introduced as explicit fields.

Unitarity of scattering matrix ensures the conservation of probability, that should be main-
tained in physical amplitudes. There are several methods to recover the unitarity, for instance,
by solving the Bethe-Salpeter (BS) equation [501, 502]. Imposing the unitarity condition,
we can study the energy region higher than the region where the original perturbative cal-
culation is applicable, and the resonances are dynamically generated by non-perturbative
resummations.

The present framework is essentially based on Ref. [5], where s-wave scattering in meson-
baryon system with strangeness S = −1 was investigated by solving the BS equation in
coupled channels with interaction kernel derived from the lowest order chiral Lagrangian.
With only one parameter of cutoff, the invariant mass distribution of Λ(1405) resonance
was well reproduced, as well as the total cross sections and threshold branching ratio of
KN scattering. The model was systematically extended for all SU(3) sector [503, 504, 505],
providing Λ(1405), N(1535), Λ(1670), Σ(1620), and Ξ(1620).

Historically, the studies of the resonances in coupled channel approach started in 60’s. For
instance, the Λ(1405) resonance was previously obtained as a quasi-bound state of K̄N [506,
507, 508]. In the same way, N(1535) was considered as a quasi-bound state of KΣ [509]. In
these studies, phenomenological vector meson exchange was used as an interaction kernel,
which corresponds to the Weinberg-Tomozawa term in the lowest order chiral Lagrangian,
that we are going to employ.

Therefore, recent development of chiral unitary model provides a theoretical foundation for
the earlier works, based on the modern knowledge of chiral symmetry and QCD. Moreover,
it also reveals the novel structures of the resonances and complementary description to the
conventional three-quark pictures.

4.2 Formulation of chiral unitary model

In this section we review the chiral unitary model. We derive the basic interaction between
mesons and baryons from the lowest-order chiral Lagrangian, and we maintain the unitarity
of the S-matrix. There are several methods that recover the unitarity of the S-matrix. In
this work, we adopt the N/D method [510], because this method provides a general form of
the T-matrix using the dispersion relation and the analyticity of the inverse of the T-matrix.
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The N/D method has been applied to coupled channel meson-baryon scattering with chiral
interactions [511, 512]. It was found that the final form of the T-matrix obtained in the N/D
method is essentially equivalent to the result given in Ref. [5] derived from the BS equation
with on-shell factorization.

4.2.1 Kernel interaction

The chiral Lagrangian for baryons [48, 40, 513, 514] in the lowest-order of the chiral expansion
is given by A)

LB
1 = Tr

(
B̄(i/D −M0)B −D(B̄γµγ5{Aµ, B})− F (B̄γµγ5[Aµ, B])

)
. (4.2.1)

Here D and F are coupling constants. In Eq. (4.2.1), the covariant derivative Dµ, the vector
current Vµ, the axial vector current Aµ and the chiral field ξ are defined by

DµB =∂µB + i[Vµ, B],

Vµ =− i

2
(ξ†∂µξ + ξ∂µξ

†),

Aµ =− i

2
(ξ†∂µξ − ξ∂µξ

†),

ξ(Φ) = exp{iΦ/
√

2f},

where f is the meson decay constant. The meson and baryon fields are expressed in SU(3)
matrix form as

B =




1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ


 ,

Φ =




1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η


 .

In the Lagrangian (4.2.1), M0 denotes the common mass of the octet baryons. However, we
use the observed values of the baryon masses for the baryon propagator in the following cal-
culations. The mass splitting among the octet baryons in the Lagrangian level are introduced
consistently with the SU(3) breaking terms in section 4.5.

The s-wave interactions at tree level come from the Weinberg-Tomozawa (WT) interac-
tion [515, 516], which can be found in the vector coupling term in the covariant derivative,
by expanding chiral field ξ:

LWT = Tr
(
B̄iγµ 1

4f2

[
(Φ∂µΦ− ∂µΦΦ), B

])
.

A)We summarize the notation of chiral Lagrangians and and relation to other conventions in Appendix B.
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Figure 4.1: Definition of the momentum variables. The dashed and solid lines represent
mesons and baryons, respectively.

From this Lagrangian, the meson-baryon scattering amplitude at tree level is given by

V
(WT )
ij =− Cij

4f2
ū(pi)(/ki + /kj)u(pj)

=− Cij

4f2
(2
√
s−Mi −Mj)

√
Ei +Mi

2Mi

√
Ej +Mj

2Mj
, (4.2.2)

where the indices (i, j) denote the channels of the meson-baryon scattering, andMi and Ei are
the mass and the energy of the baryon in the channel i, respectively. These masses and factors
come from the spinors of the baryons, which are summarized in Appendix A. The kinematics
of this vertex are depicted in Fig. 4.1, and s in Eq. (4.2.2) is defined as s = (ki + pi)2. The
second line is obtained in the center of mass frame with nonrelativistic reduction, which is
demonstrated in Appendix B.3.2. The channels (i, j) are shown in Table D.1 of Appendix D.1.
The coefficient Cij is fixed by chiral symmetry, and the explicit form of Cij for relevant
channels is given in Tables D.4-D.8 in Appendix D.2.

Several comments on the interaction kernel are in order. First, there are two more terms
for the process at the same order in chiral counting, namely, the s- and u-channel baryon
exchange Born diagrams, which are derived from the axial vector coupling in Eq. (4.2.1).
Second, it seems reasonable to use the common mass M0 in the Lagrangian. However, in
the present framework, we adopt the physical masses, and Born terms are not included. The
Born terms are of the higher order in non-relativistic expansion, and they contribute to the
p-wave interaction dominantly. Indeed, formulation with the Born terms and common mass
M0 is studied in Ref. [512], and we have checked that the present results are qualitatively
similar to those in Ref. [512]. The smallness of the Born terms is also confirmed in Ref. [517].

4.2.2 Unitarization of the amplitude by the N/D method

In the coupled channel formulation, the T-matrix takes a matrix form. The unitarity condi-
tion is guaranteed by the optical theorem, i.e. −2Im[Tii] = TikρkT

∗
ki, which can be written

as

2Im[T−1
ii ] = ρi, (4.2.3)

where we denote the phase space ρi
B). With the condition (4.2.3) and the dispersion relation

for T−1
ii , we find a general form of the T-matrix using the N/D method. Following Ref. [512],

B)Note that the definition of ρi is twice of that in Ref. [512].
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we write

T−1
ij (
√
s) = δij

(
ãi(s0) +

s− s0
2π

∫ ∞

s+
i

ds′
ρi(s′)

(s′ − s)(s′ − s0)
)

+ T −1
ij , (4.2.4)

where s+i is the value of s at the threshold of the channel i, and s0 denotes the subtraction
point. The parameter ãi(s0) is the subtraction constant and is a free parameter within the
N/D method. The matrix Tij is determined by the chiral perturbation theory, as discussed
below. In the derivation of Eq. (4.2.4), we have ignored the left-hand cuts, which correspond
to u-channel diagrams of the crossing symmetry.

Let us assume that the intermediate states of the meson-baryon scattering are composed
of one octet meson and one octet baryon. We do not consider the case of multiple mesons
and excited baryons, such as ππN and π∆. In this case, the phase space ρi in Eq. (4.2.3) is
written as

ρi(s) =
2Mi|qi|
4π
√
s
, (4.2.5)

where qi is a three-momentum of the particle in the center of mass frame on the mass shell.
Eq. (4.2.5) can be checked by ρi =

∫
dΠi with dΠ given in Appendix A.3. Let us define the

G function by

Gi(
√
s) = −ãi(s0)− s− s0

2π

∫ ∞

s+
i

ds′
ρi(s′)

(s′ − s)(s′ − s0) ,

which takes the same form as, up to a constant, the ordinary meson-baryon loop function:

Gi(
√
s) = i

∫
d4q

(2π)4
2Mi

(P − q)2 −M2
i + iε

1
q2 −m2

i + iε
.

This integral should be regularized with an appropriate regularization scheme. In the dimen-
sional regularization, the integral is calculated as

Gi(
√
s) =

2Mi

(4π)2

{
ai(µ) + ln

M2
i

µ2
+
m2

i −M2
i + s

2s
ln
m2

i

M2
i

+
q̄i√
s

[
ln(s− (M2

i −m2
i ) + 2

√
sq̄i) + ln(s+ (M2

i −m2
i ) + 2

√
sq̄i)

− ln(−s+ (M2
i −m2

i ) + 2
√
sq̄i)− ln(−s− (M2

i −m2
i ) + 2

√
sq̄i)

]}
,

(4.2.6)

where µ is the regularization scale, ai = − (4π)2

2Mi
ãi is the subtraction constant, and q̄i is defined

by

q̄i(
√
s) =

√
(s− (Mi −mi)2)(s− (Mi +mi)2)

2
√
s

=
λ1/2(s,M2

i ,m
2
i )

2
√
s

,

with the Källen function λ1/2(x, y, z) = x2+y2+z2−2xy−2yz−2zx. Above the threshold of
channel i, this quantity corresponds to the magnitude of the three momentum |qi|, but this
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Figure 4.2: Diagrammatic interpretation of Eq. (4.2.8). Solid and dashed lines represent the
baryon and meson fields, respectively.

is also defined below the threshold, where it becomes pure imaginary. Detailed discussion on
the meson-baryon loop integrals can be found in Appendix C.1.2.

Now for the Tij , we adopt the matching scheme in Ref. [512]. This scheme provides
Tij = Vij , at the leading order O(p), which corresponds to the tree level approximation,
where only the Tij term survives in Eq. (4.2.4). It is shown that the identification T with
the amplitude by ChPT VChPT is true up to O(p2), but not valid for O(p3) or higher [512].
Hence, the resulting T-matrix is written as

T−1 = −G+ (V (WT ))−1, (4.2.7)

T = V (WT ) + V (WT )GT (4.2.8)

= V (WT ) + V (WT )GV (WT ) + V (WT )GV (WT )GV (WT ) + · · · ,

which can be solved by

T = (1− V (WT )G)−1V (WT ). (4.2.9)

This is the algebraic equation for the T-matrix, which corresponds to the integral BS equation.
The diagrammatic interpretation of Eq. (4.2.8) is displayed in Fig. 4.2.

The subtraction constants ai(µ) in Eq. (4.2.6), in principle, would be related to the counter
terms in the higher-order Lagrangian in the chiral perturbation theory. In previous works,
the subtraction constants ai were fitted either to the real part of the loop function in the
cutoff scheme qmax = 630 MeV (the S = −1 sector [503] ), or to the experimental data
for the πN(S = 0) scatterings [504]. In Table 4.1, we list the subtraction constants used
in Refs. [503] and [504]. In the table, in order to compare the channel dependence of the
subtraction constants, we take the regularization scale at µ = 630 MeV in the both channels.
Changing the regularization scale, the subtraction constants are simply shifted by a(µ′) =
a(µ) + 2 ln(µ′/µ). From this table, we see that the values of ai for S = 0 differ significantly
depending on the particle channels. It is also worth noting that the value a = −2 is called as
“natural size” together with µ = 630 MeV, since it corresponds to the qmax = 630 MeV with
the three momentum cutoff regularization [512]. This value is consistent with that often used
in single nucleon processes [518], and well reproduces the K̄N scattering [5]. The constants
for S = −1 are around this “natural size”, but the values for S = 0 channel deviates from
it. In the rest of this chapter, we refer to the parameters tabulated in Table 4.1 as “channel-
dependent ai”.
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Table 4.1: Channel-dependent subtraction constants ai used in Refs. [503] and [504] with the
regularization scale µ = 630 MeV. For the S = 0 channel, although the original values of ai

are obtained with µ = 1200 MeV, here we give the values of ai corresponding to µ = 630
MeV obtained using the relation a(µ′) = a(µ) + 2 ln(µ′/µ).

channel-dependent ai (S = −1)
channel K̄N πΣ πΛ ηΛ ηΣ KΞ
ai −1.84 −2.00 −1.83 −2.25 −2.38 −2.67

channel-dependent ai (S = 0)
channel πN ηN KΛ KΣ
ai 0.711 −1.09 0.311 −4.09

4.3 Calculation with a common subtraction constant

In this section, we present calculations in which a single subtraction constant a is commonly
used in the meson-baryon loop function (4.2.6) in order to investigate the role of the channel-
dependent ai in reproducing the observed cross sections and the resonance properties. The
formulae to calculate the total cross section, invariant mass distribution, and T-matrix am-
plitude are given by

σij =
1

4πs
|kj |
|ki|MiMjΣ̄Σ|Tij |2, (4.3.1)

dσ

dMI
∝ |kπΣ|Σ̄Σ|TπΣπΣ|2, (4.3.2)

T plot
ij = − 1

8π
√
s

√
|ki||kj |

√
2Mi

√
2MjTij , (4.3.3)

where Tij is the amplitude obtained in Eq. (4.2.9), Mi and ki are the mass of the baryon
and the three momentum in the center of mass system of channel i and Σ̄Σ stands for the
spin summation of fermions, which will be explained in Appendix A.2. A derivation of these
formulae can be found in Appendix A.4.1. Note that the formula (4.3.2) will be improved in
the next chapter, but the present form can be applicable for a qualitative discussion here.

4.3.1 Subtraction constants in the SU(3) limit

Let us first show that in the SU(3) limit, together with the constraint in the chiral unitary
model, there should be only one subtraction constant [6, 7, 519]. Under the SU(3) symmetry,
the scattering amplitudes of one octet meson and one octet baryon are composed of SU(3)
irreducible representations. The amplitudes satisfy the following scattering equation in each
representation:

T (D) = V (D) + V (D)G(D)T (D).

Here, D represents an SU(3) irreducible representation, D = 1,8,8,10,10, and 27. There-
fore, on one hand, the functions G, or equivalently the subtraction constants ai, are repre-
sented by diagonal matrices in the SU(3) basis. On the other hand, because G functions are
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given as loop integrals, as shown in Eq. (4.2.6), they are also diagonal in the particle basis
(π−p, ηΛ, · · · ). These observations imply that the subtraction constants are components of a
diagonal matrix both in SU(3) and in particle bases, which are transformed uniquely with a
unitary matrix of the SU(3) Clebsch-Gordan coefficients,

a(D) =
∑

k

UDkak(U †)kD, (4.3.4)

where the explicit form of the transformation matrix U can be found in Appendix D.1.
Eq. (4.3.4) is satisfied only when ak is proportional to unit matrix. Hence, the subtraction
constants are not dependent on the channel in the SU(3) limit.

In the following, we first discuss the S = −1 case, in which the subtraction constants ai

do not depend strongly on the channel, as shown in Table 4.1. Therefore, it is expected that
a calculation with a common value for a gives a good description if we choose a suitable
value. Next we study the S = 0 channel using a common subtraction constant. Here, we find
that common value a cannot simultaneously reproduce the resonance properties and the S11

amplitude in the low energy region.
In order to concentrate on the role of the subtraction constants and to deduce the channel

dependence, we make the following simplifications for the calculations of the S = −1 and
S = 0 channels:

• We use an averaged value for the meson decay constants, f = 1.15fπ = 106.95 MeV,
while in Ref. [504], physical values were taken as fπ = 93 MeV, fK = 1.22fπ, fη =
1.3fπ.

• We do not include the effect of vector meson exchanges and ππN channels to reproduce
the ∆(1620) resonance, which were considered in Ref. [504].

With these simplifications, the calculations in the S = −1 and S = 0 channels are based on
exactly the same formulation, and the differences exist in the flavor SU(3) coefficients Cij in
Eq. (4.2.2) and in the channel-dependent subtraction constants.

4.3.2 The S = −1 channel (K̄N scattering)

In the S = −1 channel, the subtraction constants ai obtained in Ref. [503] do not depend
strongly on the channel. In Ref. [512], a common value of a ∼ −2 was “naturally” obtained
from matching with the three-momentum cutoff regularization with qmax = 630 MeV. In
both works, the total cross sections of the K−p scattering and the mass distribution of the
πΣ channel with I = 0, where the Λ(1405) resonance is seen, were reproduced very well. In
Ref. [503], the Λ(1670) resonance was also obtained with the channel-dependent subtraction
constants, and its properties were investigated by analyzing the speed plots in the I = 0
channels.

Here we search for one common value a to be used in all channels for S = −1. In order to
fix this common value a, we use threshold properties of the K̄N scattering, which are well
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Table 4.2: Threshold branching ratios calculated with channel-dependent ai, common value
a = −1.96, and a = −1.59 with the SU(3) breaking interaction. The experimental values
were taken from Refs. [520] and [521].

γ Rc Rn

experiment 2.36± 0.04 0.664± 0.011 0.189± 0.015
channel-dependent ai 1.73 0.629 0.195

common value a 1.80 0.624 0.225
SU(3) breaking 2.19 0.623 0.179

observed in the branching ratios [520, 521]:

γ =
Γ(K−p→ π+Σ−)
Γ(K−p→ π−Σ+)

∼ 2.36± 0.04 ,

Rc =
Γ(K−p→ charged particles)

Γ(K−p→ all)
∼ 0.664± 0.011 ,

Rn =
Γ(K−p→ π0Λ)

Γ(K−p→ neutral particles)
∼ 0.189± 0.015 . (4.3.5)

After fitting, we find the optimal value a = −1.96, with which the threshold branching ratios
are obtained, as shown in Table 4.2. The result obtained using the common value a = −1.96
does not differ much from that obtained with channel-dependent values, and also the value
a = −1.96 is close to the averaged value of the channel-dependent subtraction constants ai,
namely ∼ −2.15. Therefore, the threshold properties are not sensitive to such a fine tuning
of the subtraction constants.

Using the common value a = −1.96, we calculate the total cross sections of the K−p
scattering (Fig. 4.3, solid curves), the T-matrix amplitude of the K̄N scattering with I = 0
((a) and (b) in Fig. 4.4, solid curves), and the mass distributions of the πΣ channel with
I = 0 ((c) in Fig. 4.4, solid curve), which is normalized according to Eq. (4.3.3). In Fig. 4.4,
experimental data indicates the Λ(1620) structure by the behavior of the T-matrix amplitude
(see subsection 4.4.1), while in t he invariant mass distributions of πΣ shows the resonant
peak of the Λ(1405). For comparison, we also plot the results obtained with the channel-
dependent ai from the calculation given in Ref. [503] in Figs. 4.3 and 4.4 as the dotted curves.
Both the Λ(1670) and Λ(1405) are well reproduced.

Here, we find that the present calculations with a = −1.96 give results that are slightly
different from those of the calculations with the channel-dependent ai in the total cross
sections and the πΣ mass distributions. Therefore, the Λ(1405) resonance is well reproduced
with the common value a = −1.96, which is consistent with the results in Ref. [512]. However,
the resonance Λ(1670) disappears when this common value a is used, as we see in the T-matrix
amplitude of K̄N → K̄N with I = 0 in Fig. 4.4. As pointed out in Ref. [503], the Λ(1670)
resonance structure is very sensitive to the value of aKΞ. Indeed, we have checked that the
Λ(1670) resonance is reproduced when we choose aKΞ ∼ −2.6 with the other ai unchanged,
i.e., at −1.96. In a recent publication, it was shown that the poles of Λ(1405) and Λ(1670)
are simultaneously reproduced by taking into account the approximate crossing symmetry
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Figure 4.3: Total cross sections of K−p scattering (S = −1) as functions of Plab, the three-
momentum of the initial K− in the laboratory frame. The dotted curve represent the results
obtained with the channel-dependent ai, the solid curves represent the results obtained with
the common value a = −1.96, and the dash-dotted curves represent the results obtained with
the common value a = −2.6. The open circles with error bars are experimental data taken
from Refs. [522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533].

without considering explicitly the channel dependence [536]. The inclusion of the crossing
symmetry is, however, beyond the scope of the present discussion.

If we choose a = −2.6 for all subtraction constants, the threshold branching ratios are
obtained as γ = 2.41, Rc = 0.596 and Rn = 0.759, and the agreement with the experimental
data of scattering observable becomes poor, as shown in Figs. 4.3 and 4.4. In particular, the
K−p → K̄0n cross section is underestimated, and also the resonance structure of Λ(1405)
disappears in the πΣ mass distribution ((c) in Fig. 4.4). As we change all subtraction con-
stants from a = −1.96 to a = −2.6 gradually, the position of the peak of Λ(1405) moves to
the lower energy side and finally disappears under the πΣ threshold. Therefore, using the
common value a ∼ −2 is essential to reproduce the resonance properties of Λ(1405) and the
total cross sections of the K−p scattering in the low energy region.
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Figure 4.4: Real (a) and imaginary (b) parts of the T-matrix amplitude of K̄N → K̄N with
I = 0 and the mass distributions (c) of the πΣ channel with I = 0. The dotted curves
represent the results obtained with the channel-dependent ai, the solid curves represent the
results obtained with the common value a = −1.96, and the dash-dotted curves represent
the results obtained with the common value a = −2.6. The open circles in (a) and (b) are
experimental data taken from Ref. [534], while the histogram in (c) represents experimental
data taken from Ref. [535].

4.3.3 The S = 0 channel (πN scattering)

In Ref. [504], the total cross sections of the π−p inelastic scattering and the resonance prop-
erties of the N(1535) were reproduced well by using channel-dependent ai. After the simplifi-
cation applied to f and inelastic channels, the agreement with the data is still acceptable, as
shown in Fig. 4.5 by the dotted curves, as long as channel-dependent ai are employed. In the
T-matrix elements of the πN scattering in the S11 channel (Fig. 4.6), we see a kink structure
around the energy

√
s ∼ 1500 MeV, which corresponds to the N(1535) resonance [504].

In the previous subsection, we obtained the common subtraction constant a = −1.96 with
which the K̄N total cross sections and the Λ(1405) properties are reproduced well. First,
we use this common value of a for the S = 0 channel. Shown in Figs. 4.5 and 4.6 by
the dash-dotted curves are the results with a = −1.96 for the total cross sections of the
π−p → π0η, K0Λ and K0Σ scatterings, and the S11 T-matrix amplitude of πN → πN . As
can be seen in Figs. 4.5 and 4.6, the results with a = −1.96 in the S = 0 channel are far from
the experimental data. In particular, in the π−p→ ηn cross section, the threshold behavior
disagrees with the experiment, and a resonance structure of N(1535) disappears. In addition,
as shown in Fig. 4.6, the T-matrix amplitude of the S11 channel is overestimated, and an
unexpected resonance has been generated near

√
s ∼ 1250 MeV.

Next, we search for a single optimal subtraction constant within the S = 0 channel, because
an unnecessary resonance is obtained with a = −1.96 at low energy. In order to avoid the
appearance of such an unphysical resonance, we determine the common subtraction constant
a so as to reproduce the observed data up to

√
s = 1400 MeV. The optimal value is found to

be a = 0.53. The calculated S11 amplitude as well as the total cross sections are plotted in
Figs. 4.5 and 4.6 by the solid curves. With this subtraction constant, the low energy behavior
of the S11 amplitude of the πN scattering (

√
s < 1400 MeV) is well reproduced. Therefore,
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Figure 4.5: Total cross sections of π−p scattering (S = 0) as functions of Plab, the three-
momentum of the initial π− in the laboratory frame. The dotted curves represent the results
obtained with channel-dependent ai, the dash-dotted curves represent the results obtained
with the common value a = −1.96, obtained for S = −1, and the solid curves represent the
results obtained with the common value a = 0.53. The open circles with error bars are the
experimental data taken from Refs. [537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547,
548, 549, 550, 551, 552, 553, 554, 555, 556].
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Figure 4.6: Real and imaginary parts of the S11 T-matrix amplitudes of πN → πN . The
dotted curves represent the results obtained with channel-dependent ai, the dash-dotted
curves represent the results obtained with the common value a = −1.96, obtained for S = −1,
and the solid curves show the results with the common value a = 0.53. The open circles with
error bars are experimental data taken from Ref. [557].

the scattering length is also reproduced. However, the N(1535) resonance structure is not
still generated. We have also checked that there is no pole in the scattering amplitudes in
the second Riemann sheet. Therefore, we conclude that in the S = 0 channel we cannot
reproduce simultaneously the N(1535) resonance and the S11 amplitude at low energy if a
single subtraction constant is used within the present approach.
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4.4 Resonances in the scattering amplitude

Let us look at the structure of the amplitude near the resonance in more detail. We show the
way to extract the information of the resonance from the scattering amplitude. We first study
the behavior of the T-matrix around the pole on the real axis. Then we perform the analytic
continuation of the variable

√
s, and search for poles in the complex z plane by calculating

the T-matrix on the second Riemann sheet. The residues of the poles are evaluated, in order
to estimate the coupling strength for each channel.

4.4.1 General behavior of the amplitude

When a baryon resonance is dynamically generated, the scattering amplitude close to the
resonance energy region can be expressed in terms of the Breit-Wigner amplitude plus non-
resonant background term. For an s-wave resonance with mass MR and total width ΓR, the
T-matrix amplitude is written as

−iTij(
√
s) = −igi

i√
s−MR + iΓR/2

(−igj)− iTBG
ij

Tij(
√
s) =

gigj√
s−MR + iΓR/2

+ TBG
ij , (4.4.1)

where the amplitude of the resonance R to channel i is defined by −itRi ≡ −igi, since it is in
an s wave. For resonances in higher partial waves, we can replace it by appropriate structure,
such as −itRi ≡ −igiσ · qi/f for p wave, and so on. Qualitative conclusions at

√
s = MR

does not change by this replacement. The non-resonant background term TBG
ij is assumed to

be slowly varying function of
√
s. The amplitude (4.4.1) indicates the existence of a pole in

the complex energy plane at

zR = MR − iΓR

2
.

In this way, through the Breit-Wigner term, the position of the pole zR tells us the mass MR

and the decay width ΓR of the corresponding resonance.
Let us discuss the property of the T-matrix amplitude on the real axis around the resonance

energy region. Eq. (4.4.1) can be written as

Tij(
√
s) = (

√
s−MR − iΓR/2)

gigj

(
√
s−MR)2 − (ΓR/2)2

+ TBG
ij ,

which imply that, if the background term TBG
ij is negligible, the amplitude becomes pure

imaginary at
√
s = MR. It is instructive to differentiate Tij(

√
s) in terms of

√
s, leading to

∂

∂
√
s
Tij(
√
s) = − gigj

(
√
s−MR + iΓR/2)2

+
∂

∂
√
s
TBG

ij

= − gigj

(
√
s−MR)2 − (ΓR/2)2 + iΓR(

√
s−MR)

+
∂

∂
√
s
TBG

ij

= −gigj(
√
s−MR)2 − (ΓR/2)2 − iΓR(

√
s−MR)

[(
√
s−MR)2 − (ΓR/2)2]2 − [ΓR(

√
s−MR)]2

+
∂

∂
√
s
TBG

ij ,
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Table 4.3: Features of the scattering amplitude at
√
s = MR. ∂ denotes the derivative in

terms of the total energy.

real error imaginary error
T 0 O(TBG) extreme O(∂TBG)
∂T extreme O(∂TBG) 0 O(∂2TBG)

which imply that ∂
∂
√

s
Tij(
√
s) becomes pure real at

√
s = MR, if the first derivative of the

background term is negligible. This also shows that Im[Tij ] has an extreme value at
√
s = MR,

since its derivative is zero. Hence, if the background term and its first derivative are negligible,
or in the other words, if the Breit-Wigner term is dominant, the T-matrix has the following
properties;

• Re[T ] becomes zero at
√
s = MR.

• Im[T ] has an extreme value at
√
s = MR.

As an example, in Fig. 4.4, we see that zero of the real part and extreme value of imaginary
part of dotted curves are around

√
s = 1670 MeV, which corresponds to the mass of the

Λ(1670) resonance.
Since the background term TBG

ij is assumed to be slowly varying function of
√
s compared

with the Breit-Wigner term, its first derivative can be negligible. However, it is not always
true that the background term itself is negligible. Therefore, in general, the zero of the real
part and the extreme value of the imaginary part might not coincide, as seen in, for instance,
Fig. 4.6, where the real part of the experimental amplitude is not zero although there is the
N(1535) resonance. This discrepancy is referred to as the background effects. In such a
case, taking derivative in terms of

√
s can help to determine the Breit-Wigner parameters,

since the energy dependence of the background term is expected to be small, and therefore
its derivative is small. It is straightforward to show the second derivative of the Tij becomes
pure imaginary, and therefore the real part of the ∂

∂
√

s
Tij is the extreme value. Hence, in

summary, the scattering amplitude shows the features shown in Table 4.3 at
√
s = MR.

4.4.2 Poles in the second Riemann sheet

As we mentioned, the Breit-Wigner amplitude (4.4.1) implies the existence of a pole at
zR = MR− iΓR/2 in complex z plane. However, causality requires the absence of poles in the
physical (first Riemann) sheet [558]. Therefore, the pole that corresponds to the resonance
will appear in the unphysical sheet, namely the second Riemann sheet. Let us examine
the existence of the pole by calculating the scattering amplitude numerically in the second
Riemann sheet of the complex energy plane. Here we use the amplitude with the channel
dependent subtraction constants, which gives a reasonable description of the resonances.
The definition of the amplitude in the complex plane and related issues are summarized in
Appendix C.1.2.

We plot the absolute value of the T-matrix amplitudes |T | of K̄N → K̄N with I = 0 in
Fig. 4.7 and of πN → πN with S in Fig. 4.8. In the S = −1 channel, around the energy

84



4.4. Resonances in the scattering amplitude

14001420
1440

1460
-20

-40

-60

-800.2

0.4

0.6

0.8
0.2

0.4

0.6

0.8

Λ(1405)

z=1429-14i

z=1397-73i

Re[z]

Im[z]

|T|

1660
16801700

1720
-20

-40

-60

-800.05

0.10

0.15

0.20

0.25

0.05

0.10

0.15

0.20

0.25

Λ(1670)

z=1690-22i

Re[z]

Im[z]

|T|

Figure 4.7: The absolute value of the scattering amplitude of K̄N → K̄N with I = 0 in the
complex z plane. The amplitudes are plotted in energy region close to the Λ(1405) resonance
(left) and the Λ(1670) resonance (right).

region of Λ(1405), we find two poles at

z1 = 1397− 73i, z2 = 1429− 14i. (4.4.2)

Notice that there are two poles around this energy region, and they construct a distorted
shape in the πΣ mass distribution (Fig. 4.4). The two-pole structure of the Λ(1405) will be
discussed in Chapter 5 in more detail. Around the energy region of Λ(1670), we also find a
pole at

z = 1690− 22i. (4.4.3)

The values in Eqs. (4.4.2) and (4.4.3) are slightly different from the values in Ref. [503],
because here we use f = 1.15× 93 MeV for the meson decay constant, while f = 1.123× 93
MeV is used in Ref. [503]. In the S = 0 channel, we find a pole at

z = 1496− 31i,

as shown in Fig. 4.8. This pole corresponds to the N(1535) resonance. The mass and width
extracted from the pole deviates from the nominal values. The difference can be reduced by
introducing vector meson exchange and ππN channel [504].

Next we calculate residues of the poles,

lim
z→zR

[(z − zR)Tij(z)] = lim
z→zR

[
(z − zR)

gigj

z − zR + (z − zR)TBG
ij

]

= gigj .

where zR = MR − iΓR/2. These values determine the coupling strengths gi and gj of the
resonance to meson-baryon states, which are well defined even if these states are closed in
the decay of the resonance. The values of |gi|2 are shown in Tables 4.4 and 4.5.
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Figure 4.8: The absolute value of the scattering amplitude of πN → πN with I = 1/2 in the
complex z plane. The amplitude is plotted in energy region close to the N(1535) resonance.

Table 4.4: Coupling strengths of the Λ(1405) and Λ(1670) resonances to meson-baryon chan-
nels. All channels are in I = 0. Around the Λ(1405) resonance, there are two poles z1 and
z2 (4.4.2).

zR |gK̄N |2 |gπΣ|2 |gηΛ|2 |gKΞ|2
Λ(1405) 1397− 73i 3.83 8.20 0.497 0.383

1429− 14i 6.57 1.88 1.74 0.100
Λ(1670) 1690− 22i 0.585 0.725 1.10 11.3

Table 4.5: Coupling strengths of the N(1535) resonance to meson-baryon channels. All
channels are in I = 1/2.

zR |gπN |2 |gηn|2 |gKΛ|2 |gKΣ|2
N(1535) 1496− 31i 0.895 2.65 2.11 8.61

From the Table 4.4, we see that the two poles for the Λ(1405) have different coupling
strengths. The pole at lower energy has a strong coupling to the πΣ channel, while the pole
at higher energy strongly couples to the K̄N channel. This fact will be important to study
the Λ(1405) structure in the next chapter. It is also seen that Λ(1670) strongly couples to
the KΞ channel, and this agrees with the fact that the position of the Λ(1670) structure is
dominated by aKΞ parameter (Fig. 4.4). Concerning the N(1535) resonance, the πN and
ηN channels are open at the energy of the resonance. A large coupling constant for the ηN
channel accounts for the decay branching ratio as large as that for πN channel, in spite of the
small phase space (pπN = 468 MeV, pηN = 186 MeV). This corresponds to the experimental
observation. It is worth noting that the channel which has the strongest coupling is KΣ,
indicating the interpretation of N(1535) as a KΣ bound state [559, 560].
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Figure 4.9: Threshold energies of meson-baryon scattering in the S = −1 and S = 0 chan-
nels. The dotted line in the middle represents the averaged energy of all the meson-baryon
thresholds.

4.5 Flavor SU(3) breaking interactions

As we have seen in the previous sections, the channel-dependent subtraction constants ai are
crucial in order to reproduce important features of experimental data in Refs. [503, 504]. In
this section, we consider SU(3) breaking terms of the chiral Lagrangian in order to see if the
channel dependence in the subtraction constants can be absorbed into those terms. In this
way, we are hoping that the number of free parameters can be reduced and that the origin
of the channel dependence can be clarified.

As we have discussed in subsection 4.3.1, the subtraction constants should not depend
on the scattering channel in the SU(3) limit [6, 519]. The SU(3) breaking should have a
significant effect on the observed quantities. This is expected from, for instance, the large de-
pendence of the threshold energies on the meson-baryon channels, as shown in Fig. 4.9. This
is particularly true for S = 0, in which case the lowest threshold energy of the πN channel
deviates considerably from the mean value. Furthermore, it was discussed in Ref. [561] that
the number of channel-dependent subtraction constants for all SU(3) channels exceeds the
number of available counter terms of chiral order p3. The SU(3) breaking effect was partly in-
cluded as the masses of particles in the previous formulation, but the kernel interaction (4.2.2)
was SU(3) symmetric. Here we consider the SU(3) breaking effect at the interaction level.

In this way, we expect that the parameters in previous treatments could be controlled
based on appropriate physical considerations. This would allow us to extend this method to
other channels with predictive power.

4.5.1 Flavor SU(3) breaking terms in the chiral Lagrangian

Here we introduce the flavor SU(3) breaking effects in the chiral Lagrangian by the quark
masses. They are obtained by assuming that the current quark mass matrix m is transformed
under the chiral transformation as m → RmL† and m† = m. Here we maintain isospin
symmetry, that is, m = diag(m̂, m̂,ms). Then, the SU(3) breaking terms are given uniquely
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up to order O(mq) as [48]

LSB =− Z0

2
Tr

(
dmB̄{ξmξ + ξ†mξ†, B}+ fmB̄[ξmξ + ξ†mξ†, B]

)

− Z1

2
Tr(B̄B)Tr(mU + U †m),

(4.5.1)

where fm + dm = 1 and U(Φ) = ξ2 = exp{i√2Φ/f}. In this Lagrangian, there are three free
parameters, Z0, Z1, fm/dm, which are determined by the baryon masses and the pion-nucleon
sigma term, as we see below. For the quark mass, we take ms/m̂ = 26, which is determined
in ChPT from the meson masses. According to the chiral counting rule, these quark mass
terms can be regarded as quantities of O(p2), if we assume the Gell-Mann–Oakes–Renner
(GMOR) relation [43], which implies mq ∝ m2

π. In this work, we take into account only the
terms in Eq. (4.5.1), and we do not consider other terms of order O(p2). We explain the
reason in the next subsection.

Expanding the Lagrangian (4.5.1) in powers of the meson fields, the zeroth order terms
contribute to the baryon mass splitting, which automatically satisfy the Gell-Mann–Okubo
(GMO) mass formula [562, 563]. By using the mass differences among the octet baryons, we
determine the parameters Z0 and fm/dm. The πN sigma term, which we take here to be
σπN = 36.4 MeV, is used to determine the parameter Z1. The choice of the σπN would be
consistent with the value in Ref. [564], taking into account the one-loop correction of about
+10 MeV [565]. The resulting parameters are given as

Z0 = 0.528, Z1 = 1.56, fm/dm = −0.31,

and M0 = 759 MeV in the Lagrangian (4.2.1), which is consistent with the recent analy-
sis [566].

The meson-baryon interaction Lagrangian with SU(3) breaking is obtained by picking up
the terms with two meson fields. We find

L(2)
SB =

Z0

4f2
Tr

(
dmB̄

{
(2ΦmΦ + Φ2m + mΦ2), B

}
+ fmB̄

[
(2ΦmΦ + Φ2m + mΦ2), B

])

+
Z1

f2
Tr(B̄B)Tr(mΦ2).

From this Lagrangian, the basic interaction is given by

V
(SB)
ij =− 1

f2

[
Z0

(
(Ad

ijdm +Af
ijfm)m̂+ (Bd

ijdm +Bf
ijfm)ms

)
+ Z1δijD

Z1
i

]

×
√
Ei +Mi

2Mi

√
Ej +Mj

2Mj
. (4.5.2)

The explicit forms of the coefficients Aij , Bij and Di are given in Tables D.9-D.14 in Ap-
pendix. These interaction terms are independent of the meson momenta, unlike the WT
interaction (4.2.2).

Adding Eq. (4.5.2) to Eq. (4.2.2) and substituting them into Eq. (4.2.8), we obtain the
unitarized T-matrix with the flavor SU(3) breaking effects as

T =
[
1−

(
V (WT ) + V (SB)

)
G

]−1 (
V (WT ) + V (SB)

)
. (4.5.3)
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Because we have already fitted all parameters in the chiral Lagrangian, our parameters in
the chiral unitary model with SU(3) breaking effects are only the subtraction constants.

4.5.2 Other SU(3) symmetric terms of O(p2)

In the chiral Lagrangian, there are other O(p2) terms symmetric in the SU(3) flavor in
addition to the above breaking terms, if we strictly follow the ordinary chiral counting rule
in powers of the pseudoscalar meson momentum p and the quark mass m, where the GMOR
relation fixes the ratio of m and p2. Indeed, it is known in chiral perturbation theory that at
O(p2), the πN scattering length is correctly obtained through a large cancellation between
the SU(3) breaking term and a symmetric term [567, 568], because the lowest-order, i.e. the
Weinberg-Tomozawa term, already provides a sufficiently good result. This would imply that
only the inclusion of the breaking term would be inconsistent with the cancellation.

However, in the present work, the symmetric terms are not taken into account for the
following reasons. 1) These terms are not responsible for the symmetry breaking which we
would like to study in this paper. 2) The purpose of the present work is to investigate baryon
resonances as dynamically generated objects. The symmetric terms of O(p2) may contain
information regarding resonances [514], as shown for the role of the ρ meson in π-π scatter-
ing [569]. The inclusion of some of the symmetric terms would introduce intrinsic properties
of genuine resonances that originate from the quarks. 3) As we will see below, the πN scatter-
ing length is qualitatively reproduced well without the O(p2) symmetric terms, because the
subtraction constants in the chiral unitary approach are adjustable parameters determined
by the threshold branching ratio Eq. (4.3.5). Strictly speaking, as argued in Ref. [512], the
subtraction constants appear as O(p3) quantities in the chiral expansion of the amplitude
obtained in the unitary approach, because they originate from the loop integral. Therefore,
they should not cancel the quark mass terms, which are counted as O(p2). Nevertheless,
we have room to interpret the subtraction constants as containing some of the O(p2) terms
that we do not take into account explicitly, as the parameter fitting is carried out for the full
amplitudes obtained in the unitarity resummation at the physical threshold, and, as we see
below, the threshold ratios are qualitatively reproduced much better than ChPT at lowest-
order. This implies that some partial contributions of the symmetric terms are taken into
account as constant values at the threshold.

In order to demonstrate the third point above, let us introduce another set of parameters
a′i that originate in the T −1

ij term in Eq. (4.2.4),

T−1
ij (
√
s) = δij

(
ãi(s0) +

s− s0
2π

∫ ∞

s+
i

ds′
ρi(s′)

(s′ − s)(s′ − s0)
)

+ a′iδij + T −1
ij . (4.5.4)

Here, we assume that the parameters a′i form a diagonal matrix in the channel space. Note
that the parameters a′i are introduced as quantities that are not related to the regularization
of the loop integral, but they should be determined by ChPT. Now the parameters a′i can
be related to the coefficients of the O(p2) symmetric Lagrangian. They are expressed as
combinations of the two meson momenta

p2
1, p2

2, p1 · p2, σµνp
µ
1p

ν
2 ,
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with subscripts 1 and 2 indicating the initial and final states, respectively. The last term
does not contribute to the s-wave amplitude, and due to the symmetry under interchanges
of 1 and 2 mesons, the coefficients of p2

1 and p2
2 should be the same. Therefore we have two

independent coefficients. It is appropriate to consider the complete set of p2 terms in the
interaction kernel in order to strictly maintain consistency with ChPT and to achieve better
agreement with the amplitudes. Once again, however, here we would like to study the SU(3)
breaking effect on the excited baryons as dynamically generated objects. In our procedure,
the SU(3) breaking is considered in the chiral perturbation theory completely, but without
properties of genuine resonances.

As seen in Eq. (4.5.4), the parameters a′i can be absorbed into the subtraction constants
ãi, as ãi → ãi + a′i. Furthermore, SU(3) symmetry reduces ãi to a single parameter, ã.
Hence, by adjusting ã, we can use one degree of freedom of a′ to fit the low energy data. The
introduction of a′ is equivalent to the replacement

G→ G+ a′.

Now, we expand the unitarized amplitude (4.5.3) in terms of the small meson momentum p,
assuming that a′ is an O(p0) quantity, as

T = V (WT ) + V (SB) + (V (WT ) + V (SB))(G+ a′)(V (WT ) + V (SB)) + · · ·
= V (WT )︸ ︷︷ ︸

p1

+V (SB) + V (WT )a′V (WT )
︸ ︷︷ ︸

p2

+V (WT )GV (WT ) + · · · .

The third term in the second line, V (WT )a′V (WT ), can play the role of an interaction derived
from the p2 Lagrangian and may cancel the V (SB) contribution to the scattering length when
we choose ã+ a′ such that the low energy amplitude is reproduced.

4.5.3 The S = −1 channel

Let us calculate the amplitude numerically. We follow the same procedures here as in the
calculations without the SU(3) breaking terms. First, we determine the common subtraction
constant a from the threshold branching ratios (4.3.5). The optimal value is found to be
a = −1.59 and the results for the branching ratios are shown in Table 4.2. With this
subtraction constant, the total cross sections of theK−p scattering, the πΣ mass distribution,
and the scattering amplitude of K̄N → K̄N with I = 0 are plotted in Figs. 4.10 and 4.11
by the dash-dotted curves. For comparison, we plot the results without SU(3) breaking by
the dotted curves. As seen in Fig. 4.10, for all the total cross sections, the inclusion of the
SU(3) breaking terms with the common value a causes the agreement with data to become
worse, although the threshold branching ratios are produced much better than in the previous
works.

In the πΣ mass distribution shown in Fig. 4.11 (the dash-dotted curve), a sharp peak is
seen, in obvious contradiction with the observed spectrum. This means that the important
resonance structure of Λ(1405) has been lost. However, we find two poles of the T-matrix
amplitude at z1 = 1389 − 135i and z2 = 1424 − 1.6i in the second Riemann sheet, which
should be compared with the previous results (4.4.2). These agree with the previous results
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Figure 4.10: Total cross sections of K−p scattering (S = −1) as functions of Plab, the
three-momentum of the initial K− in the laboratory frame. The dotted curves represent the
results obtained with the common value a = −1.96 without SU(3) breaking, the dash-dotted
curves represent the results obtained including the SU(3) breaking with the common value
a = −1.59, and the solid curves represent the results obtained including the SU(3) breaking
and the physical f with the common value a = −1.68. The open circles with error bars are
experimental data taken from Refs. [522, 523, 524, 525, 526, 527, 529, 530, 528, 531, 532, 533].

qualitatively. The inclusion of the SU(3) breaking terms does not change the conclusion of
two poles, although the positions of the poles change.

We also calculate the total cross sections and the πΣ mass distribution with the physical
values of the meson decay constants, fπ = 93 MeV, fK = 1.22fπ, fη = 1.3fπ. The calculated
results are represented in Figs. 4.10 and 4.11 by the solid curves. The optimal value of the
subtraction constants is a = −1.68, and with this value, the threshold branching ratios are
reproduced as γ = 2.35, Rc = 0.626 and Rn = 0.172. The SU(3) breaking effect on the
meson decay constants is not so large in the total cross sections. However, the shape of the
peak seen in the πΣ mass distribution becomes wider than that in the calculation with the
averaged meson decay constant.

Indeed, we again find two poles in the scattering amplitudes at z′1 = 1363 − 87i and
z′2 = 1424− 2.6i in the second Riemann sheet. Compared with the poles z1 and z2 obtained
in the above calculation, the position of the pole z′1 moves to the lower energy side and
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Figure 4.11: Real (a) and imaginary (b) parts of the T-matrix amplitude of K̄N → K̄N
with I = 0 and the mass distributions (c) of the πΣ channel with I = 0. The dotted curves
represent the results obtained with the common value a = −1.96 without SU(3) breaking,
the dash-dotted curves represent the results obtained including the SU(3) breaking with the
common value a = −1.59, and the solid curves represent the results obtained including the
SU(3) breaking and the physical f with the common value a = −1.68. The open circles in (a)
and (b) are the experimental data taken from Ref. [534], while the histogram in (c) represents
the experimental data taken from Ref. [535]

approaches the real axis. The reason why the position of z′1 changes can be understood as
follows. Because z1 has a large imaginary part, which implies a large width, and only the πΣ
channel is open in this energy region, the resonance represented by the pole z1 has a strong
coupling to the πΣ channel. This fact implies that the position of the pole z1 is sensitive to
the πΣ interaction. In the present calculation, the pion decay constant (93 MeV) is smaller
than the averaged value (106.95 MeV) used in the above calculation, so that the attractive
interaction of πΣ becomes stronger. This shifts the position of the pole za to the lower energy
side. Simultaneously, this suppresses the phase space of the decay of the resonance to the πΣ
channel, and hence, the position of the pole approaches the real axis.

4.5.4 The S = 0 channel

Here we present calculations in the S = 0 channel with the SU(3) breaking terms. With
a common value a ∼ −1.5, with which the threshold properties are reproduced well in the
S = −1 channel, we still obtain a large contribution in the S11 πN scattering amplitude at
low energy, as in the calculation without the SU(3) breaking effects. From this analysis, it is
found that the low energy behavior of the πN scattering cannot be reproduced as long as we
use the common value a ∼ −2, even if we introduce the SU(3) breaking effects.

In order to search for the optimal value of the common subtraction constant within the
S = 0 channel, we carried out a fitting of the T-matrix elements in the πN S11 channel in
the low energy region up to 1400 MeV. We find a = 1.33. The results including the SU(3)
breaking effects with a = 1.33 are represented as the dash-dotted curves in Figs. 4.12 and 4.13.
The results without SU(3) breaking are plotted by the dotted curves. As seen in Fig. 4.13,
the fitting is accurate up to

√
s ∼ 1400 MeV, while, however, the resonance structure does
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Figure 4.12: Total cross sections of π−p scattering (S = 0) as functions of Plab, the three-
momentum of the initial π− in the laboratory frame. The dotted curve represent the results
obtained with the common value a = 0.53 without SU(3) breaking, the dash-dotted curves
represent the results obtained including the SU(3) breaking interaction with the common
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not appear near energies of N(1535).
Finally, we present the calculations with the physical values of the meson decay constants

in Figs. 4.12 and 4.13 (solid curves). The optimal value of the common subtraction constant
is found to be a = 2.24. The results with the physical meson decay constants and a = 2.24 are
very similar to the results of the calculation with the averaged value of the decay constants
and a = 1.33. In this sense, the SU(3) breaking effect of the meson decay constant f is
absorbed into the change of the common subtraction constant a.

In closing this section, we conclude that even if we introduce the SU(3) breaking effects at
the Lagrangian level, the SU(3) breaking in the channel-dependent subtraction constants ai

cannot be absorbed into the SU(3) breaking effects in the fundamental interactions in both
the S = −1 and S = 0 channels.

4.6 Summary and discussion

In this chapter, we have presented the formulation of the chiral unitary model for meson-
baryon scattering, in which baryon resonances are generated dynamically in the non-perturbative
resummation. Numerical results are shown for the total cross sections and scattering ampli-
tudes in S = −1 and S = 0 channels. Then we introduce the SU(3) breaking interaction in
order to see the effect in the scattering observables.

First we have attempted to use a single common subtraction constant in order to describe
meson-baryon scattering and baryon resonance in a unified way. In the S = −1 channel,
a ∼ −2 is fixed from the threshold branching ratios of the K−p scattering. With this pa-
rameter value, the total cross sections of the K−p scattering are reproduced well, as well
as the mass distribution for the Λ(1405). However, in this case the Λ(1670) resonance can-
not be reproduced. The subtraction constant a ∼ −2 corresponds to qmax = 630 MeV in
the three-momentum cutoff regularization of the meson-baryon loop integral [512]. The el-
ementary interaction of the K̄N system is sufficiently attractive, and a resummation of the
coupled channel interactions causes the Λ(1405) resonance to appear at the correct position,
by imposing the unitarity condition and by using the natural value for the cutoff parameter.
Hence, the wave function of Λ(1405) is largely dominated by the meson-baryon component.

On the other hand, in the S = 0 channel, if one uses the natural value for the subtraction
constant, as in the S = −1 channel, the attraction of the meson-baryon interaction becomes so
strong that an unexpected resonance is generated near

√
s ∼ 1250 MeV. Therefore, a repulsive

component is necessary to reproduce the observed πN scattering. The fitted subtraction
constant using the low energy πN scattering amplitude is a ∼ 0.5. With this value, however,
the N(1535) resonance is not generated, while the agreement among the cross sections of
π−p→ ηn is rather good, due to the threshold effects.

The unitarized amplitudes are very sensitive to the attractive component of the inter-
action. The interaction terms of the ChPT alone do not explain all scattering amplitudes
simultaneously. Rather, they must be supplemented by subtraction constants in the chiral
unitary model to provide a reasonable description. For smaller a, the interaction becomes
more attractive, and for larger a, less attractive. For S = 0, we need to choose a ∼ 0.5 in
order to suppress the attraction from the πN interaction, in contrast to the situation for
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the natural value a ∼ −2 in the S = −1 channel. Therefore, it is not possible to reproduce
both the Λ(1405) resonance properties and the low energy πN scattering with a common
subtraction constant within the present framework.

Generally speaking, the chiral unitary approach is a powerful phenomenological method.
It can reproduce cross sections and generate s-wave resonances dynamically, once the sub-
traction constants are determined appropriately, using experimental data. However, it is not
straightforward to apply the method to channels for which there are not sufficient experi-
mental data, because they are needed to determine the subtraction constants.

Next, we introduced the flavor SU(3) breaking Lagrangian, with the hope that the channel
dependence in the subtraction constants would be absorbed into the coefficients in the chiral
Lagrangian. These coefficients can be determined from other observables, and hence they are
more controllable than the subtraction constants which have to be fitted to the experimental
data. However, the channel dependence of the subtraction constants in each strangeness
channel cannot be replaced by the SU(3) breaking Lagrangian, although we have exhausted
possible breaking sources up to order O(mq).

Therefore, in the present framework, where the Weinberg-Tomozawa term and symmetry
breaking terms are taken into account, a suitable choice of the channel-dependent subtraction
constants is essential. Theoretically, it would be very important to obtain a microscopic
explanation of the origin of the channel-dependent subtraction constants. One possibility is
to consider quark degrees of freedom, which can generate genuine resonance states. Another
possibility to solve this problem is to employ interaction terms up to order p3 with the
channel-independent renormalization scheme [570]. Further investigations should be carried
out in order to better understand the nature of baryon resonances.

4.7 Variants and applications

Before closing this chapter, let us review various approaches in chiral unitary models, focusing
on the differences among their results and formulations. Since all the different approaches
share the fundamental features of chiral symmetry and unitarity, qualitative results agree
with each other, but quantitative differences can be observed. It is also instructive to list
the applications of the chiral unitary models, for instance, to the reaction processes and to
in-medium properties of hadrons.

4.7.1 Meson-baryon scattering

In the modern context, the chiral unitary model for meson-baryon scattering was first de-
veloped by Kaiser, Siegel, and Weise [4, 559]. They solved the Lippman-Schwinger equation
with the interaction kernel deduced from the heavy baryon chiral Lagrangian up to O(p2)
terms. The low-energy constants in O(p2) Lagrangians were fitted to reproduce data. Reg-
ularization of the loop integral was done by the range parameters in the kernel, which were
channel dependent. The S = −1 [4] and S = 0 [559] scatterings were treated on the same
basis. In both cases, the scattering data and the resonance properties of the Λ(1405) and
N(1535) were well reproduced. These studies are complied in Ref. [560]. Further study with
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this model was performed [571, 517] in connection with the DEAR experiment [572] and
two-pole structure of the Λ(1405).

A different approach was taken in Ref. [5] by Oset and Ramos for the S = −1 scattering.
With the leading order Weinberg-Tomozawa (WT) term for the fundamental interaction,
Bethe-Salpeter (BS) equation was solved with on-shell factorization. The loop integral was
regularized by cutoff in the three-momentum, and total cross sections of the K−p scattering,
threshold branching ratios, and the Λ(1405) properties were well reproduced. They empha-
sized the importance of the full SU(3) channels, namely the inclusion of the channels with η or
Ξ, which had not been included in the previous studies. The S = −1 scattering was discussed
in the context of the N/D method [512], where the authors studied the relation between the
dimensional regularization and cutoff scheme adopted in Ref. [5]. For the kernel interaction,
they included all the terms of O(p), namely, the Born terms are included in addition to the
dominant WT term. By solving the scattering amplitude analytically, the structure in the
complex energy plane was first studied, finding two poles for the Λ(1405) in the chiral unitary
model. This approach has been extended in Ref. [573] (see also Refs. [574, 575]).

In this context, the amplitude in S = −1 channel was further studied in Ref. [503] with
the WT term and dimensional regularization. They round the Λ(1670) and the Σ(1620)
resonances in addition to the Λ(1405). This framework can be applied to other strangeness
sectors. For the S = 0 sector [504], the N(1535) and ∆(1620) were observed, and for the
S = −2 sector [505], a baryonic resonance was dynamically generated around the Ξ(1620)
resonance, whose spin and parity are not known. Therefore, they assigned JP = 1/2− for
the Ξ(1620) resonance. The p-wave interaction for the S = −1 scattering was studied in
Ref. [576], providing a reasonable description of the differential cross section and the Σ(1385)
resonance. In this study the pole of the Σ(1385) was introduced as an elementary field, and
it acquires the imaginary part by the non-perturbative resuumation. Scheme dependence of
the renormalization was studied in Ref. [577], where the dimensional regularization and form
factor scheme were compared. The dependence of the regularization scheme was found to
be minimized by choosing appropriate regularization parameters. The two-pole structure of
the Λ(1405) was studied based on the SU(3) symmetry in Ref. [519]. This subject will be
discussed in the next chapter.

A systematic calculation was performed in Refs. [578, 579, 570], including the chiral La-
grangians up to O(p3), which was further constrained by the large Nc counting. The au-
thors developed an renormalization scheme, which incorporated approximate crossing sym-
metry. Based on a similar framework, but with the lowest order WT term for the interaction,
S = 0,−1,−2 channels were studied with quark mass dependence of the poles for the reso-
nances [536]. In this scheme, two-pole structure for the Λ(1405) was qualitatively confirmed.
For the S = −2 channel, the Ξ(1690) resonance was found in addition to the Ξ(1620), re-
ported in Ref. [505]. An advantage in this approach was the systematized renormalization,
where no additional parameter was necessary.

Another approach was applied to S11 channel with S = 0 and reproduced the N(1535)
and the N(1650) resonances [580]. The interaction was the lowest order WT term, and BS
equation was solved relativistically. In the same formalism, S = −1 and I = 0 channel
was calculated [581]. Two poles for the Λ(1405) were found, but the lower one had a large
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imaginary part ∼ 250 MeV. This may have been caused by the fact that the K−p threshold
branching ratios (4.3.5) are not used for their fitting.

Apart from the above studies for the scattering of the pseudoscalar octet mesons and octet
baryons of the ground states, several studies for the scattering between other mesons and
baryons were performed.

The scattering between pseudoscalar 8 meson and 10 baryon with JP = 3/2+ via the
WT interaction was studied in Ref. [561] along the same line with the model in Ref. [536].
The generated resonances were identified as experimentally known JP = 3/2− particles. The
8-10 scattering was also studied [415, 414] with the same formulation in Refs. [5, 503]. This
model will be used in chapter 7 and we will explain it later.

The application to the charm sector was performed [582] in the scattering of the pseu-
doscalar mesons with the ground state heavy baryons based on Ref. [536]. The heavy baryons
were in 3 and 6 representations of flavor SU(3), and the WT interaction was used for the
kernel. Several charmed resonances were reproduced.

4.7.2 Applications

The scattering amplitudes obtained in the above studies can be applied to the production
reactions, calculation for the coupling constants of the resonance, and hadron properties in
nuclear matter.

In Ref. [560], coupling to the photons were introduced, and the photoproductions for η
mesons and strangeness productions were studied in comparison with existing data. Based
on the model [570], kaon photoproductions with the Λ(1405) and the Σ(1385) were stud-
ied [583]. The models in Ref. [5, 503] were applied to various reactions such as γp →
K+Λ(1405) [584], K−p → Λ(1405)γ [585], π−p → K0Λ(1405) [8], γp → K∗Λ(1405) [11],
and K−p → π0Λ(1405) [586]. These works can be used to study the two-pole structure of
the Λ(1405) in experiments.

Using the amplitudes obtained in the chiral unitary model, it is possible to extract the cou-
pling constant of the resonance to various channels by attaching an external line. Based on
the model in Ref. [5], coupling constants for the N∗N∗π0 and N∗N∗η were calculated [587].
Magnetic moments of Λ(1405) and Λ(1670) were evaluated in Ref. [588] based on the ampli-
tude obtained in Ref. [503]. In the same way, the magnetic moments of the N(1535) were
studied in Ref. [13], which will be discussed in chapter 6.

In a recent paper, gauge invariance of the unitarized amplitude was studied [589]. It was
shown that the photon field should be coupled not only to the external legs and the interaction
kernel, but also to the all possible vertices in the resummation, in order to maintain the gauge
invariance.

Low-energy K̄N interaction in nuclear matter was studied in the model of Ref. [4] with
Pauli blocking, Fermi motion, and binding effects [590]. A strong in-medium modification for
the K̄N interaction was observed and the mass of the Λ(1405) increased as the density was
increased. In further analysis for K and η in medium [591], the N(1535) was predicted to
survive in the nuclear matter, unlike the Λ(1405) which dissolves. However, the importance
of the self-consistent treatment was pointed out [592], which lead to the Λ(1405) dissolved
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even faster, without changing the position.
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Chapter 5

Structure of Λ(1405) and production
reactions

In this chapter, we discuss the reaction mechanisms that lead to the Λ(1405) production
using the chiral unitary model. In the chiral unitary model, it is found that:

• there are two poles with S = −1 and I = 0 around the energy region of 1400 MeV, and

• they couple to the πΣ and K̄N channels with different strengths.

These conclusions do not depend on the details of the model constructions. Here we inves-
tigate reaction processes for the Λ(1405) production in order to provide a way to clarify the
two-pole structure experimentally.

First, we study the π−p → K0πΣ reaction (section 5.2). In this reaction, we find two
mechanisms which eventually filter each one of the resonances. The combination of the
two mechanisms leads to a shape of the invariant mass distribution compatible with the
experimental measurements. It turns out that this reaction is dominated by the contribution
from the first pole, which locates at lower energy side and couples strongly to the πΣ channel.
This topic is reported in Refs. [8, 9, 10].

Next, the photo-induced K∗ vector meson production (γp → K∗Λ(1405) → KπMB) is
investigated in section 5.3. From experimental point of view, this reaction has an advantage
to suppress the background contribution by using the polarized photon beam. In addition,
this reaction is particularly suited to the isolation of the pole at higher energy region, which
strongly couples to the K̄N channel. We obtain the mass distribution of the Λ(1405) peaking
at 1420 MeV. Combined with the previous reaction π−p→ K0πΣ which favors the other pole,
this detailed study will reveal a novel structure of the Λ(1405) state. The result is presented
in Refs. [11, 12]. Finally, we summarize this chapter and recent progress in this fields in
section 5.4.

5.1 Introduction : two-pole structure

There is a long-standing problem on the interpretation of the Λ(1405) resonance. The Λ(1405)
was predicted through the analysis of the K−p scattering data [593], which was later con-
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Figure 5.1: Schematic view of the two-pole structure.

firmed experimentally in Ref. [594]. It is known to be difficult to describe the Λ(1405) as
a three-quark state within a naive constituent quark model [329], because of its light mass.
Rather, it has been suggested to regard the Λ(1405) as a quasi-bound K̄N state which
naturally appears in a coupled channel meson-baryon scattering close to the K̄N thresh-
old [506, 507, 508]. These facts may imply that the Λ(1405) state is largely dominated by
five-quark component.

In recent years, chiral unitary models which implement strong s-wave meson-baryon in-
teractions have been showing that some of the 1/2− resonances—including the Λ(1405)—are
indeed well described by the coupled channel scattering approach. The use of the chiral
Lagrangians has provided a systematic approach to face the meson-baryon interaction based
on the chiral symmetry of QCD.

These models reveal an interesting structure of the Λ(1405) resonance; there are two poles,
rather than one, in the region of the Λ(1405). The existence of two poles was first reported in
the context of the cloudy bag model [595]. Recent analysis of chiral dynamics has confirmed
the structure, and further investigation has been performed for the origin of these poles.
Confirmation of this picture is important in order to understand better the non-perturbative
dynamics of QCD.

Taking the model in Ref. [503], we find two poles at [519]

z1 = 1390− 66i MeV, z2 = 1426− 16i MeV, (5.1.1)

both of which have strangeness S = −1 and isospin I = 0. Despite two poles, one observe
a single bump in the πΣ mass distribution, which consists of the superposition of the two
contributions. The former at lower energy and with a wider width z1 couples dominantly to
πΣ channels, while the latter at higher energy with a narrower width z2 couples dominantly
to K̄N channels. This is schematically depicted in Fig. 5.1. Note that the positions of the
poles slightly deviate from the one obtained in the previous chapter (Eq. (4.4.2)), because of
the difference of the choice of the subtraction constants. Similarly, the quantitative values
for the poles are different depending on the model set up, but all the model based on the
chiral unitary approach agree qualitatively.

A clarification of this interesting result has been made in Ref. [519] where the two Λ(1405)
states have been interpreted in the following way. They calculated the meson-baryon scatter-
ing amplitude in the SU(3) limit, and introduced gradually the SU(3) breaking effects coming
from the particle masses and subtraction constants. In the SU(3) limit, the meson-baryon
scattering amplitudes can be decomposed into channels in SU(3) irreducible representations.
The Weinberg-Tomozawa term, which is SU(3) invariant and diagonal in SU(3) channels,
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provides the strength of the interaction

Vαβ = diag(6, 3, 3, 0, 0, −2), (5.1.2)

for α = 1,8s,8a,10,10, and 27. This shows that there are attractive interactions for 1,8s,

and 8a representations, which leads to a bound state for each channel. Two of them from
8s and 8a are degenerate, and one pole from the singlet locates at lower energy, because
of the interaction strengths. On the other hand, Eq. (5.1.2) indicates the nonexistence of
bound states in channels with exotic flavors 10, and 27, at least for the s-wave meson-baryon
scattering in the SU(3) limit.

In the S = −1 and I = 0 channel which consists of α = 1,8s,8a, and 27, three bound states
are observed in the SU(3) limit. The positions of poles change as the SU(3) breaking effects
are switched on, and show trajectories in the complex energy plane [519]. The singlet pole
and one of the octet poles move to the Λ(1405) energy region, producing only one apparent
bump in the spectrum. The other octet pole moves to the higher energy region, making
the Λ(1670) structure. In this sense, the appearance of two poles for the Λ(1405) would be
natural, based on attractions in three channels and two established resonances Λ(1405) and
Λ(1670) at low energy. However, it should be noted that the SU(3) symmetry is not exact in
physical world, and a state is the mixture of SU(3) representations. Some of the poles may
disappear during the extrapolation to the physical world [519].

Since both the poles have the same quantum numbers, it seems difficult to confirm the
two-pole structure in experiments. However, if the two resonances couple very differently to
the πΣ and K̄N (or any other) states, different reactions can give more weight to one or
the other resonance leading to different shapes in the πΣ mass distribution. This reopens a
problem since the shape of the Λ(1405) resonance from the πΣ mass distribution was formerly
assumed to be an intrinsic property of the resonance and hence independent of the reaction
used to produce it. For instance, in previous works, the πΣ mass distribution was calculated
assuming

dσ

dMI
= C|tπΣ→πΣ|2pcm, (5.1.3)

with pcm the three momentum of the particle in the πΣ rest frame. In practice, however, if
one bears in mind that the Λ(1405) resonance is built up from the multiple scattering of the
coupled channels, K̄N , πΣ, ηΛ, KΞ, one can produce the resonance first by producing any
of these channels and then having final state interaction leading to the final πΣ state. Hence,
instead of Eq. (5.1.3), we should rather have

dσ

dMI
= |

∑

i

Citi→πΣ|2pcm, (5.1.4)

with i standing for any of the coupled channels, and the coefficients Ci will depend upon
the particular reaction, when there are two poles with different coupling strengths to each
channel i [519].

If there were only one state for Λ(1405), Eqs. (5.1.4) and (5.1.3) would give the same result.
This means that the peak position of a resonance seen in the invariant mass distribution does
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Chapter 5. Structure of Λ(1405) and production reactions

not depends on the reaction to produce it (up to the interference effect with backgrounds).
It should be noted that even if there are two poles, we obtain the same mass distribution
for different reactions, when the two poles have exactly the same coupling strengths to the
meson-baryon channels. The important thing in the present problem is not only the existence
of two poles in the Λ(1405) energy region, but also the different coupling strengths of these
resonances to the meson-baron channels.

Therefore, the mass distribution develops one or another shape depending on the coef-
ficients Ci. The fact that this distribution follows Eq. (5.1.4) rather than Eq. (5.1.3), was
already pointed out in Ref. [512]. However, no attempt was performed to calculate the Ci

coefficients, but rather they were fitted to the data to obtain the experimental shape of the
Λ(1405) resonance. However, it is possible to evaluate the Ci coefficients by calculating the
reaction explicitly, as in Refs. [584, 585] and in the following studies.

In fact, the different shapes of the mass distribution were observed in the γp→ K+Λ(1405)
reaction [584] and K−p → Λ(1405)γ reaction [585], which results in a πΣ mass distribution
narrower than the nominal one with the peak position shifted by about 20 MeV to higher
energies.

In this chapter, we study the π−p→ K0πΣ reaction and the γp→ K∗Λ(1405)→ KπMB

reaction. The former will turn to be particularly selective of the first pole z1, while the latter
prefers the second pole z2. Combining these two reactions, we can reveal the two poles really
exist in the nominated resonance region.

5.2 The π−p→ K0πΣ reaction

The aim of the present work is to study the π−p → K0πΣ reaction, from which the ex-
perimental data of the Λ(1405) resonance are usually extracted [543]. Another source of
experimental information for the Λ(1405) spectrum comes from the K−p → Σ+(1660)π−

reaction followed by Σ+(1660) → Λ(1405)π+, Λ(1405) → πΣ [535]. Here we would like to
investigate the dynamics of the π−p → K0πΣ reaction, where the Λ(1405) is seen in the
invariant mass spectrum of πΣ state, and calculate the Ci coefficients entering Eq. (5.1.4)
which determine the shape of the Λ(1405) resonance.

In the next subsection, we present the mechanisms of the π−p→ K0πΣ reaction as an anal-
ogy of the model for the πN → ππN reaction based on the effective chiral Lagrangians [596].
In subsection 5.2.2, we explain the on-shell factorization, which is used to extract the mo-
mentum dependence out of the loop integral. The expressions of the resulting amplitudes are
given in subsection 5.2.3 together with the correction factors. The numerical results with this
model is shown in subsection 5.2.4, and in subsection 5.2.5, we introduce the contribution
of a N∗ resonance excited in the s channel. Combining the two mechanisms, we obtain a
reasonable description for the experiments which is shown in subsection 5.2.6. Summary and
conclusions are shown in the last subsection.

102



5.2. The π−p→ K0πΣ reaction

��� ��� � �

�	�
� � � � �

�

 � � �

��� � ��� � � �

Figure 5.2: Kinematics of the π−p → K0MB reaction. For the threshold production of K0

and Λ(1405), the three momentum kout is negligible.

5.2.1 Construction of the chiral amplitude

Here we construct a model for the π−p→ K0πΣ reaction. Kinematics of this reaction is de-
picted in Fig. 5.2. We consider the reaction at energies close to threshold for the K0Λ(1405)
production, i.e., a total center of mass energy

√
s ∼ 2 GeV, or equivalently a three momen-

tum of the initial pion pπ ∼ 1.7 GeV in the Laboratory frame. This means that the three
momentum of the final kaon (kout) is negligible. Details of this kinematics are presented in
Appendix A.3.3.

We first present the interaction Lagrangians that we use in the following calculations.
These terms are derived from the chiral Lagrangians, which are summarized in Appendix B
together with the definition of the meson octet field Φ and baryon octet field B. The meson-
meson interaction takes on the form

LM(4)
2 =

1
12f2

Tr
(
(∂µΦΦ− Φ∂µΦ)2

)
+B0Tr

(
mΦ4

)
, (5.2.1)

where f is the meson decay constant and m is the quark mass matrix m = diag(m̂, m̂,ms).
These terms are of the order of O(p2). Similarly, from the lowest order meson-baryon La-
grangian, s-wave meson-baryon interaction is obtained as

LWT = Tr
(
B̄iγµ 1

4f2

[
(Φ∂µΦ− ∂µΦΦ), B

])
, (5.2.2)

which will provide a kernel interaction of the chiral unitary model. We derive the meson-
baryon Yukawa interaction from the same Lagrangian as

LYukawa = − 1√
2f

Tr
(
D(B̄γµγ5{∂µΦ, B}) + F (B̄γµγ5[∂µΦ, B])

)
, (5.2.3)

and the MMMBB (three meson-two baryon) contact interaction as

LB(3)
1 =

1
12
√

2f3
Tr

(
D(B̄γµγ5{(∂µΦ(Φ2)− 2Φ∂µΦ(Φ) + Φ2∂µΦ), B})

+ F (B̄γµγ5[(∂µΦ(Φ2)− 2Φ∂µΦ(Φ) + Φ2∂µΦ), B])
)
.

(5.2.4)

The strengths of the F and D coupling constants are fixed as F = 0.51, D = 0.75. The
Lagrangians of the chiral perturbation theory are summarized in Appendix B.1.
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Figure 5.3: Diagrams entering the production of the Λ(1405) in the π−p→ K0MB → K0πΣ.
In the figure, M and B stand for the meson and baryon of the 10 possible coupled channels.
The Λ(1405) resonance is dynamically generated by the final state interaction of M and B
(open blob). The initial process (hatched blob) will be given in Fig. 5.4.
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Figure 5.4: Basic terms entering the threshold production of π−p → K0MB in analogy of
πN → ππN . (a) : meson pole term, (b) contact term.

Now we describe the formulation for the present reaction. Formally, we can separate the
process into two parts as shown in Fig. 5.3. The first one (hatched blob) which involves tree
level π−p→ K0MB amplitudes, and a second part (open blob) which involves the final state
interaction MB → πΣ, which eventually generates a resonance if kinematical and dynamical
conditions allow for it. For the latter one, we produce dynamically the Λ(1405) via the
final state interaction, which is obtained by solving the Bethe-Salpeter equation in coupled
channels in the chiral unitary model. As explained in the previous chapter, the meson-baryon
scattering amplitude tChU is given by

tChU = [1− V G]−1V,

where the interaction kernel V and loop integral G are given in Eqs. (4.2.2) and (4.2.6),
respectively. The kernel V obtained from the lowest order chiral Lagrangians of Eq. (5.2.2).
The coupled channels appearing in this problem are K−p, K̄0n, π0Λ, π0Σ0, ηΛ, ηΣ0, π+Σ−,
π−Σ+, K+Ξ−, K0Ξ0. In the following, the meson-baryon channels are numbered according
to this ordering. Concerning the initial process, we extrapolate the result for the πN → ππN

reaction [596]. The hatched blob in Fig. 5.3 can be expressed by the sum of meson pole terms
and contact terms as shown in Fig. 5.4.
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Figure 5.5: One loop functions for MB →MMB.

5.2.2 On-shell factorization

One interesting observation in Ref. [5] is that the V amplitudes can be factorized on-shell (as
a function of s) inside the meson-baryon loops appearing in Fig. 5.3. In the present case there
is also an on-shell factorization for the initial process π−p → K0MB as we discuss briefly.
This process is then followed by the final state interaction, shown by the open blob.

For that purpose, let us consider the one loop diagram of Fig. 5.5 (a). In the following, we
first show the factorization of the meson-meson amplitude with the momentum q on-shell,
then show the cancellation of the off-shell part of the meson-meson amplitude associated to
the momentum kin−kout− q. With these arguments, the on-shell factorization of the meson-
baryon loops [5] can be applied to the present initial process, and we can calculate the whole
amplitude by evaluating the initial process at the tree level, separated from the subsequent
meson-baryon loops.

Let us start with showing that the meson-meson amplitude factorizes in Fig. 5.5 (a) with
the momentum q on-shell. The s-wave meson-meson amplitudes from the chiral Lagrangians
at lowest order have the form [597]

tMM = as+
∑

i

bim
2
i +

∑

i

βi(q2i −m2
i ),

where the term with β gives the off-shell extrapolation of the amplitude. If we take just this
off-shell part for the meson of momentum q in Fig. 5.5 (a), the loop function reads as

∫
d4q

(2π)4
(q2−m2)

1
q2 −m2

Dπ(kin−kout−q)GN (pin+kin−kout−q)σ ·(kin−kout−q), (5.2.5)

using the non relativistic form (σ ·p) for the MBB vertex, which will be improved later on to
account for relativistic corrections. One should note that in Eq. (5.2.5), the off-shell part of
the meson-meson amplitude cancels the meson propagator and leads to a contracted diagram
of the type of Fig. 5.5 (b). On the other hand, it is interesting to note that genuine diagrams
of the type of Fig. 5.5 (b) appear from the consideration of the BBMMMM terms that
come from an expansion in the meson fields of the chiral Lagrangian. These terms should be
added for consistency. However, by changing q to the p variable of Fig. 5.5 (b) in the loop
functions and realizing that the dominant term in the γµ∂µ structure of the BBMMMM

vertex comes from the γ0∂0 component (and hence no three momentum dependence), the
loop functions of Fig. 5.5 vanish at this order (corrections coming at order O(1/2M)).
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There is also a cancellation of the off-shell part of the meson-meson amplitude for the meson
with momentum kin−kout−q in Fig. 5.5 (a). It appears already at tree level, but it comes from
an exact cancellation between the off-shell part of the meson pole term and the contact term.
This fact justifies the attempt to find out the on-shell ππ scattering amplitude from analysis
of the πN → ππN data omitting the contact term [598], except for the contribution of other
terms in the process [596]. This off-shell cancellation found here is important conceptually.
In practice, we just calculate the meson pole term with the pex variable off-shell and add the
contact term in each case, and the cancellation takes place automatically.

Next we look into a possible contribution from the p-wave part of the meson-meson am-
plitude. As anticipated, we are looking at the π−p → K0πΣ reaction close to threshold of
the K̄N production in π−p → K0K̄N . This means that three momenta of the three final
particles in the π−p → K0MB are negligible with respect to their energies. Therefore, the
on-shell factorization will just pick up the s-wave part of the MM amplitude. One might
argue that the p-wave part of the meson-meson amplitude will not be small when taken in-
side loops. By looking again to the diagram of Fig. 5.5 (a), the p-wave part of the amplitude
would lead to a contribution in the loops of the type

∫
d4qkin · qDπ(kin − kout − q)D(q)G(pin − kin − kout − q)σ · (kin − kout − q).

Since we know that |kin| ∼ 1500 MeV/c and the q integral has a cut off of 600 MeV/c [5],
|q/kin|2 is a small quantity which would allow one to take a constant propagator for the
meson of momentum kin − kout − q. Since kout ∼ 0, the term with (kin · q) (σ · kin) vanishes
in the integral, but there remains an integral

∫
d4q (kin · q) (σ · q)D(q)GN (pin − kin − kout − q),

which should be reasonably smaller than the corresponding term from the meson meson s-
wave which is proportional to σ · kin. Yet, there is more to it. With kin + pin = 0, and
kout ∼ 0, the argument of G depends on q2 and we are left with an integral of the type

∫
d4qqiqjD(q)GN (pin − kin − kout − q)

∼1
3
δij

∫
d4qq2D(q)GN (pin − kin − kout − q).

After performing the q0 integration, we are left with an integral

σ · kin

∫
d3q

1
2ω(q)

q2

MI − ω(q)− E(q) + iε
, (5.2.6)

with MI the invariant mass of the MB system and ω, E the meson, baryon energies. The
zero in the denominator of Eq. (5.2.6) gets the on-shell condition for a momentum qon and
we can write

q2 = ω(q)2 − ω(qon)2 + q2
on,

MI − ω(q)− E(q) = ω(qon)− ω(q) + E(qon)− E(q),
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By neglecting E(qon) − E(q) which holds in the heavy baryon limit (we are all around ne-
glecting 1/M terms), the off-shell part of Eq. (5.2.6) leads to

∫
d3q

1
2ω(q)

ω(q)2 − ω(qon)2

ω(qon)− ω(q)
∼

∫
d3q

ω(q)2 − ω(qon)2

ω(qon)2 − ω(q)2
,

which is constant in energy. This energy independent term, multiplying the σ · kin factor,
can be reabsorbed into, for instance, the contact term with the use of renormalized coupling
constants, say the physical values of fπ.

5.2.3 Factorized amplitude

With the arguments given above, our approach will require the evaluation of the meson pole
and contact terms for the ten coupled channels π−p → K0MiBi, which are factorized on-
shell outside the loop integral. The remaining loop function contains only one meson and one
baryon, which is the GMB(MI) function found out in the chiral unitary model [503]. Hence
the whole amplitude for the process π−p → K0πΣ corresponding to the upper diagrams of
Fig. 5.3 is given by

−itchiral = σ · kin

[
(aπΣ + bπΣ) +

∑

i

(ai + bi)Gi(MI)ti→πΣ(MI)
]
, (5.2.7)

where i runs for the ten coupled channels, K−p, K̄0n, π0Λ, π0Σ0, ηΛ, ηΣ0, π+Σ−, π−Σ+,
K+Ξ−, K0Ξ0 in this order. We denote the invariant mass for πΣ by MI , and ti→πΣ is the
transition T-matrix from the channel i to πΣ studied in Ref. [503] and ai, bi are the on-shell
contributions to the π−p → K0MiBi tree level amplitude from the meson pole and contact
terms, respectively. These are calculated with interactions (5.2.1), (5.2.3), and (5.2.4), which
are given by

a
(π)
1 =− 1

4
√

2f3
(D + F )

1
(mK0 + q0 − k0

in)2 − k2
in −m2

π0

×
(
mK0(mK0 − 2k0

in)− (q0)2 + 2k0
inq

0
)
,

a
(η)
1 =− 1

36
√

2f3
(−D + 3F )

1
(mK0 + q0 − k0

in)2 − k2
in −m2

η

×
(
m2

K0 − 4m2
π− + 12mK0q0 + 3(q0)2 + 6mK0k0

in + 6q0k0
in

)
,

b1 =
1

12
√

2f3
(D − 3F ),

a2 =− 1
6
√

2f3
(D + F )

1
(mK0 + q0 − k0

in)2 − k2
in −m2

π+

×
(
3m2

K0 − 2mK0k0
in + 4k0

inq
0 + 2mK0q0 − (q0)2

)
,

b2 =− 1
12
√

2f3
(D + F ),

a3 =− 1
4
√

6f3
(D + 3F )

1
(mK0 + q0 − k0

in)2 − k2
in −m2

K+

×
(
m2

π− − (q0)2 + 2mK0q0 + 2mK0k0
in

)
,
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b3 =−
√

6
48f3

(D + 3F ),

a4 =
1

4
√

2f3
(D − F )

1
(mK0 + q0 − k0

in)2 − k2
in −m2

K+

×
(
m2

π− − (q0)2 + 2mK0q0 + 2mK0k0
in

)
,

b4 =
1

8
√

2f3
(D − F ),

a5 =
1

36
√

2f3
(D + 3F )

1
(mK0 + q0 − k0

in)2 − k2
in −m2

K+

×
(
6mK0k0

in − 6mK0q0 − 8m2
K0 − 12q0k0

in + 5m2
π− + 3(q0)2

)
,

b5 =− 1
24
√

2f3
(D + 3F ),

a6 =− 1
12
√

6f3
(D − F )

1
(mK0 + q0 − k0

in)2 − k2
in −m2

K+

×
(
6mK0k0

in − 6mK0q0 − 8m2
K0

− 12q0k0
in + 5m2

π− + 3(q0)2
)
,

b6 =
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6
48f3

(D − F ),

a7 =0, b7 = 0,

a8 =− 1
6
√

2f3
(D − F )

1
(mK0 + q0 − k0

in)2 − k2
in −m2

K0

×
(
−2mK0k0

in − 2k0
inq

0 + 3m2
π− − 4mK0q0 − (q0)2

)
,

b8 =
1

6
√

2f3
(D − F ),

a9 =0, b9 = 0,

a10 =0, b10 = 0,

where, we choose the kinematic variables shown in Fig. 5.2, and we have already assumed the
three momenta of the final particle kout negligible in all channels. Note that for the meson
pole term of channel 1(K−p), both π0 and η exchange can happen, so that we show both of
them. It is worth noting that the channels with null amplitudes, π+Σ−, K+Ξ−, and K0Ξ0.
Focusing on the initial and final baryons, we find that the transition with ∆Q = 2 or ∆S = 2
becomes zero, since the initial state is π−p. It is obvious for the meson pole term, since there
is no corresponding particle emitted. This is also true for the five-point contact interaction,
because the axial current consists of mesons are in 8 representation of SU(3).

For completeness, we also include a recoil factor from the non-relativistic reduction of
γµγ5∂µ BBM vertex

Fi =

(
1− p

0(i)
ex

2Mp

)
, (5.2.8)
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which is derived in Appendix B.3.1. In addition, we also consider the strong form factor of
the BBM vertex for which we take a standard monopole form factor for all vertices

Ff (p) =
Λ2 −m2

π

Λ2 + p2
,

with Λ = 800 MeV. We take the form factor static to avoid the fictitious poles of the covariant
(Λ2 − m2)/(Λ2 − p2) form. But we have checked that using this latter form only changes
the results at the level of less than 5%. Given the cancellation of the off-shell part of the
meson pole term with the contact term, which makes the sum of the two terms independent
of a possible unitary transformation in the fields, the form factor is applied both in the
meson pole and the contact term. This is analogous to what is done with the pion pole and
Kroll-Ruderman term in γN → πN to preserve gauge invariance [599].

5.2.4 Results with the chiral amplitudes

We perform the calculations for an initial pion momentum of 1.69 GeV, at which the exper-
iment is done [543]. The πΣ invariant mass distribution is given by

dσ

dMI
=

1
(2π)3

1
4s

MM̃

λ1/2(s,M2,m2
π)

1
MI

λ1/2(s,M2
I ,m

2
K)λ1/2(M2

I , M̃
2,m2)Σ̄Σ|t|2, (5.2.9)

where M and M̃ are the masses of the nucleon and the baryon of the final state, in this case
a Σ, and m the mass of the final meson, in this case a π. A derivation of this formula is given
in Appendix A.4.2.

We calculate the invariant mass distribution by taking the average over π+Σ− and π−Σ+

channels, which corresponds to what was plotted in Ref. [543]. This combination can eliminate
the interference between I = 0 and I = 1, but the I = 1 component still remains in the
spectrum. For more detail, we will discuss the isospin decomposition for πΣ channels in
subsection 5.3.3. In Fig. 5.6, we plot the numerical result of the mass spectrum together
with the experimental distribution taken from Ref. [543]. We can see that the theoretical
distribution peaks around 1420 MeV while the experimental one has the peak around 1400
MeV. The theoretical distribution is also much narrower than experiment. The disagreement
between theory and experiment is apparent.

We can easily trace back the origin of the shape of the theoretical distribution. The
shape of the obtained distribution shows the feature of the z2 pole, which couples to K̄N

strongly. Indeed, the tree amplitude π−p→ K0MiBi for the case of MiBi = K̄N involve the
combinations 3F −D and D + F , which are large compared to the D − F combination that
we find for MiBi ≡ πΣ (we take F = 0.51 and D = 0.75). Therefore, that the sum of the
terms in Eq. (5.2.7) is dominated by the K̄N terms, giving a larger weight to the tK̄N→πΣ

amplitude than to the tπΣ→πΣ one. As we mentioned, the K̄N states couple strongly to the
z2 pole at higher energy and weakly to the z1 pole at lower energy. As a consequence, what
we see is a distribution which mostly peaks around the resonance found in Ref. [519] at the
pole position z2 = 1426 − i16 MeV, with a width of around 30 MeV. The slightly smaller
energy of the peak in Fig. 5.6 and larger width reflects the small contribution of the other
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Figure 5.6: Contribution from the meson pole and contact terms (diagrams of Fig. 5.3)
to the πΣ invariant mass obtained averaging π+Σ− and π−Σ+. The histogram show the
experimental data taken from Ref. [543].

pole z1 = 1390 − i66 MeV. Therefore, we need another mechanism that favors the lower
energy pole, in order to reproduce the experimental distribution. Next we investigate this
possibility.

5.2.5 The s-channel resonance contribution

Since we have
√
s ∼ 2 GeV, one could think of the possibility of having resonance excitation in

the πN collision leading to the decay of the resonance in MMB. We would like to have some
resonance that can couple to the MMB strongly in s-wave. All S = 0 baryon resonances in
the region of 1700 ≤ √s ≤ 2100 MeV correspond to higher partial waves in the πN collision,
except for the N(1710) and the N(2100), which are P11 resonances with the same quantum
numbers of the nucleon [144]. Out of these two, the N(1710) resonance has a very large
branching ratio to ππN (40-90%), while the one of the N(2100) is unknown, probably small,
since the large branching ratio seems to be for Nη (with large errors). We thus rely upon
the N(1710) resonance to provide some contribution to the π−p→ K0πΣ process.

With the N∗ excitation, the π−p→ K0πΣ reaction is given diagrammatically in Fig. 5.7.
To calculate this, we need the vertices of N∗ coupling to π−p and K0MB channels. Let
us first consider the N∗ → K0MB coupling. Although one can derive different couplings
of this resonance to the MMB in an SU(3) scheme (see Ref. [600] for analogy in other P11

resonances), the absence of the kinematically allowed ηπN channel in the decay mode of the
N∗(1710) strongly suggest a Weinberg-Tomozawa like coupling where this mode is strictly
forbidden at the tree level (see Cij coefficients in Appendix D.2). This also has the implicit
assumption that the N∗(1710) resonance belongs to an SU(3) octet representation, which is
the option adopted in the particle data table [144]. We then assume a coupling of the type
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5.2. The π−p→ K0πΣ reaction

of

LN∗→MMB =
B̃

f2
Tr

(
B̄iγµ

[
(Φ∂µΦ− ∂µΦΦ), B∗

])
, (5.2.10)

with dimensionless coupling constant B̃. Now n∗(1710) and p∗(1710) would substitute in the
B∗ matrix as the n and p. This Lagrangian is the same that appears in the s-wave scattering
of meson-baryon interaction as we have seen in Eq. (5.2.2). Since we are considering the
process with N∗ in the initial state for this vertex, we do not write the hermitian conjugate
term, which is responsible for the process with N∗ in the final state. The Lagrangian of
Eq. (5.2.10) leads to the amplitude

tN∗→MMB = − B̃
f2
Ci(ω1 − ω2), (5.2.11)

where ω1, ω2 are the energies of the two mesons and Ci are tabulated in Table 5.1 for the n∗

going to pions and in Table 5.2 for n∗ going to K0MB. These can be obtained from the Cij

SU(3) coefficients in Appendix D.2, but in this case the ordering of two mesons is important
because the amplitude is antisymmetric under the exchange of two mesons. The B̃ coefficient
is derived from the partial decay width n∗ → π+π−n, π−π0p, where we haveA)

ΓππN =
M

16π3

∫ ωmax

ωmin

dω

∫ ω′max

ω′min

dω′Θ(1− a2)Σ̄Σ|t|2, (5.2.12)

where Θ(x) is a step function and

a =
(MR − ω − ω′)2 −M2 − k2 − (k′)2

2|k||k′| , (5.2.13)

with k, k′ the moduli of the two pion momenta.

ωmin = ω′min = mπ,

ωmax = ω′max =
M2

R −M2
p + 2mπMp

2MR
, (5.2.14)

A derivation for these formula can be found in Appendix A.4.2. The amplitude square can
be obtained as

Σ̄Σ|t|2 = 3
B̃2

f4
(ω − ω′)2, (5.2.15)

after isospin average.
Similarly, we define the amplitude of π−p→ n∗ by (including the isospin factor)

−it =
A

f
σ · kin, (5.2.16)

A)In the paper [8], we wrote a redundant factor MR/
√

s = 1, which is removed here.
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Figure 5.7: Resonant mechanisms for Λ(1405) production in the π−p→ K0πΣ reaction.

Table 5.1: The Ci coefficients entering Eq. (5.2.11). The ordering of mesons in this table
represents the suffices 1 and 2 in Eq. (5.2.11).

π−π0p π+π−n π0π0n

Ci −√2 1 0

with A being the dimensionless coupling constant. The partial decay width is given by

ΓπN =
1
2π

M

MR

A2

f2
|kin|3, (5.2.17)

whose derivation is explained in Appendix A.4.1. Assuming the middle values of the N∗

width (Γ ∼ 100 MeV) and partial decay widths for ππN and πN channels (ΓππN = 65 MeV
and ΓπN = 15 MeV), we find

|A| = 0.086, ˜|B| = 0.77. (5.2.18)

For later convenience, we refer to this parameter set including MR = 1710 MeV as Set I.
Thus the N(1710) contribution to the π−p→ K0πΣ process can be given by

−itR =
A

f
σ · kin

i√
s−MR + iΓ2

(−i)(−)B̃
f2

×
[
CπΣ(ωπ − ωK0) +

∑

i

Ci(ωi − ωK0)Gi(MI)ti→πΣ

]
, (5.2.19)

where ωK0 and ωi are given by their on-shell values,

ωK0 =
s+m2

K −M2
I

2
√
s

, ωi =
M2

I +m2
i −M2

i

2MI
, (5.2.20)

Table 5.2: The Ci coefficients entering Eq. (5.2.11) with a K0 in the final state.

K−K0p K̄0K0n π0K0Λ π0K0Σ0 ηK0Λ

Ci 1 2 −
√

3
2

1
2

3
2

ηK0Σ0 π+K0Σ− π−K0Σ+ K+K0Ξ− K0K0Ξ0

Ci −
√

3
2 1 0 0 0

112



5.2. The π−p→ K0πΣ reaction

Table 5.3: Total cross sections for several final states with parameter sets I and II in units of
[µb]. Experimental data are taken from Ref. [543].

final state K0K−p K0K̄0n K0π0Λ K0π+Σ− K0π−Σ+

chiral 2.36 2.84 3.14 3.04 6.78
resonance(I) 0.29 0.28 4.47 6.68 2.24
resonance(II) 0.70 0.67 10.85 16.18 5.43

total(I) 2.82 4.61 1.93 12.00 14.31
total(II) 3.75 5.98 6.02 21.32 20.01

Exp. 2.9 8.3 104.0 25.1 20.2

with mi,Mi the meson and baryon masses of the particle in the N∗ → K0MB reaction, and
MI the πΣ invariant mass. Furthermore, in Eq. (5.2.19) Γ is the total width whose energy
dependence is taken into account by using Eqs. (5.2.12) and (5.2.17) for the ππN and πN

channels, respectively, and by considering a |kin|3 dependence for the ηN channel.

5.2.6 Final results

In Fig. 5.8, we show the results that we obtain for the resonant mechanism (dashed curve)
with Set I, together with the results from the chiral mechanisms (dotted curve). The cal-
culation was performed at the energy

√
s = 2020 MeV, or equivalently pπ = 1690 MeV in

the laboratory frame. This is the energy at which the experiment we compare with was
done [543]. Although the figure is shown in arbitrary units, we have adjusted the relative
scale between the experimental and theoretical curves assuming that the integrated exper-
imental mass distribution should coincide with the total cross sections in the πΣ channels
given in Ref. [543]. Theoretical and experimental total cross sections for various channels are
shown in Table 5.3. We can see that the strength of the resonant mechanism is smaller than
that of the chiral terms, however, the πΣ distribution created by the resonant mechanism is
much broader and peaks around 1390 MeV. It is instructive to see the reason for the shape
of the resonant mechanism. We have seen that the N∗ → NM1M2 vertex takes the form
B̃(ω1 − ω2). Now for the case of the K0K̄N channel, the amplitude goes like ωK0 − ωK̄ , but
we are at low energies, close to the K0K̄N threshold production, where the difference of the
two kaon energies is close to zero. On the other hand, in the N∗ → K0πΣ, the difference
between the K0and π energies is finite and of the order of 300 MeV in the region that we
study. Hence, the K0πΣ channel is strongly favored and according to Eq. (5.2.19), the final
πΣ production channel is practically given by tπΣ→πΣ. The factors (ωi − ωK0) and Gi(MI)
give extra weight to this amplitude to finally produce a distribution that essentially reflects
the lower energy Λ(1405) resonance to which the πΣ channel couples strongly.

Since the relative phase between chiral and resonant mechanism is not determined, we
should consider it when we take the coherent sum of the two mechanisms. Here we choose
A · B̃ > 0, which leads to a mass distribution, given by the solid curve, which still remains to
be dominated by the chiral terms and the agreement with the data is not very good.

It is possible to improve the theoretical mass distribution if we play a bit with uncertainties
in the resonance mass, the total N∗ width and the branching ratios. By assuming MR ∼ 1740
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Figure 5.8: Invariant mass distribution of πΣ obtained by averaging π+Σ− and π−Σ+ with
parameter Set I. The histogram shows the experimental data taken from Ref. [543]

MeV, Γ = 200 MeV and ΓπN = 40 MeV and ΓππN = 100 MeV (We refer to this parameter
set as Set II) well within the experimental boundaries, we obtain the results of Fig. 5.9 where
the agreement with the data becomes acceptable. The increase in the resonant part is mostly
due to the increase in the πNN∗(1710) coupling constant when using the larger partial width
ΓπN = 40. In Table 5.3, we have summarized cross sections of various channels comparing
experimental data and theoretical results with the two sets of parameters. Except for the
K0π0Λ channel in which Σ(1380) resonance, not accounted for in our study, plays a major
role, the agreement between theory and experiment is acceptable for Set II. We can also see
that the use of Set II not only improves the mass distribution but also the global agreement
with the individual cross sections. Note the importance of the interference in the chiral and
resonant terms in order to obtain a better agreement between theory and experiment.

5.2.7 Summary for the π−p→ K0πΣ reaction

We have developed a model for the π−p→ K0πΣ reaction in the region of excitation of the
Λ(1405) resonance. We have discussed the fact that present theoretical models using chiral
dynamics and coupled channel unitarization are all converging to the existence of two poles
close to the nominal Λ(1405) resonance, which would reflect the singlet pole and one of the
I = 0 octet poles (although with some mixture). The two resonances appear at different
energies and couple very differently to the πΣ and K̄N channels.

When we try to construct a model for the π−p → K0πΣ in analogy to the low energy
chiral model for πN → ππN , we observe that the role of K̄N intermediate state is enhanced,
leading to the total amplitude for π−p→ K0πΣ mostly sensitive to the tK̄N→πΣ amplitude,
which is dominated by a narrow resonance peaking around 1420 MeV. The mechanism alone
leads to a πΣ mass distribution in disagreement with the experimental data.
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Figure 5.9: Same as in Fig. 5.8 but with Set II.

On the other hand, it is found that there is another mechanism exciting N∗ resonances
from the π−p entrance channel. Inspection of the partial waves involved in the resonance
excitations and the decay modes has singled out a resonance which gives contribution to the
process, the N(1710), with the same quantum numbers of the nucleon. The strong decay
into Nππ channel together with the absence of the Nπη channel, suggests a coupling of the
N∗(1710) resonance to BMM of the Weinberg-Tomozawa type, which we have exploited to
see the consequences in the π−p→ K0πΣ reaction. We have observed that this new mecha-
nism has an opposite behavior to the chiral one, and strongly stresses the πΣ intermediate
state instead of the K̄N , leading to a production amplitude dominated by the tπΣ→πΣ am-
plitude. Since this amplitude dominates the wider resonance peaking at around 1390 MeV,
we found that the πΣ mass distribution roughly followed the shape of this resonance and was
wide and peaking at an energy below 1400 MeV. The coherent sum of the two mechanism was
shown to lead to total cross sections and a mass distribution compatible with the experiment,
within the theoretical and experimental uncertainties. Although there is still some deviation
from the theoretical prediction, experimental spectrum tells us that the π−p→ K0πΣ reac-
tion is dominated by the lower energy pole of the Λ(1405). Investigation of the origin of this
small deviation might be interesting in future works.

The present study is telling us that there might be other processes where the reaction
mechanism of Λ(1405) production filters one or another resonance, hence leading to very
different shapes for the πΣ mass distribution. The K−p → Λ(1405)γ reaction [585] was
advocated as one where the narrow higher energy resonance will be populated. In the next
section, we will investigate the γp → K∗Λ(1405) → KπMB reaction in order to isolate one
of the poles from the other. The findings of the present reaction should stimulate further
theoretical and experimental works that help us pin down the existence and properties of
these two resonances.
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5.3 The γp→ KπMB reaction

In the chiral unitary model, one interesting finding is the two-pole structure of the Λ(1405)
resonance. In order to understand the hadron dynamics at low energy, it is important to study
the nature of the Λ(1405) focusing on whether such two poles really exist in the nominated
resonance region.

As was discussed in the previous section, the π−p → K0MB reaction was particularly
selective of the z1 pole in Eq. (5.1.1). Here we propose another reaction γp → K∗B∗ →
πKMB, which is expected to be useful for the extraction of the z2 pole. A great advantage
of this reaction is the use of a linearly polarized photon beam, which can help to suppress a
possible background process. Then the process is dominated by the t-channel K− exchange,
which scatter with the target nucleon, as we will see below. Since the exchanged K− can
be off the mass shell and have the resonant energy for the Λ(1405) together with the target
nucleon, it couples to the Λ(1405). Thus we have an amplitude K̄N → πΣ, which is ideal to
the selection of the pole z2. In the analysis, we introduce the Σ(1385) contribution explicitly,
which have not been taken into account in the previous studies. This helps to estimate the
contamination of I = 1 amplitude to the desired spectrum.

5.3.1 Formulation

Let us consider the mechanisms contributing the γp → K∗B∗ → KπMB reaction with
B∗ = Λ(1405) and Σ(1385). Suppose that we observe the K∗ decaying into K and π in
the forward direction. In this case, namely the small momentum transfer, the process will
be dominated by the t-channel meson exchange as shown in Fig. 5.10, and we can ignore
unknown background contributions from, for instance, nucleon resonances in s channel. The
exchanged particle can be specified by selecting the polarization vectors of photon and K∗.
This is accomplished by the polarized photon beam and measurement of the decay plane
of Kπ system from the K∗. If the Kπ system is produced in a plane perpendicular to the
photon polarization, the t-channel exchanged particle is dominated by the pseudoscalar kaon
and heavier strange mesons contributions should be suppressed due to their larger masses in
low momentum transfer region.

We consider the energy region close to the threshold of the K∗Λ(1405) production. The
exchanged kaon rescatters with a nucleon in isospin I = 0 and 1 channels, where the former
couples to the Λ(1405), especially to the pole z2, while the latter does it to the Σ(1385), a
p-wave resonance in this energy region. For the K−p → MB subprocess, we utilize the s-
wave meson-baryon scattering amplitude calculated by the chiral unitary model in Ref. [503].
The chiral interaction generates the Λ(1405) resonance dynamically, producing the poles at
Eq. (5.1.1), while the Σ(1385) is not generated because it is a p-wave resonance. In principle,
we do not have to care about the Σ(1385) if we can extract the pure I = 0 process, which,
however, is difficult in actual experiment. Therefore, we introduce the Σ(1385) field explicitly,
to see how large the contamination from it to the Λ(1405) spectrum. The K−p → MB

subprocess is diagrammatically expressed in Fig. 5.11.
Given the above arguments, the scattering amplitude as described in Fig. 5.10 can be
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Figure 5.10: Feynman diagram for the γp → KπMB reaction with the K∗ production in
πK system. We denote M and B for a meson and a baryon among ten coupled channels
of S = −1 meson-baryon scattering. Here we only take πΣ and πΛ channels into account,
which are responsible for the study of the Λ(1405).
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Figure 5.11: Feynman diagram for the K−p → MB subprocess. We utilize the scattering
amplitude in Ref. [503] with the Σ(1385) pole term.

divided into two parts

−it = (−itγ→K−Kπ)
i

p2
K− −m2

K−
(−itK−p→MB). (5.3.1)

The former part (−itγ→K−Kπ), as shown in Fig. 5.12, is derived from the following effective
Lagrangians. For the K∗Kγ coupling [190], we use

LK∗Kγ = gK∗Kγε
µναβ∂µAν(∂αK

∗−
β K+ + ∂αK̄

∗0
β K0) + h.c., (5.3.2)

where K, K∗
µ, Aµ are the pseudoscalar kaon, vector K∗, photon fields, respectively, and h.c.

denotes the hermitian conjugate. The coupling constant is determined from the empirical
partial decay width of K∗: ΓK∗±→K±γ = 0.05 MeV. The resulting values are |gγK∗±K± | =
0.252 [GeV−1]. We note that the effective Lagrangian (5.3.2) is consistent with a vector meson
dominance model [601]. For the decay of the K∗, we utilize the flavor SU(3) Lagrangian [602]

LV ΦΦ = − igV ΦΦ√
2

Tr
(
V µ[∂µΦ,Φ]

)
,

with the universal vector meson coupling constant gV ΦΦ = −6.05 and Vµ being vector meson
field;

Vµ =




1√
2
ρ0

µ + 1√
2
ωµ ρ+

µ K∗+
µ

ρ−µ − 1√
2
ρ0

µ + 1√
2
ωµ K∗0

µ

K∗−
µ K̄∗0

µ φµ


 .
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Chapter 5. Structure of Λ(1405) and production reactions

Figure 5.12: Feynman diagram for γ → K−Kπ.

Using the above interaction Lagrangians, the amplitude for the subprocess γ → K∗+K− →
K0π+K− is given byB)

−itγ→K−K0π+ =
i
√

2gV PP ε
µναβpµ(K0)pν(π+)kα(γ)εβ(γ)

P 2
K∗ −M2

K∗ + iMK∗ΓK∗
, (5.3.3)

where p and k are the momenta of the particle in parentheses, PK∗ = p(K0) + p(π+), εµ(γ)
is the polarization vector of photon, and MK∗ and ΓK∗ are the mass and the total decay
width of K∗, for which we include the energy dependence for a virtual K∗, ΓK∗ = Ap3

CM ,
where pCM is the two-body relative momenta of the final state, and A = 2.05×10−6 [MeV−2]
such that ΓK∗ ∼ 51 MeV at the resonance position. Eq. (5.3.3) is instructive to show the
correlations between the photon polarization and the K0 and π+ momenta. In order to
maximize the contribution of the t-channel we select the K∗ in the direction of the photon.
Then, it is easy to see that the amplitude is proportional to sinφ where φ is the angle between
the plane defined by the K0 and π+ momenta and the photon polarization (in the Coulomb
gauge, ε0 = 0). Hence, the maximum strength of the amplitude occurs when this plane is
perpendicular to the photon polarization.

In addition one needs not to worry about symmetrization in the case when there are two
equal charge pions in the final state. In this case the interference term is zero and one can
omit the symmetrization and the 1/2 factor in the cross section.

The amplitude (−itK−p→MB) consists of two parts, as shown in Fig. 5.11

−itK−p→MB(MI) = −itChU(MI)− itΣ∗(MI), (5.3.4)

where−itChU is the meson-baryon scattering amplitude derived from the chiral unitary model,
and −itΣ∗ is the Σ(1385) pole term. We define the invariant mass for K−p system by
M2

I = (pγ + pN − pK∗)2. Following the model developed in Ref. [503], the coupled channel
amplitude tChU can be obtained by

tChU = [1− V G]−1V,

where G is the meson-baryon loop function and V is the kernel interaction derived from the
Weinberg-Tomozawa term of the chiral Lagrangian (Eqs. (4.2.6) and (4.2.2) in chapter 5).

B)For the final state K+π0, the amplitude is reduced by factor 1/
√

2, and therefore, the resulting cross
section becomes one half. In the rest of this chapter, we show the result for K0π+. However, the final state
K+π0 has an advantage that the strangeness can be tagged, which is not possible for the K0π+ → π+π−π+

mode.

118



5.3. The γp→ KπMB reaction

Table 5.4: The ci coefficients in Eq. (5.3.5).

channel i K−p K̄0n π0Λ π0Σ0 ηΛ ηΣ0 π+Σ− π−Σ+ K+Ξ− K0Ξ0

ci −
√

1
12

√
1
12

√
1
4 0 0 −

√
1
4 −

√
1
12

√
1
12

√
1
12 −

√
1
12

This amplitude reproduces well the total cross sections for several channels. It also leads to
dynamically generated resonances in good agreement with experiment. Since the Σ(1385) is
not generated in this resummation because it is a p-wave resonance, we introduce it explicitly
with its coupling to channel i (MB → Σ(1385)) which is deduced from the πN∆ using SU(6)
symmetry in [603, 576] and given by

−itΣ∗i = ci
12
5
gA

2f
S† · ki, (5.3.5)

where gA = 1.26, and we use the meson decay constant f = 93 × 1.123 MeV [503]. This
is a nonrelativistic form for the transition between spin 1/2 and 3/2 particles, where S is
the spin transition operator defined in Appendix A.1.2C), and the coefficients ci are given in
Table 5.4. Note that these couplings reproduce well the observed branching ratio of Σ(1385)
decay into πΛ and πΣ. Then we have the amplitude

−itΣ∗(MI) = −c1ci
(

12
5
gA

2f

)2

S · kiS
† · k1

i

MI −MΣ∗ + iΓΣ∗/2
Ff (k1), (5.3.6)

where k1 and ki are the momenta of the exchanged K− and the final meson, and MΣ∗ = 1384
MeV and ΓΣ∗ = 36 MeV. We have introduced a strong form factor Ff (k1) for the vertex
K−pΣ∗ in order to account for the finite size structure of the baryons. We adopt a covariant
monopole type Ff (q) = (Λ2−m2

K)/(Λ2−q2) with Λ = 1 GeV. In the present reaction around
the region of Λ(1405), the effect of the form factor is not very large.

The cross section is then given by the squared amplitude of Eq. (5.3.1) integrated over the
four-body phase space. Following the derivation in Appendix A.4.3, we obtain the total cross
section

σ =
2MpMB

s−M2
p

∫
d3p1

(2π)3
1

2ω1

∫
d3p2

(2π)3
1

2ω2

1
8π

∫ 1

−1
d cos θ̄

|p̃3|
MI

Σ̄Σ|t|2, (5.3.7)

where p1(2) and ω1(2) are the momenta and energy of the final K(π) from K∗D). We define p̃3

by the relative three momentum of MB in their center of mass frame, and the angle θ̄ denotes
the angle between the intermediate K− and the final M . The integration is performed by
the Monte Carlo method.

Before showing the numerical results, here we mention the MB channels decaying from the
intermediate baryonic state (B∗ = Λ(1405) and Σ(1385)). Below the K̄N threshold, there

C)In the paper [11], we defined S as in Ref. [604]. Here we define S as in Ref. [605] to be compatible with
other chapters. Accordingly, we change the notation in Eq. (5.3.6).

D)In the paper [11], we wrote MΣ instead of MB . This is correct for the final states πΣ, but for the πΛ
state, the formula need a modification about MΛ/MΣ ∼ 0.94. Accordingly, we modify the numerical results
including π0Λ final state in Figs. 5.13, 5.14, 5.16. Qualitative conclusions remain unchanged.
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Chapter 5. Structure of Λ(1405) and production reactions

Table 5.5: Possible decay channels from baryons

Intermediate baryon Decay channels
Λ(1405) I = 0 π±Σ∓, π0Σ0

Σ(1385) I = 1 π±Σ∓, π0Λ

are four possible MB channels as shown in Table 5.5, two charged and two neutral channels.
In the present case, since we have the K−p channel initially, the I = 2 component of πΣ
channel is not allowed. As we will explain in subsection 5.3.3, the charged channels (π±Σ∓)
are from the decay of both Λ(1405)(I = 0) and Σ(1385)(I = 1), while the neutral channels
are from either one of the two; π0Σ0 is from Λ(1405) and π0Λ is from Σ(1385).

5.3.2 Results

Now we present numerical results for total cross sections. Unless we observe angular distribu-
tions, there is not distinction between cross sections of polarized and unpolarized processes.
Therefore, our predictions below are compared with the results of both polarized and unpolar-
ized experiments directly. However, from the experimental point of view it is most practical
to concentrate in the region where the K0π+ reaction plane is perpendicular to the photon
polarization to maximize the weight of the K∗ production mechanism and reduce possible
backgrounds. In Fig. 5.13, we show the total cross sections σ(γp → K∗B∗ → K0π+MB)
as functions of

√
s for different MB channels. As seen in the figure, the present mechanism

shows up strength at an energy slightly lower than the threshold of K∗Λ(1405) since the
physical resonances have a finite width and hence a mass distribution. In the total cross
section, the isospin one (I = 1) MB = π0Λ channel is the largest in size, coming from the
Σ(1385) excitation. This might disturb the contribution from Λ(1405) of I = 0, unless the
separation of these two isospin channels is done. However, it turns out that the observation of
another charged π from the intermediate baryon (either Λ(1405) or Σ(1385)) helps to study
the I = 0 amplitude.

In order to see this, we show in Fig. 5.14 the invariant mass distributions for different decay
channels. In the figure the initial photon energy is chosen at Eγ = 2500 MeV (the threshold
for K∗Λ(1405) production is about Eγ = 2343 MeV). Forgetting about the experimental fea-
sibility, the would-be observable in the neutral channel is most helpful in order to distinguish
the contributions from Λ(1405) and Σ(1385), since the π0Σ0 channel does not contain the
I = 1 amplitude. As expected, the π0Σ0 distribution decaying from Λ(1405) (solid curve) has
a peak around 1420 MeV which corresponds to the real part of the pole z2 at higher energy.
In contrast, the π0Λ distribution (dot-dashed curve) has clearly a peak around 1385 MeV,
with a larger value than the π0Σ0 distribution. In experiments, the charged states may be
observed, which contain both Λ(1405) and Σ(1385) contributions. Hence, we show the distri-
bution of charged states by the dashed and dash-dot-dotted curves. The shapes of the three
πΣ distributions have a similar tendency as the kaon photoproduction process [584], which
has been confirmed in experiments [606]. Note also that the contributions from Σ(1385) seem
to be small for these channels.
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5.3. The γp→ KπMB reaction

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

σ 
[µ

b]

300028002600240022002000
s [MeV]

 π0Σ0 (I=0)
 π+Σ-

 π-Σ+

 π0Λ (I=1)

Λ(1405)K*KππΣ

Figure 5.13: Total cross sections of the process γp → π+K0MB with the final states π0Σ0

(Solid), π+Σ− (Dashed), π−Σ+ (Dash-dot-dotted), and π0Λ (Dash-dotted) in units of [µb].
Solid bars indicate the threshold energy of the channels.

4

3

2

1

0

dσ
/d

M
I[

nb
/M

eV
]

15001450140013501300
MI [MeV]

 π0Σ0  (I=0)
 π+Σ-

 π-Σ+

 π0Λ (I=1)
 

 ( π+Σ- + π-Σ+ ) / 2

Figure 5.14: Invariant mass distributions of π0Σ0 (Thick solid), π+Σ− (Dashed), π−Σ+

(Dash-dot-dotted), π0Λ (Dash-dotted), and (π+Σ− + π+Σ−)/2 (Thin solid) in units of
[nb/MeV]. Initial photon energy in Lab. frame is Eγ = 2500 MeV, slightly above the thresh-
old production of K∗Λ(1405), Eγ = 2343 MeV.
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Chapter 5. Structure of Λ(1405) and production reactions

5.3.3 Isospin decomposition for the final states

In order to extract the information of each isospin state, it is worth showing the isospin
decomposition of the πΣ distributions [584]. This would help to estimate the effect of the
Σ(1385) contribution, which may disturb the desired signal of the Λ(1405). The physical πΣ
states are decomposed into isospin states as

|π+Σ− 〉 =− 1√
6
| 2, 0 〉 − 1√

2
| 1, 0 〉 − 1√

3
| 0, 0 〉,

|π−Σ+ 〉 =− 1√
6
| 2, 0 〉+ 1√

2
| 1, 0 〉 − 1√

3
| 0, 0 〉,

|π0Σ0 〉 =

√
2
3
| 2, 0 〉 − 1√

3
| 0, 0 〉.

In the present reaction, we can neglect the I = 2 amplitude, which does not couple to the
process initialized by the K−p state. Then the contribution of the isospin states to the cross
sections can be written as

dσ(π±Σ∓)
dMI

∝ 1
3
|T (0)|2 +

1
2
|T (1)|2 ± 2√

6
Re(T (0)T (1)∗),

dσ(π0Σ0)
dMI

∝ 1
3
|T (0)|2, (5.3.8)

where T (I) is the amplitude with isospin I for the πΣ system. Here we neglect the kinematic
factors. It is obvious to confirm the decomposition shown in table 5.5. By the construction
of the amplitude (5.3.4), T (I) can be decomposed into partial waves as

|T (0)|2 = |T (0)
s |2, |T (1)|2 = |T (1)

s |2 + |T (1)
p |2, (5.3.9)

where subscripts s and p denote the partial waves. The spectrum from actual experiment
may contain the higher partial wave components, but they would be small because of the
presence of resonances (Λ(1405) in T

(0)
s and Σ(1385) in T

(1)
p ). Note that the product of s-

and p-wave amplitudes vanishes, since we are looking at the cross sections with the angle
variables in MB system being integrated.

Let us first consider the charged πΣ states. In Eq. (5.3.8), we observe that the difference
between π+Σ− and π−Σ+ comes from the interference term Re(T (0)T (1)∗), and when we take
an average of the two distributions this interference term vanishes,

1
2

(
dσ(π+Σ−)
dMI

+
dσ(π−Σ+)
dMI

)
∝ 1

3
|T (0)|2 +

1
2
|T (1)|2.

We also show the result for the average of the charged πΣ channels in Fig. 5.14 (thin solid
curve). The feature that the initialK−p couples dominantly to the second pole of the Λ(1405)
is well preserved in the mass distribution, although the width of this distribution is slightly
larger than that of the pure I = 0 resonance because it contains some contribution from the
I = 1 component. This is a nice feature and suggests that by observing the mass distributions
of the charged state from the intermediate baryon, it would be possible to study the nature
of the second pole of the Λ(1405) resonance.

We can estimate the contribution from the I = 1 component to the charged πΣ states. In
Fig. 5.14, it is seen that the average of the charged πΣ states is always larger than the π0Σ0
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result. This is natural because in the difference between the average of charged states and
π0Σ0 state is given by

1
2

(
dσ(π+Σ−)
dMI

+
dσ(π−Σ+)
dMI

)
− dσ(π0Σ0)

dMI
∝ 1

2
|T (1)|2 =

1
2

(
|T (1)

s |2 + |T (1)
p |2

)
, (5.3.10)

where the I = 0 component cancels out, remaining the I = 1 component, which is positive.
Although the I = 1 component contains the Σ(1385) excitation, the contribution to the πΣ
channel is not very large, in the sense that the peak position of the spectrum does not deviate
from that of the I = 0 component (∼ 1420 MeV), as we mentioned above.

In Fig. 5.15, we plot the difference (5.3.10) by dash-dotted curve. As seen in the equation,
this distribution contains both s- and p-wave components. Indeed, this distribution is not very
strong compared with the magnitude of the I = 0 spectrum shown in Fig. 5.14. Theoretically,
in the present framework, we can calculate the pure s-wave I = 1 by switching off the Σ(1385)
and making the combination of πΣ amplitudes (5.3.10), which is plotted by the solid curve in
Fig. 5.15. Since the difference between two spectra is the pure contribution from the p-wave
component, namely the Σ(1385), we can see that its contamination to the πΣ state is also
small. This fact can be understood by the ratio of the couplings g2

Σ∗π±Σ∓/g
2
Σ∗π0Λ = 1/3 (see

Table. 5.4) and the phase space factor (pΣ∗πΣ/pΣ∗πΛ)3 ∼ 0.24. This may also justify the
treatment in the previous section of the π−p → K0πΣ, where we study the average of the
charged πΣ states, without introducing the Σ(1385) resonance.

It is also interesting to study the I = 1 s-wave amplitude in this energy region, since
the existence of another pole is discussed [512, 519]. It was shown in Ref. [519] that in the
SU(3) decomposition of the meson-baryon states the interaction was attractive in two octet
channels in I = 1 sector, hence it is natural to expect the existence of another s-wave I = 1
resonance in addition to the Σ(1620) already reported in Ref. [503]. Indeed, a pole is found at
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Chapter 5. Structure of Λ(1405) and production reactions

1410−40i MeV in the model of Ref. [512], which is difficult to detect experimentally, because
of the presence of the Σ(1385) resonance. However, the properties of this I = 1 pole are very
sensitive to the details of the model, since in different models or approximations it appears
in different Riemann sheets, but there is still some reflection on the amplitudes in all cases.
Therefore, investigation of the I = 1 s-wave amplitude would bring further information of
resonance properties.

Theoretical πΣ(I = 1) spectrum for s-wave is shown in Fig. 5.15 (Solid curve) and a small
peak is seen as a reflection of the approximate resonant structure predicted in Refs. [512, 519].
In experiments, a naive I = 1 combination of the πΣ state (5.3.10) is contaminated by the
Σ(1385) resonance as seen in Fig. 5.15. However, taking into account that the interference
term between different partial wave should vanish after we integrate the angular variables,
the interference term between I = 0 and I = 1 contains only the s-wave component;

dσ(π+Σ−)
dMI

− dσ(π−Σ+)
dMI

=
4√
6
Re(T (0)

s (T (1)
s )∗), (5.3.11)

where we assume that the T (0) is dominated by the s-wave component, which is plausible
due to the existence of the Λ(1405) resonance. As a guidance for experiments, we plot the
quantity (5.3.11) in Fig. 5.15 with the dashed curve. In principle, it is possible to extract
T

(1)
s from this quantity and the distribution of s-wave I = 0 (for instance, from the π0Σ0),

parametrizing conveniently the T (0)
s amplitude.

Finally we show the results for the sum of all πΣ and πΛ channels in Fig. 5.16. This
corresponds to the most feasible case in experiment, performing the missing mass analysis
with identification of the the three pions decaying from the K∗. The total cross section is
about 0.2 µb at the threshold of K∗ and Λ(1405). In the mass spectrum as a function of
MI (right panel), we find a two-bump structure reflecting both the Λ(1405) and the Σ(1385).
In the actual case, there would be a further contribution from the K̄N channel, raising at
around 1430 MeV which we do not include in the calculation. This contribution starts where
the mass distribution in Fig. 5.16 has already dropped down and therefore will not blur the
shape of the distribution. This is the case in a related reaction studied in Ref. [584]. This
figure is also illustrating because it reveals a large strength in the region of 1420 MeV, which
makes this shape clearly distinct from the one observed experimentally in the π−p→ K0πΣ
reaction [543] with a neat peak below 1400 MeV. Hence, this measurement is valuable by itself.
Yet, in order to obtain clear signals, one should measure the channels shown in Fig. 5.14. It
is interesting to recall that in the chiral model of Ref. [8] it was shown that the π−p→ K0πΣ
reaction favored the z1 pole at lower energy.

5.3.4 Summary for the γp→ KπMB reaction

In this section, we have proposed a reaction γp→ K∗B∗ → KπMB with B∗ = Λ(1405) and
Σ(1385) for the study of the second pole (z2) possibly existing in the Λ(1405) region. Since
this second resonance has been shown to couple more strongly to K̄N than to πΣ in several
chiral models, the present reaction is suitable for the isolation of this pole, where we expect
that the t-channel K− exchange can be maximized by choosing the appropriate experimental
conditions. In the π0Σ0 spectrum which is purely I = 0, the mass distribution shows a peak
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Figure 5.16: Total cross section and invariant mass distribution for the sum of πΣ and πΛ
channels.

structure pronounced at around 1420 MeV with a relatively narrow width, different from
the nominal shape of the Λ(1405). The average of the charged πΣ states, which is more
feasible in experiments, still maintains the peak structure around 1420 MeV, although there
is a small contaminations from the coupling to Σ(1385) states. We also show the possible
ways to extract the s-wave I = 1 amplitude, in which the existence of another resonance is
discussed.

5.4 Summary and later developments

In this chapter, we have investigated the structure of the Λ(1405) resonance through the
study of the reaction mechanisms. Using the meson-baryon scattering amplitude obtained
in the chiral unitary approach, we have provided successful models for the π−p → K0πΣ
and γp→ KπMB reactions with the Λ(1405) excitation in πΣ and MB states, respectively.
In the chiral unitary approach, there are two poles around the Λ(1405) energy region. It
is found that the π−p → K0πΣ [543] favors the lower energy pole at 1390 MeV (z1), while
the γp → KπMB reaction is dominated by the higher energy pole at 1420 MeV (z2). The
reason for this observation is the difference in the coupling strength of z1 and z2 to the meson-
baryon channels; z1 favors πΣ state and z2 couples to K̄N strongly. The models developed
here clearly shows the different features of the mass spectrum depending on the production
reactions. A similar mass distribution to the γp → KπMB reaction was observed in the
study of the K−p→ γπΣ [585], where the photon is emitted from the initial state and hence
the Λ(1405) production is also induced by a K−. Experimental evidence for the existence of
such two Λ∗ states would provide more information on the nature of the current Λ(1405) and
thus new clues to understand non-perturbative dynamics of QCD.

The studies done here shows the important role played by the two resonance poles in
the production process of the nominal Λ(1405) resonance. In section 5.2 (π−p → K0πΣ),
we have seen how two different mechanisms (chiral and N(1710) terms) filtered each one
of the resonance contributions, and then how the coherent sum of the amplitudes from the
two mechanisms could describe the data. This exercise has shown the non-triviality of the
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Chapter 5. Structure of Λ(1405) and production reactions

Λ(1405) generation, which has not been discussed in all previous theoretical studies. Indeed,
one needs to make a careful analysis of each reaction in order to understand the nature of
the resonance from the observed shape of the πΣ mass distribution. This is also true for the
study in section 5.3 (γp→ πKMB), where we examine the effect of the Σ(1385) contribution.
Experimental information on several observables in these reactions certainly helps to improve
the theoretical understanding on the reaction mechanisms.

After we reported these works, several studies were performed concerning the two-pole
structure of the Λ(1405) and recent experimental data. In a similar approach as taken in this
chapter, Magas et al., studied the K−p→ π0Λ(1405)→ π0π0Σ reaction [586], motivated by
the recent experiment of this process [607]. Indeed, the mass spectrum obtained in Ref. [586] is
peaked at the 1420 MeV, which is very different from that in the π−p→ K0πΣ reaction [543]
(a comparison is done in Fig. 5 in Ref. [586]). In the theoretical study, it is found that the
dominant mechanism for this reaction is the emission of the π0 prior to the K−p interaction,
which leads to a similar mechanism of the interaction of off-shell kaon with nucleon, studied
in section 5.3. Hence, the invariant mass spectrum of π0Σ0 peaks at 1420 MeV. The model
also reproduces well the spectrum and total cross section of the reaction.

There is another experimental developments by DEAR experiment [572], which reports
the strong shift and width of the kaonic Hydrogen 1s state. This data was examined in
Refs. [571, 517], leading to an inconsistency between the new data and previous scattering
observables. However, the latest analysis [573] found a scattering amplitude which agrees
with both the DEAR experiment and the previous scattering data (see also Refs. [574, 575]).
In these studies, the interaction kernel is of O(p2), and the two-pole structure, obtained in
the leading order calculation, is confirmed.

As future perspective, it will be interesting to study the π−p → K0MB reaction by
including the Σ(1385) resonance, as done in section 5.3, since there is still some difference
between theory and experiment. From Fig. 5.15, we can see that the inclusion of the Σ(1385)
gives more strength in the spectrum at lower energy, but it is not too strong to disturb
the peak structure. This will make the agreement of the theoretical distribution to the
experimental spectrum better. In Ref. [543], the invariant mass spectrum of the π0Λ final state
and the angular distribution of the decaying particles are also given. Therefore, comparison
of the model prediction with these data will help to determine the reaction dynamics more
precisely.
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Chapter 6

Magnetic moments of the N(1535)
resonance

In this chapter, we calculate the magnetic moments of the N(1535) resonance using the chiral
unitary model, where the resonance is dynamically generated in the scatterings of the lowest-
lying mesons and baryons. We obtain the magnetic moments of the resonance as +1.1 and
−0.25 for p(1535) and n(1535), respectively, in units of the nuclear magneton. We discuss the
origin of these numbers within the chiral unitary model, then we compare the present results
with those of the quark model and the chiral doublet model. The possibility to observe the
magnetic moments in experiments is also investigated. This topic is reported in Ref. [13].

6.1 Introduction

The study of the structure of baryon resonances is one of the most important topics in
hadron physics, and the recent interest is to understand these properties from the viewpoint
of QCD. The baryon resonances, on one side, have been studied by the quark picture, such
as the constituent quark model [329, 330, 331]. On the other hand, they are investigated as
quasi-bound states in the meson-baryon scattering [506, 507, 508]. Recent progress in chiral
physics has brought reconsideration of the meson-baryon picture for the resonance in the
contemporary way [4, 5]. Therefore, it is important to clarify the difference and similarity
between the two pictures. For this purpose, we study the magnetic moments of the N(1535)
resonance, which have a possibility to be observed in experiment.

There are several reasons that the N(1535) resonance is interesting to be studied. For
instance, it is known experimentally that the resonance has strong coupling to the ηN state,
which is almost an exclusive nature of the resonance. Thanks to this properties, one can
easily identify creation of N(1535) in the intermediate state of the reaction by observing the
η meson in the final state. On the other hand, there is an interesting scenario when chiral
symmetry is restored at finite temperature and density [608, 609, 610]. There is a possibility
that positive and negative parity baryons are included in a large chiral multiplet. Such a
point of view provides an interesting theoretical approach based on chiral symmetry of QCD,
and there N(1535) could play an important role.
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Chapter 6. Magnetic moments of the N(1535) resonance

The nature of N(1535) has been studied by several theoretical approaches. In an SU(6)
quark model, N(1535) state may be described as a three quark state with suitable mixing
among the p-wave 70-dimensional representation [329, 330, 331]. Lattice calculations [611,
612, 613, 614, 615, 616, 617] and QCD sum rules [618, 619, 620] are also predicting the reso-
nance masses in a good agreement with experimental data using a three-quark interpolating
operator. On the other hand, when having a strong coupling to meson-baryon states, the res-
onance state must have a significant component of meson-baryon states. Following this line,
the resonances have been studied as meson-baryon quasi-bound states in a coupled channel
method with unitarized chiral perturbation theory [559, 570, 504, 580]. In this model, the
N(1535) resonance is dynamically generated as a KΣ quasi-bound state. Generally speak-
ing, both approaches shown above provide a good description of the N(1535) resonance. In
such a situation, it is fare to say that our understanding for the resonance nature is not yet
complete.

Experimentally, so far, the magnetic moments of ∆++, ∆+, and Ω− have been mea-
sured [621, 622, 623, 624]. The measurements were performed through bremsstrahlung pro-
cesses. For example, the magnetic moments of ∆++ have been studied in the reaction π+p→
γπ+p [621, 623]. Due to the ambiguities of various theoretical models [621, 623, 625, 626],
Particle Data Group (PDG) [144] shows the expected value as µ∆++ = 3.7 ∼ 7.5µN , where
µN is the nucleon magneton. Now for N(1535), a similar process can be used such as
γp → γηp [627], where the strong ηN coupling of N(1535) would help to isolate the res-
onance production from the background.

In this chapter, we compute the magnetic moments of the N(1535) resonance in the chiral
unitary model, following the techniques developed in Ref. [588], where they have applied to
computation of the magnetic moments of Λ(1405) and Λ(1670). Recently, the N(1535) reso-
nance magnetic moments were studied also in a constituent quark model [627], and therefore,
the present study provides one of alternative descriptions.

This chapter is organized as follows. In section 6.2, We present the formulation to calculate
the magnetic moments in the chiral unitary model. The input parameters and numerical
results are presented in section 6.3. In section 6.4 we discuss the obtained results from
various point of view. In section 6.5, we discuss the possibility to observe the magnetic
moments of N∗ in experiment and calculate the energy spectra and the angular distributions
of the emitted photon in the γN → γηN and π−p → γηn reactions. Section 6.6 is devoted
as the summary of the present results.

6.2 Formulation

6.2.1 Definition of resonance magnetic moment

First of all, let us discuss definition of the magnetic moment of a short living resonance
state. A model-independent definition of the magnetic moment may be an expectation value
of the magnetic moment operator µ̂ by the resonance state: µR ≡ 〈Φ(in)|µ̂|Φ(out)〉, where
the resonance states |Φ(out),(in)〉 are defined as only either outgoing waves or incoming waves
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6.2. Formulation

asymptotically A). These resonance states cooperatively form a biorthogonal set:
〈
Φ(in)

∣∣∣Φ(out)
〉

= 1.

This implies that the bra vector 〈Φ(in)| corresponds as imaginary conjugate of the ket vector
|Φ(out)〉. These states are eigenvectors of the Hamiltonian with complex eigenvalues MR ∓
iΓR/2 in the generalized Hilbert space, in which the hermitian operator is allowed to have
complex eigenvalues. This definition leads us to a complex value of the magnetic moment
of the resonance. It is natural, however, that the resonance magnetic moment is expressed
by a complex number, since the magnetic moment, in principle, is observed by an energy
shift in the presence of a perturbative magnetic field. In the case of the resonance as a shot
living particle, the measurement of the energy shift should be uncertain because of its decay
in a finite time during the measurement. Consequently, the magnetic moment should be
uncertain, since the external magnetic field can be, in principle, adjusted as precise as one
desires. Here, following the definition of the expectation value for the resonance state, we
define the resonance magnetic moment as

µR ≡ Re
〈
Φ(in)

∣∣∣ µ̂
∣∣∣Φ(out)

〉
, (6.2.1)

and the deviation from the average value ∆µR is given by

(∆µR)2 = −
(
Im

〈
Φ(in)

∣∣∣ µ̂
∣∣∣Φ(out)

〉)2
(6.2.2)

It is important to note that the phase of the resonance magnetic moment can be one of the pre-
dictions of this approach, since the resonance is dynamically generated in the meson-baryon
scattering driven by the chiral perturbation theory, in which all relative phases between the
baryons and mesons are completely fixed by the flavor SU(3) symmetry.

6.2.2 Basic idea

Here we would like to explain briefly our method to calculate the magnetic moments of the
N(1535) resonance, which was originally proposed in Ref. [588].

We consider meson-baryon scattering with I = 1/2 and S = 0 in which the N(1535)
resonance is dynamically generated through the non-perturbative resummation of the meson-
baryon loop diagrams as shown in Fig. 6.1. The resonance couples to the meson-baryon states
in an s-wave due to N(1535) having JP = 1/2−. With inserting the projection operator P =
|Φ(out)〉〈Φ(in)| of the resonance state into the scattering amplitude, the resonance contribution
is written as

TR
ij =

gigj√
s−MR + iΓR/2

, (6.2.3)

where MR and ΓR are the mass and width of the resonance,
√
s is the total energy of initial

state, and the indexes i, j specify the initial and final meson-baryon states, respectively. This

A)Here we do not consider relativistic resonance states, which are discussed in Ref. [628].
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Figure 6.1: Diagrammatic interpretation of non-perturbative resummation in the chiral uni-
tary model.

Figure 6.2: Feynman diagrams of the amplitudes tij(
√
s) and −it̃ij(

√
s) around energy region

of the resonance. Solid, dashed, wavy and double lines represent baryons, mesons, photon and
baryon resonances, respectively. In calculating −it̃ij(

√
s), we consider the diagrams which

contribute to the magnetic moments, and extract a factor in order to make the coupling of
resonance to photon to be magnetic moment in units of the nuclear magneton.

amplitude corresponds to the process shown as the upper diagram in Fig. 6.2. The coupling
strengths of the resonance to the meson-baryon states are expressed as gi = 〈i|H|Φ(out)〉 and
gj = 〈Φ(in)|H|j〉 with an interaction Hamiltonian H of the resonance with the meson-baryon
states. The couplings gi, gj are generally complex values. It is worth noting here that gj

appears in Eq. (6.2.3) without taking the complex conjugate in the extended Hilbert space
for the hermitian Hamiltonian V .

We also consider a meson-baryon scattering amplitude with a soft photon emission as
shown in lower panel of Fig. 6.2. With inserting the projection operator of the resonance
twice, the resonance contribution to the magnetic transition is written as

T γR
ij =

gi√
s−MR + iΓR/2

〈
Φ(−)

∣∣∣ µ̂
∣∣∣Φ(+)

〉 gj√
s−MR + iΓR/2

(
e

2Mp
(σ × q) · ε

)
,

(6.2.4)

with the photon momentum q, the photon polarization vector ε and the proton mass Mp,
which is used for the unit of nuclear magneton. It is important that, in Eq. (6.2.4), the
magnetic moment of the resonance is shown as a residue of the amplitude at the pole of the
resonance.

The basic idea to extract the resonance magnetic moment is the followings. At first, we
calculate the above two amplitudes within the chiral unitary approach and, then take a
ratio of the amplitudes TR

ij and T γR
ij after removing the trivial spin factor. Consequently

the ratio does not have the coupling constants gi, gj , which are irrelevant in the present
discussion. As we shall see later, the amplitudes TR

ij and T γR
ij can be calculated analytically

in the chiral unitary approach. The analytic solution allows us to investigate the structure
of the amplitudes in the complex plane, and finally the magnetic moment is calculated as
a residue on the top of the resonance pole in the energy complex plane. We also evaluate
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6.2. Formulation

the ratio of the amplitudes in the real axis in order to compare the results with experiments
directly, since it is very difficult to determine the magnetic moments in the complex plane
in the experiment (One could know the analytic structure of the amplitude in principle by
extensively detailed observation of the scattering as the determination of the pole position of
the resonance.). The detail discussion of the method will come later on.

6.2.3 Chiral unitary model

The chiral unitary model is an extension of the chiral perturbation theory to the resonance
energy region by imposing the unitarity condition, and allows us to investigate the properties
of the resonances which are expressed in the multiple scattering of hadrons.

As explained in chapter 4, assuming the elastic unitarity and neglect of the crossing sym-
metry in the N/D method [512, 511], the T-matrix amplitude can be written as

t = [1− V G]−1V, (6.2.5)

with the basic interaction V and the meson-baryon loop function G, which are given in the
following. This equation provides algebraically the solution to the Bethe-Salpeter equation,
which is diagrammatically shown in Fig. 6.1.

The basic meson-baryon interaction V is obtained from the chiral perturbation theory. Now
we are interested in the N(1535) resonance with JP = 1/2−, which will be seen in the s-wave
meson-baryon scattering. Hence the basic interaction is given by the Weinberg-Tomozawa
term in the chiral Lagrangian and is written in the non-relativistic form as

Vij =− Cij

4fifj
(2
√
s−Mi −Mj)

√
Ei +Mi

2Mi

√
Ej +Mj

2Mj
, (6.2.6)

with the channel indices (i, j), the meson decay constant fi, the baryon mass Mi, the baryon
energy Ei and the total energy in the center of mass system

√
s. The coefficients Cij are fixed

by chiral symmetry and are given in Tables D.5 and D.6 in Appendix. Note that we write
the meson decay constants depending on the channel i, which is different from Eq. (4.2.2) in
chapter 4.

The loop-integral function G, which implements the s-channel unitarity associated with
the meson-baryon intermediate states, is calculated with the dimensional regularization [503]:

Gi(
√
s) =i

∫
d4q

(2π)4
2Mi

(P − q)2 −M2
i

1
q2 −m2

i

=
2Mi

(4π)2

{
ai(µ) + ln

M2
i

µ2
+
m2

i −M2
i + s

2s
ln
m2

i

M2
i

+
q̄i√
s

[
ln(s− (M2

i −m2
i ) + 2

√
sq̄i) + ln(s+ (M2

i −m2
i ) + 2

√
sq̄i)

− ln(−s+ (M2
i −m2

i ) + 2
√
sq̄i)− ln(−s− (M2

i −m2
i ) + 2

√
sq̄i)

]}
,

(6.2.7)
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Chapter 6. Magnetic moments of the N(1535) resonance

where mi is the meson mass in channel i, and its three-momentum q̄i is defined by

q̄i(
√
s) =

√
(s− (Mi −mi)2)(s− (Mi +mi)2)

2
√
s

.

In Eq. (6.2.7), µ and ai(µ) are the regularization scale and the subtraction constants, which
are not constrained by the unitarity condition nor chiral symmetry [512]. These parameters
has been already fitted for N(1535) to provide a good description for scattering observables
such as cross sections and phase shifts in Ref. [504].

The advantage of this method is that the amplitude tij can be calculated in an analytic
form as a result of the algebraic equation (6.2.5) and the analytic expression (6.2.7) of the loop
function. Therefore we can perform analytic continuation of the amplitude to the complex
energy plane in the second Riemann sheet, and there we are allowed to calculate positions and
residua of poles, if exist. The poles will have information of the corresponding resonances,
which may be free from contaminations of the background effects.

The calculated T-matrix element tij by Eq.(6.2.5) with Eqs. (6.2.6) and (6.2.7), if the
resonance is successfully generated, may be parametrized in the Breit-Wigner form with
moderate background in the vicinity of the resonance as

tij(
√
s)

∣∣∣∣√
s∼MN∗

∼ tRij(
√
s) ≡ gigj√

s−MN∗ + iΓN∗/2
+ tBG

ij , (6.2.8)

where MN∗ and ΓN∗ are the mass and width of the resonance, respectively, and gi gives the
coupling strength of the resonance to the meson-baryon channel i. The background term tBG

ij

is expected to be slowly varying function of
√
s in the resonance region. A diagrammatic

interpretation of Eq. (6.2.8) is shown in Fig. 6.2 (upper diagram).
In practical calculations, we use two bases for the channels. When we calculate the scat-

tering amplitudes, we adopt the physical basis such as π−p and ηn, because in the following
subsections we introduce the electromagnetic interactions, which are not isospin symmet-
ric. While, when we calculate the resonance properties, we use the isospin basis such as
πN(I = 1/2) and KΣ(I = 3/2), in order to specify the isospin of resonances. The two bases
are related each other through the Clebsh-Gordan coefficients.

6.2.4 Electromagnetic interactions in the chiral Lagrangian

In this subsection, we adopt the standard notation of chiral perturbation theory [513, 40, 514].
By gauging the baryon kinetic term in the chiral Lagrangian, we obtain the BBγ coupling:

LB
(γ) = −eTr

(
B̄γµ[Q,B]

)
Aµ , (6.2.9)

with the quark charge matrix Q = diag(2,−1,−1)/3, and the photon field Aµ, and octet
baryon field B. This Lagrangian provides the normal magnetic moments of the ground state
baryons.

In addition, there are terms for the anomalous magnetic moments in the effective chiral
Lagrangian [629];

LMB
(γ) =− i

4Mp
bF6 Tr

(
B̄[Sµ, Sν ][F+

µν , B]
)− i

4Mp
bD6 Tr

(
B̄[Sµ, Sν ]{F+

µν , B}
)

, (6.2.10)
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where Mp is the mass of proton, bF6 and bD6 are the low energy constants, F+
µν = −e(ξ†QFµνξ+

ξQFµνξ
†) with ξ = exp{iΦ/√2f} and Sµ is a covariant baryon spin operator. The octet

meson and baryon fields Φ and B are given in Appendix B.1.
Expanding the ξ fields, we obtain the magnetic moments of the ground state baryons

in terms of bD6 and bF6 in the chiral limit, which satisfy the following Coleman-Glashow
relations [630];

µΣ+ = µp, 2µΛ = µn, µΣ− = µΞ− , µΞ0 = µn, µΣ− + µn = −µp,

2µΣ0Λ = −
√

3µn, 2µΣ0 = µΣ+ + µΣ− .
(6.2.11)

These relations are independently of the low energy constants.
Recall that the magnetic moments derived from the Lagrangian (6.2.10) are the anomalous

magnetic moments, while the normal magnetic moments come from the covariant derivative
term (6.2.9). However, the contributions from the normal magnetic moments are exactly the
same as the first term of Eq. (6.2.10) except the global factor bF6 . Indeed the normal magnetic
moments just shift the factor bF6 to bF6 + 1. Therefore we will absorb the normal magnetic
moments into bF6 in the rest of this article. We need to be careful that the values we show
are different from the low energy constant bF6 which appears in chiral perturbation theory.

Fitting the magnetic moments written in terms of bD6 and bF6 to data, we find the param-
eters [629]

bD6 = 2.39, bF6 = 1.77. (6.2.12)

In spite of the use of the only two parameters, the tree level calculation provides good results.

6.2.5 Soft photon emission amplitude

Here we calculate the photon emission amplitude shown in the bottom of Fig. 6.2. Since
the baryon resonance is expressed in the multiple scattering of the meson and baryon, the
coupling amplitude is obtained by insertion of the elementary photon couplings shown in
Fig. 6.3 into the meson-baryon multiple scattering in which the resonance is dynamically
generated. Namely we consider the Feynman diagrams shown in Fig. 6.4.

The elementary coupling of the photon to the meson baryon scattering is given in the chiral
perturbation theory discussed in the previous section. There are three relevant diagrams for
the elementary coupling, as shown in Fig. 6.3. First of all, the diagram (c) does not contribute
to the magnetic component of the meson-baryon scattering for the 1/2− resonance, because of
the s-wave nature of the meson-baryon coupling. Next we express the contributions from the
two terms (a) and (b) as −it̃(a)

ij (
√
s) and −it̃(b)ij (

√
s), respectively. Then, the whole amplitude

is given by

−it̃ij(
√
s) =

(
−it̃(a)

ij (
√
s)

)
+

(
−it̃(b)ij (

√
s)

)
, (6.2.13)

In the following, we calculate these two contributions, combining the elementary vertices
shown in Fig. 6.3 with the transition amplitude shown in Fig. 6.1.
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(a) (b) (c)

Figure 6.3: Photon coupling diagram in −it̃ij(
√
s). We consider that there are meson-baryon

loops on the left and right sides of these vertices.

+ + + ·
·
·


+ + + ·
·
·


(a)

(b)

Figure 6.4: Diagrams for the coupling of the photon to the resonance dynamically generated
in meson-baryon scattering.

The tree level amplitude of (a) is obtained by expanding the chiral Lagrangian (6.2.10) in
terms of the meson field;

V BBMMγ
ij = ie

σ × q
2Mp

· εAij ,

with

Aij =
1

2fifj
[Xijb

D
6 + Yijb

F
6 ],

where the coefficients Xij and Yij are given in Tables D.15 and D.16 in Appendix. Inserting
this tree level amplitude between two meson-baryon scattering amplitudes tij , we obtain the
amplitudes shown in Fig. 6.4 (a);

−it̃(a)
ij = tilGlAlmGmtmj , (6.2.14)

after removing the spin factor.
The diagram (b) in Fig. 6.3 is calculated by multiplying the magnetic moment of the ground

state baryon µl and the loop integral with the one-meson and two-baryon propagators G̃l.
Multiplying the meson-baryon scattering amplitude to generate the resonance on both side,
we obtain the contribution from the diagram (b):

−it̃(b)ij = tilG̃lµltlj . (6.2.15)

In the soft photon limit, the loop function G̃l is obtained by the derivative of the loop integral
with the one meson and one baryon propagators in terms of the center of mass energy as

G̃l(
√
s) =i

∫
d4q

(2π)4
2Ml

(P − q)2 −M2
l

2Ml

(P − q)2 −M2
l

1
q2 −m2

l

=− ∂

∂
√
s
Gl(
√
s). (6.2.16)
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Figure 6.5: Diagrams of off-diagonal components in G̃ including Σ0Λ transition in the S = 0
channel.

As a consequence of this property, the loop function G̃l can be calculated in the analytic
form. This enables us to perform the analytic continuation of the amplitude and to search
its poles in the complex plane. As we shall see later, the calculation of the magnetic moment
in the complex plane is free from the contamination from the non-resonant component.

Since the photon allows the Σ0Λ transition in the magnetic coupling, there the different
baryons enter to the loop as shown in Fig. 6.5. This implies that the G̃ is no longer a
diagonal matrix in terms of the channel. As pointed out in Ref. [588], in the case of the
calculation of the magnetic moment of the Λ(1405) (I = 0), the effects of the Σ0Λ transition
is negligible, because the transition changes isospin from 0 to 1 and contributes only to the
isospin breaking. However, in the present case for the N resonance (I = 1/2), the Σ0Λ
transition occurs among the KΣ0 and KΛ and both channels have I = 1/2, which is the
same isospin as the N∗ resonance. Therefore, there is no such a suppression of the transition
due to the isospin breaking like the Λ(1405) case. Indeed, we have checked numerically that
the inclusion of the Σ0Λ transition provides not a small effect to the amplitude −it̃(b)ij .

The transition amplitude is calculated by putting the Σ0 and Λ masses to the propagators
in the second line of Eq. (6.2.16). Here we approximate the loop function with the Σ0 and Λ
masses as the average of the loop functions of Σ0 and Λ, since we want to use their analytic
forms:

G̃MΛ,MΣ0(
√
s) =

1
2

(
G̃MΣ0(

√
s) + G̃MΛ(

√
s)

)
, (6.2.17)

where M denotes K+ or K0 depending on the charge of the N∗ resonance we consider, proton
or neutron. We have checked that this is good approximation around the energies of N(1535),
by seeing the differences among Eq. (6.2.17), and G̃ for the Σ and Λ propagators. The effect
of this approximation to the resulting magnetic moment is ∼ 0.5µN . Since the N(1535)
resonance lies far from the thresholds of the KΣ0 and KΛ, there is no significant difference
among the values of these functions at energies we consider, although these functions give the
different values around the thresholds, where G’s are not smooth functions and G̃’s diverge.

Finally, considering the transition effect, we obtain the contribution from the diagram (b)
as

−it̃(b)ij = til
[
δlmG̃lµl + G̃lm µ(Σ0Λ)

]
tmj , (6.2.18)

where G̃lm has components only in the transition.
In this way, combining Eqs. (6.2.13), (6.2.14), and (6.2.18), we obtain the meson-baryon

scattering amplitude with a soft photon emission −it̃ in the chiral unitary model. Around
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the resonance energy region, where the pole contribution becomes dominant, the amplitude
−it̃ can be interpreted as the Breit-Wigner form of resonance:

−it̃ij(
√
s)

∣∣∣∣√
s∼MN∗

∼ −it̃Rij(
√
s) ≡

(
gi√

s−MN∗ + iΓN∗/2
+ tBG

)

× µN∗ ×
(

gj√
s−MN∗ + iΓN∗/2

+ tBG

)
,

(6.2.19)

where µN∗ is the magnetic moment of the N∗ resonance.

6.2.6 Evaluation of the magnetic moments

Here we explain the method to evaluate the magnetic moments of the resonances from the
amplitudes tij and −it̃ij obtained in Eqs. (6.2.5) and (6.2.13). The later is given by the
combination of Eqs. (6.2.14) and (6.2.18). Around the resonance energy region

√
s ∼ MN∗ ,

we can regard these amplitudes as the Breit-Wigner form shown in Eqs. (6.2.8) and (6.2.19),
respectively. The basic idea to extract the magnetic moment is to take the ratio of ampli-
tudes tij and −it̃ij in order to single out the magnetic moments by canceling the resonance
propagators and the couplings. Technically, there are two methods to calculate the magnetic
moment; one is to extract it on the real axis and the other is to evaluate it in the complex
plane [588]. We shall see both methods in the followings.

On the real axis, comparing the Eqs. (6.2.8) and (6.2.19) around the resonance energies,
we see that the ratio of the photon coupled amplitude −t̃Rij to the derivative of tRij in terms of
the energy gives the magnetic moment of the resonance, if we assume the background terms
are neglected;

µN∗(
√
s) =

−it̃Rij(
√
s)

− ∂
∂
√

s
tRij(
√
s)
∼ −it̃ij(

√
s)

− ∂
∂
√

s
tij(
√
s)

∣∣∣∣∣√
s∼MN∗

, (6.2.20)

In order to avoid contaminations of the background effect, we evaluate µN∗ at the resonance
energy

√
s ∼ MN∗ and choose the suitable external channel which strongly couples to the

resonance, as seen below.
The possible error of this approach can be estimated as follows. In the actual cases, since

there are background contributions, the denominator of the right hand side of Eq. (6.2.20) is
written as

∂

∂
√
s
tij(
√
s) = − gigj

(
√
s−MN∗ + iΓN∗/2)2

+
∂

∂
√
s
tBG
ij .

We can safely neglect the last term in this case, since the function tBG
ij is assumed to be a

slowly varying function of
√
s. However, we have to deal with the numerator carefully, due

to absence of derivative unlike the denominator function. Thus the background contribution
is estimated as

−it̃ij(
√
s)

− ∂
∂
√

s
tij(
√
s)

=µN∗(
√
s) + tBG

√
s− zN∗

gi
+ tBG

√
s− zN∗

gj
+

(
tBG

)2 (
√
s− zN∗)2

gigj
,

(6.2.21)
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where zN∗ ≡MN∗ − iΓN∗/2. Note that the terms other than the first one in Eq. (6.2.21) are
not always assumed to be small even around

√
s = MN∗ , because (

√
s−zN∗) is not negligible

in the case of the large imaginary part of zN∗ . Eq. (6.2.21) tells us the criterion to turn down
the background contribution, that is, to make gi larger and

√
s − zN∗ smaller. Therefore,

we choose the most effective external channel which strongly couples to the resonance, and
evaluate it at energy near the resonance peak. The couplings of the resonance to the meson-
baryon channels gi are calculated as the residua of the scattering amplitude tij at the pole of
the amplitude in the complex plane.

The other method, the calculation in the complex plain, is based on the fact that we obtain
the scattering amplitudes analytically, which enable us to perform the analytic continuation of
the amplitudes to the complex plane. This is a big advantage of the chiral unitary model, since
we can calculate the magnetic moment exactly on the pole and, therefore, the background
terms do not give any contributions. The magnetic moment is calculated as the residue of
the ratio function:

lim
z→zN∗

(z − zR)
−it̃ij(z)
tij(z)

= lim
z→zN∗

[
µN∗(z)

1 + (z − zN∗)tBG/(gigj)
+O(z − zN∗)

]

=µN∗(zN∗). (6.2.22)

Since the position of the pole generated in the unitarization does not depend on the channel,
the result (6.2.22) is independent of the channel chosen to calculate the magnetic moments.
In the actual calculation we evaluate numerically the position of the pole of the ratio function
and calculate its residue at the pole.

Now we have seen the two method to extract the resonance magnetic moment. Each
method has its merit and demerit. In the first method, due to the background contami-
nations the result depends on the choice of the channel and the energy where we evaluate
the magnetic moment, which gives the ambiguities of the evaluation. On the other hand, in
the second method, we can compute µN∗(zN∗) without the background contribution and the
channel dependence. But the result is conceptual, since experiment cannot directly achieve
the complex plane. Hence, we will show the results of both method.

6.3 Numerical results

In this section, we show the results of numerical calculations. First, we present the input
parameters and calculate S = 0 meson-baryon scattering amplitudes in the chiral unitary
model. Next, using the same parameters, we calculate the magnetic moments of the N(1535)
resonance. In the following, we denote the two charge states of N(1535) as n∗(Q = 0) and
p∗(Q = 1).

6.3.1 The N(1535) resonance in the chiral unitary model

The resonance states are obtained by solving the scattering equation (6.2.5), whose coefficients
Cij are shown in Tables D.5 and D.6, while the coefficients Xij and Yij for the magnetic
moments are given in Tables D.15 and D.16. For the mass of the particles mi and Mi, and
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Table 6.1: Coupling strengths of the N(1535) resonance to meson-baryon channels. All the
channels have isospin I = 1/2.

|gπN |2 |gηN |2 |gKΛ|2 |gKΣ|2
n∗ 0.623 2.30 1.93 7.29
p∗ 0.619 2.35 1.88 7.37

the magnetic moments of the ground state baryons µi, we use the physical values taken from
the Particle Data Group (PDG) [144]. The low energy constants bF6 and bD6 are given by
Eq. (6.2.12). In order to calculate the loop function (6.2.7), we use the regularization scale
µ = 630 MeV and the following channel dependent subtraction constants

aπN = 0.711, aηN = −1.09, aKΛ = 0.311, aKΣ = −4.09. (6.3.1)

which are equivalent to the values with µ = 1200 MeV in Ref. [504] because of the relation
a(µ′) = a(µ) + 2 ln(µ′/µ). We use the common value for each isospin multiplet. These
constants are essential to generate the N(1535) resonance [6, 7]. We adopt the physical
meson decay constants,

fπ = 93 [MeV], fK = 1.22× fπ, fη = 1.3× fπ, (6.3.2)

following Ref. [504].
Using these inputs, we calculate the scattering amplitudes (6.2.5), which well describes the

S11 phase shifts, the scattering amplitudes and the total cross section of π−p → ηn. In the
complex energy plane, we find poles at

zn∗ = 1536.01− 37.06i [MeV] (Q = 0),

zp∗ = 1531.01− 36.38i [MeV] (Q = 1),
(6.3.3)

whose real and imaginary parts correspond to the mass MN∗ and width ΓN∗/2, respectively,
for the Breit-Wigner parametrization (6.2.8). The width ∼ 72 MeV is consistent with the
most recent experiments [631, 632] (95± 25 MeV), although it is smaller than PDG estima-
tion (150± 50 MeV) [144]. Note that before including the electromagnetic interactions, the
difference between n∗ and p∗ comes from the tiny isospin violation due to the particle mass
differences.

Their coupling strengths |gi|2 to the various meson-baryon channels are shown in Table 6.1.
From this table, we see that the KΣ channel has the largest coupling strength to the N(1535)
resonance, which indicates that the resonance is a quasi-bound state of KΣ, as pointed out
in Ref. [559]. We use this channel to calculate the magnetic moment on the real axis. At the
energy of the threshold of N(1535), the πN and ηN channels open. Therefore, the decay of
the resonance is dominated by ηN channel, which is a characteristic properties of N(1535).
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6.3.2 Magnetic moments of the N(1535) resonance

We first show the results obtained in the complex plane, calculating numerically the residues
of the ratio function in Eq. (6.2.22) at the poles obtained in Eq. (6.3.3);

〈
n∗(in)

∣∣∣ µ̂
∣∣∣n∗(out)

〉
= −0.084− 0.233i,

〈
p∗(in)

∣∣∣ µ̂
∣∣∣p∗(out)

〉
= 1.120 + 0.170i,

(6.3.4)

in units of µN . Following the definition (6.2.1) and (6.2.2), we evaluate the magnetic moments
and the uncertainties

µn∗ = −0.08± 0.23,

µp∗ = 1.12± 0.17,
(6.3.5)

in units of µN . We have checked the channel dependence, and find, as expected, that our
magnetic moments do not depend on the choice of the channel of the amplitudes (the deviation
is less than 1%), since we can eliminate the non-resonant contributions on the top of the pole.

Next we calculate the magnetic moment µ(
√
s) on the real axis, where µ(

√
s) is given

by the ratio of the scattering amplitudes N = −it̃ij(
√
s) and D = − ∂

∂
√

s
tij(
√
s). To avoid

the contaminations from the background contribution, we use the external channel which
strongly couples to the N∗ resonance. In the present case, it is the KΣ channel as we have
already discussed in the previous section.

In Fig. 6.6, we plot the scattering amplitudes N and D for the KΣ → KΣ channel with
I = 1/2 in the different charge states. Notice that the amplitudes D do not contain the
electromagnetic interaction, and therefore, the D amplitudes for Q = 0 and Q = 1 are
the same when isospin violation is neglected. On the other hand, the amplitudes N are
different from each other due to the photon couplings. It is worth noting that N(Q = 0) and
N(Q = 1) have opposite signs and these signs together with D determines the sign of the
magnetic moments. We evaluate the ratio,

µ =
−it̃ij(

√
s)

− ∂
∂
√

s
tij(
√
s)
, (6.3.6)

whose real and imaginary parts are plotted in the bottom of Fig. 6.6. Finally we determine
our value of the magnetic moments of the resonance calculated on the real axis as

µn∗ = [(−0.265± 0.009) + (−0.443± 0.065)i]µN ,

µp∗ = [(1.267± 0.016) + (0.455± 0.014)i]µN ,
(6.3.7)

with theoretical errors. The way to determine the mean value and errors is explained below.
If there were no background (non-resonant) contributions, for both N and D, the extreme

values of the real parts and zero of the imaginary parts (we shall refer to there points as
“resonance points”) would take place at the same value

√
s = MN∗ . In this ideal case, the

ratio N/D is a real number. However, in the actual calculations. As shown in Eq. (6.2.21),
this imaginary part is considered to be the background contamination. Therefore, we use
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Figure 6.6: Scattering amplitudes and the magnetic moments on the real axis. We plot the
real and imaginary parts of the KΣ→ KΣ amplitudes N = −it̃ij(

√
s) and D = − ∂

∂
√

s
tij(
√
s),

in Q = 0 and Q = 1. Solid bars represent the position
√
s = MR, expected by the Breit-

Wigner form. The magnetic moments Re[N/D] and Im[N/D] are calculated in units of the
nuclear magneton.

the real part of the ratio Re[N/D] as the mean value, and estimate the size of theoretical
error as the absolute value of the imaginary part of the ratio Im[N/D]. In addition, the
energy corresponding to the resonance points are not completely at the same value and
deviate slightly, especially in Q = 0. Therefore, we rely upon the resonance points for D,
which contains the derivative so expected to have much pure information, and evaluate the
magnetic moments at these two points, regarding the deviations from the mean value as
theoretical error, too.

The absolute values of Eq. (6.3.7) do not differ very much from the results (6.3.4). This
is because we adopt the KΣ channel, where |gi|2 is the largest and the background contribu-
tion is expected to be small. When we choose the other channels to evaluate the magnetic
moments, the difference from the results (6.3.4) becomes larger, due to the large background
effects (second and third lines of Eq. (6.2.21)).

Finally we summarize the results in Table 6.2. Combining the results in the complex plane
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Table 6.2: The magnetic moments of the N(1535) resonance in units of the nuclear magneton.

n∗ p∗

µ (complex plane) −0.08± 0.23 1.12± 0.17
µ (real axis) −0.26± 0.44 1.27± 0.46

and on the real axis, we show our final result of the magnetic moments as

µn∗(1535) = −0.25µN , µp∗(1535) = 1.1µN , (6.3.8)

where we adopt the signs from the results on the real axis, and absolute values from the
results in the complex plane. In next section, we discuss these results in detail.

6.4 Discussions

First we discuss the SU(3) relation by comparing the present results with the magnetic
moment of Λ(1670) obtained in the same framework [588]. Then we decompose the magnetic
moment into the various components in order to understand the origin of the obtained values.
Then we discuss the magnetic moments in the quark model and chiral doublet model, in
comparison with the present results.

6.4.1 The SU(3) relation

In Ref. [588], the magnetic moments of Λ(1670) are calculated in the chiral unitary model;

µΛ∗(1670) = −0.29µN . (6.4.1)

The Λ(1670) and N(1535) have JP = 1/2− and similar masses, so that they have been
considered to be members of the SU(3) octet. If the SU(3) symmetry is exact, the magnetic
moments of the octet should satisfy the Coleman-Glashow relations in Eq. (6.2.11), which
tell us that

µn∗ = 2µΛ∗ . (6.4.2)

In the present calculation µn∗ ∼ −0.08µN , the signs of the magnetic moments are consistent,
although the absolute values do not satisfy the relation.

The SU(3) relation is discussed more clearly by looking at the SU(3) decomposition of the
resonance states in terms of the coupling strengths gi. The coupling strengths in the SU(3)
basis are obtained by a unitary transformation using SU(3) Clebsh-Gordan coefficients [519].
In Table 6.3, |gi|2 in SU(3) basis are shown, where we observe that for both N(1535) and
Λ(1670), octet component are dominant. This fact explains qualitative agreement of the
relation between µn∗ and µΛ∗ in the chiral unitary model. Deviation from the relation comes
from the large mixture of the singlet component in Λ(1670) and SU(3) breaking effects.
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Table 6.3: Coupling strengths |gi|2 of N(1535) and Λ(1670) in SU(3) basis. Values for
Λ∗(1670) are taken from Ref. [519]

representation 1 8s 8a 10 10 27
n∗(1535) - 5.2 6.2 0.17 - 0.58
Λ∗(1670) 4.0 2.3 7.3 - - 0.16

6.4.2 Isospin decomposition

For later discussions, we decompose the magnetic moments in Eq. (6.3.8) into isoscalar (µS)
and isovector (µV ) components. These moments are defined by

µ S
V

=
1
2
(µp ± µn).

In units of nuclear magneton µN = e/2MN , these values are

µS = 0.52µN , µV = 0.60µN , (6.4.3)

The isoscalar magnetic moment of N(1535) is similar to that of the ground state nucleon
N(939), but the isovector one is much smaller than that of the nucleon µV (939) = 2.35µN .

More quantitatively, it is considered to express these values in units of resonance magneton
µN∗ ≡ e/2MN∗ with MN∗ = 1535 MeV, and extract the anomalous magnetic moments κ in
units of µN∗ . The results are

µS(1535) = 0.85µN∗ , µV (1535) = 0.98µN∗ , (6.4.4)

and

κS(1535) = 0.35µN∗ , κV (1535) = 0.48µN∗ .

These numbers may be compared with those of the nucleon (in units of nuclear magneton):

κS(939) = −0.06µN , κV (939) = 1.85µN .

Hence the strong isovector dominance as in the N(939) magnetic moments is not realized in
N(1535). The origin of the isoscalar component in N(1535) will be discussed below.

6.4.3 Decomposition into various components

In this subsection, we decompose the magnetic moments into various terms in order to un-
derstand qualitatively their origins. First we decompose the amplitude into the contributions
from the term in Fig. 6.3 (a) (contact vertex) and those from Fig. 6.3 (b) (photon attached to
baryon propagator). The total result is a linear combination of the two components as shown
in Eq. (6.2.13). In Fig. 6.7, we show the amplitudes corresponding to (a) and (b) terms for
Q = 0 and Q = 1. We see that the contribution from (a) is smaller in magnitude than (b),
and that the contributions of (a) and (b) have opposite (same) signs for Q = 0 (Q = 1).
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Figure 6.7: Real and imaginary parts of the KΣ→ KΣ amplitudes −it̃(a)
ij , −it̃(b)ij and −it̃ij =

−it̃(a)
ij − it̃(b)ij (dashed, dash-dotted and solid lines) in Q = 0 and Q = 1.

Therefore, there is a cancellation between them for Q = 0 in the total value, while for Q = 1
two terms are added with the same sign. This explains partly smaller magnetic moments of
Q = 0 than that of Q = 1. More quantitatively, the results in the complex plane are given as

µ
(a)
n∗ ∼ (0.395− 0.016i)µN , µ

(b)
n∗ ∼ (−0.479− 0.217i)µN ,

µ
(a)
p∗ ∼ (0.476− 0.193i)µN , µ

(b)
p∗ ∼ (0.644 + 0.363i)µN ,

(6.4.5)

where µn∗,p∗ = µ
(a)
n∗,p∗ + µ

(b)
n∗,p∗ . As compared with Eq. (6.4.3), these numbers imply that

the term µ(a) is dominated by the isoscalar piece, while the term µ(b) by the isovector piece.
The nonegligible values of µ(a) is the origin to weaken isovector dominance of the N(1535)
magnetic moments.

Let us now consider the the piece µ(b) and its isovector dominance. As shown in Fig. 6.3
(b), µ(b) is given by a sum of the diagrams where the photon couples to a ground state
baryon. In this case, we can draw a naive picture where the resonance magnetic moment
can be written as a sum of the magnetic moments of the ground state baryons weighted by
their probabilities in the resonance wave function. In Ref [627], considering N(1535) as a
quasi-bound state of KΣ, they decomposed the KΣ isospin state into physical states by the
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Clebsh-Gordan coefficients, and evaluate the magnetic moments of the ground state baryon.
Here we extend this estimation to sum up all the channels, multiplying |gi|2 as weight. First,
we define the magnetic moments of the isospin states, using the Clebsh-Gordan coefficients
and the magnetic moments of the ground states;

µπN (Q = 0) =
1
3
µn +

2
3
µp ∼ 1.22µN ,

µηN (Q = 0) = µn ∼ −1.91µN ,

µKΛ(Q = 0) = µΛ ∼ −0.613µN ,

µKΣ(Q = 0) =
1
3
µΣ0 +

2
3
µΣ− ∼ −0.557µN ,

µπN (Q = 1) =
2
3
µn +

1
3
µp ∼ −0.343µN ,

µηN (Q = 1) = µp ∼ 2.79µN ,

µKΛ(Q = 1) = µΛ ∼ −0.613µN ,

µKΣ(Q = 1) =
1
3
µΣ0 +

2
3
µΣ+ ∼ 1.86µN .

(6.4.6)

Multiplying the weight |gi|2 in Table 6.1, we calculate

µN∗ =
|gπN |2∑

j |gj |2µπN +
|gηN |2∑

j |gj |2µηN +
|gKΛ|2∑

j |gj |2µKΛ +
|gKΣ|2∑

j |gj |2µKΣ . (6.4.7)

The results are

µn∗ ∼ −0.74µN , µp∗ ∼ 1.55µN ,

which are similar values with those obtained in Ref. [627] (µn∗ ∼ −0.56µN and µp∗ ∼ 1.86µN ),
because in Eq. (6.4.7) the KΣ component (|gKΣ|2) dominates the N(1535) resonance (∼ 60
%). Naively, it is expected that this estimation corresponds to the contribution from −it̃(b)ij ,
where the magnetic moments of the ground states are summed.

6.4.4 Comparison with quark model

Here we discuss the present results in comparison with the quark model results. The details
how to compute the resonance magnetic moments have been presented previously [627], and
therefore, here we show some relevant points. In the quark model, the wave function of
N(1535) is given as a superposition of two spin (s = 1/2 and 3/2) states in the l = 1
70-dimensional representation of SU(6):

|N(1535)〉 = cos θ|s = 1/2〉+ sin θ|s = 3/2〉, (6.4.8)

where θ is a mixing angle of the two states. Actually, the spin s = 1/2, 3/2 states are coupled
with the orbital angular momentum l = 1 to yield j = s + l = 1/2. The magnetic moment
operator is a sum of spin and orbital angular momenta of three quarks,

µ =
1

2m

∑

i=1,2,3

(
σ3(i) + l3(i)

)
. (6.4.9)
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Figure 6.8: Magnetic moments as a function of the mixing angle θ in units of the nuclear
magneton.

By taking a matrix element between the quark model state (6.4.8), we obtain the magnetic
moment as a function of the mixing angle θ.

The result is presented in Fig. 6.8. As reported in Ref. [627], the mixing angle θ ∼ 150 ∼
−30 degrees of the Isgur-Karl quark model [329] yields the values

µn∗ = −1.2µN , µp∗ = 1.9µN . (6.4.10)

Although these numbers differ quantitatively from those in the chiral unitary model, they look
similar qualitatively. In fact, it is interesting to observe that this happens only in the vicinity
of the mixing angle θ ∼ 150 degree. The similarity between the predictions in the quark
model and the chiral unitary model was also reported for the axial coupling constant of N∗,
or equivalently the πN∗N∗ coupling constant (due to the Goldberger-Treiman relation) [584].

6.4.5 Magnetic moments in the chiral doublet model

In this section, we present yet another description for magnetic moments when the resonance
of negative parity is regarded as a chiral partner of the ground state nucleon in linear rep-
resentations of chiral symmetry. In addition to phenomenological aspects, such a point of
view may shed a light on the properties of spontaneous breaking of chiral symmetry. The
theoretical scheme for positive and negative parity nucleons has been discussed in detail in
Ref. [609, 610], and here we follow the essence of their description. The relevant point is
that the chirality structure of the electromagnetic coupling; the vector coupling is of chirality
even, while the tensor (anomalous magnetic) coupling is of chirality odd:

LγNN =− eN̄
(
γµQ+ iκ

σµνq
ν

2MP

)
NAµ

=− e (
N̄lγµQNl + N̄rγµQNr

)
Aµ − ie

(
N̄l
σµνqν
2MP

κNr + N̄r
σµνqν
2MP

κNl

)
Aµ,

(6.4.11)
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with the charge of the nucleons Q and the anomalous magnetic moments κ = κS +κV τ3. The
proton mass Mp is just used for the unit of the nuclear magneton. The right and left handed
components of the nucleon is defined by Nr,l = 1±γ5

2 N .
In the spirit of the theory of chiral symmetry, the electromagnetic coupling is regarded as a

part of the chiral invariant coupling with right and left chiral fields. In Eq. (6.4.11) the vector
term preserves chiral symmetry, while the tensor (anomalous) term does not appear so. In
order for the latter to be chirally symmetric, it should contain the chiral field U5 = σ+i~τ ·~πγ5.
When chiral symmetry is broken spontaneously, σ takes a finite expectation value 〈σ〉, which
survives the tensor term.

Another interesting possibility is to construct a chiral invariant tensor term in the mirror
model for positive and negative parity nucleons [609, 610], where the basis of the chiral
symmetry does not coincides to the physical basis. Denoting the two chiral basis fields as N1

and N2, the tensor coupling term takes on the form

Lmirror
tensor = − ieq

νAµ

2MP

(
N̄1σµνγ5κN2 + N̄2σµνγ5κN1

)
.

This is the lagrangian to the lowest order (n = 0) in powers of 〈σ〉n and is becoming a
dominant term as chiral symmetry is getting restored, 〈σ〉 → 0. Note again that the proton
mass MP here is introduced only for the unit and has nothing to do with the spontaneously
generated mass of nucleon in the linear sigma model. In the following discussion, we consider
only this leading order term of O(〈σ〉0), in order to reduce the number of free parameters.
Thus we consider the following Lagrangian for the photon-nucleons coupling:

Lmirror
γNN =− e (

N̄1γµQN1 + N̄2γµQN2 +
(
N̄1ΓµN2 + N̄1ΓµN2

))
Aµ

where we have used the notation Γµ = (ieκ/2MP )σµνq
ν .

As discussed in Ref. [609, 610], the physical nucleon and N(1535) fields are linear combi-
nations of N1 and N2;

N(939) = cos θN1 + γ5 sin θN2,

N(1535) = −γ5 sin θN1 + cos θN2 ,

where θ is a mixing angle. In the physical basis, the coupling term takes on the form
(N+ ≡ N(939), N− ≡ N(1535)):

Lmirror
γNN =− e (

N̄+γµQN+ + N̄−γµQN−
)
Aµ

+ sin 2θ(N̄+ΓµN+ + N̄−ΓµN−)Aµ

− cos 2θ(N̄+Γµγ5N− + N̄−Γµγ5N+)Aµ .

We find that the anomalous magnetic moments of N(939) and N(1535) are the same in units
of nuclear magneton; κp = κp∗ , κn = κn∗ . In the chiral unitary model, however, this is
not the case. It is interesting to see the differences in the two kinds of the “chiral ” models
[633, 634].

Let us now briefly discuss the transition moments. Note that the transition term has the
structure of E1 because of the parity. From the pion coupling strength of N(1535) decay, the
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mixing angle was estimated as θ ∼ 6.3 degree [609, 610, 608]. We can then use the proton
and neutron magnetic moments to fix the κ’s: κS sin 2θ = −0.06 and κV sin 2θ = 1.85. Using
these numbers, we find for the transition moments: µpp∗ = 8.42 and µnn∗ = −8.99. The
isovector dominance in these quantities is consistent with what is known from experiment,
but the magnitudes of these numbers are too large as compared with experimental data,
|µpp∗ | ∼ |µnn∗ | ∼ 1 in units of the nuclear magneton, as extracted from the helicity amplitudes
Ap

1/2 ∼ 95, An
1/2 ∼ −80 in units of 10−3GeV−1/2 [635, 636]. Phenomenologically the large

transition magnetic moment due to the small mixing angle does not agree with date. In
other words, the small transition magnetic moment known from experiment prefers to a large
mixing angle, which is not consistent with the decay strength ofN(1535) to πN . In any event,
magnetic moments of the nucleon as well as of its excited state provide useful information of
chiral symmetry of baryons.

In summary, we have seen the new possibility for the introduction of the N(1535) anoma-
lous magnetic moments. In this model, the N(1535) is represented as a chiral partner of
the nucleon in the linear realization of chiral symmetry. This picture is quite different from
the chiral unitary model, which is being discussed here. The chiral doublet model provides
κN = κN∗ for the magnetic moments, which is not the case of the chiral unitary model.
It is interesting to investigate such a difference of the magnetic moments obtained by the
physically distinct models, in order to understand the structure of the N(1535) well.

6.5 Observation of the N ∗ magnetic moment

In this section, we would like to discuss possibilities of the experimental observations of the
N∗ magnetic moments. The N(1535) has the special feature that this resonance strongly
couples to the ηN system, which is not seen in the other N∗ resonances. Thus the η meson in
the finial state may be regarded as a probe of N(1535) in the intermediate state. In order to
observe the N(1535) magnetic moments, here we would like to calculate cross sections of the
following two photon-emission processes; γN → γηN and π−p → γηn, and we investigate
sensitivity of their cross sections to the value of the magnetic moments of N∗. Such processes
that two-boson emission on nucleon target are discussed in Ref. [610, 637] to observe the sign
of the πN∗N∗ coupling. In the present work, we follow their method to calculate the cross
sections of the above processes.

In the calculations of the cross sections, we use the Lagrangian formulation for N∗, where
theN∗ is described as a well-defined field and its propagator is assumed to be the Breit-Wigner
form with the mass MN∗ = 1535 MeV and the width ΓN∗ = 150 MeV. The Lagrangians used
in the present calculations are shown in Appendix B.2.

Now we assume the N∗ dominance hypothesis in the η-N system near the threshold region,
that is, the η meson can couple only to the N and N∗ transition, and the other resonances
do not couple to the η meson. It is shown in Ref. [610] that this hypothesis reproduces the
N(1535) resonance well in the πN → ηN process. Then the relevant diagrams for these
processes are shown in the Fig. 6.9. The diagrams a and b are used only for the pion-induced
process. Since we consider the photon-eta production processes in the energies close to the
threshold, the final photon and eta meson have small energies and, therefore, the dominant
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Figure 6.9: The relevant diagrams for the processes γN → γηN and π−p → γηn. The
diagram 0 is only for the pion induced process. The initial boson is ether photon or pion.
The solid and double-solid lines denote N and N∗, respectively. The dotted and wavy lines
in the final state are the emitted photon and eta meson, respectively.

contributions come from the diagrams a, 1, 2, 9 as a result of their small energy denominators.
The diagram 2 is the one in which the magnetic moment of N∗ appears, and we expect that
the interference effects of this diagram with the other dominant diagrams is sensitive to the
value of the N∗ magnetic moments.

The differential cross section of the photon-eta production process is given as

dσ =
2MN

4
√

(pi · ki)2 −M2
Nm

2
IB

1
2

1
2

∑

spin

pol.

|Tfi|2dΦ , (6.5.1)

where the summation is taken over the spin of the initial and final nucleons and the polariza-
tion of the final (and initial) photon, and the factors in front of the summation are for taking
averages of the spin and polarization in the final state. The mass mIB denotes the mass of
the initial boson, photon or pion in the present case. The phase space of the three-particle
state is given by

dΦ = (2π)4δ(pi + ki − pf − kγ − kη)
d3~kγ

(2π)32Eπ

d3~kη

(2π)32Eη

2MNd
3~pf

(2π)32Ef
, (6.5.2)

where kγ = (Eγ ,~kγ), kη = (Eη,~kη) and pf = (Ef , ~pf ) are momenta for the finial photon, eta
and nucleon, respectively. In the center of mass frame, Eq. (6.5.2) is written as

dΦ =
MN

4(2π)5
dEγdEfdαd(cosβ)dγ.

Here α, β, γ are the Eular angles, which specify the plane where the three momenta in the
final state lie. The normalizations of the state and wave function for nucleon are

ū(α)(p)u(β)(p) = δαβ, 〈p|p′〉 =
E

MN
(2π)3δ3(~p− ~p′).

In the calculations of the cross sections, we perform the integral over the three-body phase
space with the Monte Carlo method. The number of the integration points in the present
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Figure 6.10: Energy spectra of the emitted photon in the photon-induced process. The energy
of the initial photon is 1000 MeV. The solid and dotted lines denote the proton and neutron
targets, respectively. The anomalous magnetic moments of p∗ and n∗ are assumed to +3
(black circle) or −3 (white circle) in units of nuclear magneton.

calculations are taken larger than 10,000, which may be enough to converge the Monte Carlo
integral. The details of the Monte Carlo method for the three-body final state are discussed
in Ref. [610, 637].

Shown in Fig. 6.10 are the energy spectra of the emitted photon in the photon-induced
processes with the proton and neutron targets; γN → γηN . In order to see the sensitivity
of the effect of the magnetic couplings of N∗ to the cross sections, the anomalous magnetic
moments for the nucleon resonances are assumed to be +3 or −3 in units of nuclear magneton,
although the predicted values by the present work are much smaller.

In the case of the proton target, where we investigate the magnetic moment of p∗, the
resonance magnetic moment is not sensitive to the energy spectrum of the emitted photon,
as shown in Fig. 6.10. In order to see how large contribution is given by the diagram 2, in
which the N∗ magnetic moment is involved, we show the energy spectra calculated with each
dominant diagram of Fig. 6.9. In Fig. 6.11, it is seen that the energy spectrum for the proton
target case is dominated by the contribution from the diagram 9 and that the diagram 2 is less
important in these energies. Therefore the γp→ γηp is not appropriate process to observe the
p∗ magnetic moment. The diagram 9 corresponds to the bremsstrahlung of the initial proton.
In fact, the bremsstrahlung contribution becomes larger with the faster charged particle and
the softer emitted photon. In addition, in the case of the charged particle proton, the electric
coupling of the proton to the photon gives larger contributions than the magnetic one at low
energies of the emitted photon, since the magnetic coupling linearly depends on the photon
momentum and, hence, is suppressed in energies near the threshold.

On the other hand, in the case of the neutron target, the sensitivity of the magnetic
moment is seen in the higher energies of the spectra as a result of the interference effects.
Here we would have chance to observe the magnetic moment of n∗, although the cross sections
are quite small and the all participants in this reaction are neutral particles. As shown in
Fig. 6.11, the diagram 9 is less dominant than the proton target case, since there are no
electric couplings for the neutron target case. Rather than the amount of the cross section,
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Figure 6.11: Separated contributions for the dominant diagrams to the energy spectra in the
photon-induced process with the initial photon energy Ei = 1000 MeV. The upper panel (a)
is for the proton target case. The lower panel (b) is the same for the neutron target case.
The anomalous magnetic moments of p∗ and n∗ are +3µN . The lines with black circles, open
circles, triangles, diamonds, squares and down-triangles denote the contributions from the
diagrams 1, 2, 4, 8, 9 and 12, respectively.

however, distinct signals of the dependence of the magnetic moments of N∗, such as position
of peak, are not seen in the energy spectra of the emitted photon.

Next we calculate the angular distributions of the emitted photon, which is expected to be a
better example to see the interference effects. In the calculations of the angular distributions,
we perform the integration with respect to the final photon energy from 80 MeV, since we
want to see the interference effects of the diagram 2 to the others and the diagram 2 gives
dominant contributions at photon energies larger than 80 MeV as seen in Fig. 6.11. Shown in
Fig. 6.12 are the calculated angular distributions in terms of the angle θ between the incident
and final photons. Here we find the distinct angular dependences in the case of the neutron
target, which would be observed. We also plot in Fig. 6.12(b) the angular distributions
with the N∗ magnetic moments obtained by the chiral unitary model and the quark model.
It might be difficult, however, to distinguish these two model in experiment. We show in
Fig. 6.13 the separated contributions to the angular distributions to the emitted photon. As
seen in the figure, the diagram 2 becomes the dominant diagram in the case of the neutron
target, while, in the proton target case, the diagram 9 is still the most dominant diagram.

Finally we discuss the pion-induced process briefly. As discussed before, in the case of
neutron, the value of the n∗ magnetic moment is sensitive to the cross sections, since the
magnetic contributions is relatively enhanced due to the absence of the electric coupling.
Thus, we would expect that the π−p → γηn process would be good to observe the mag-
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Figure 6.12: Angular distributions of the emitted photon in the photo-induced process with
the initial photon energy 1000 MeV. The integration with respect to the emitted energy is
performed from 80 MeV to the threshold. The upper panel (a) is for the proton target, and
the lower panel (b) is the same for the neutron target. The anomalous magnetic moments of
N∗ is assumed to +3 (open circle) or −3 (black circle) in units of nuclear magneton. In the
case of the neutron target, the plots with the N∗ magnetic moments obtained in the chiral
unitary model (µ(a) = −0.25) and in the quark model (µ(a) = −1.2) cases are shown by the
lines with open squares and triangles. respectively.

netic moment of n∗. Unlike our expectation, however, in this case, we conclude that it is
very difficult to extract the magnetic moments of N∗, since the diagrams a and 9 are the
most dominant contributions to the cross sections, as shown in Fig. 6.14. These diagrams
corresponds to the bremsstrahlung of the initial charged particles. Since the initial pion and
proton have large momenta to create the eta meson at the final state, they emit the more
photon than the slow intermediate n∗.

6.6 Summary

We have calculated the magnetic moments of the N(1535) resonance using the chiral unitary
model. We have obtained the magnetic moments of the resonances as µn∗(1535) ∼ −0.25µN

and µp∗(1535) ∼ +1.1µN . Compared with the results of Λ resonances in Ref. [588], the sign
of the Coleman-Glashow relations (6.2.11), which comes from the SU(3) symmetry of octet,
are satisfied among Λ∗(1670) and n∗(1535) in the chiral unitary model. This implies that
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6.6. Summary

1/2− resonances are the member of an SU(3) octet. The present results qualitatively agree
with the results of the constituent quark model of Ref. [627]. However, the absolute values of
these results are different, so the experimental measurement will bring the information of the
structure of the baryon resonances. Finally we have computed reaction cross section in order
to observe the resonance magnetic moments; γN → γηN , π−p→ γηn. The difference in the
magnetic moments is, however, not very much reflected in the bremsstrahlung processes.
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Chapter 7

The coupling of K̄∗N to the Λ(1520)

We study the coupling of the Λ(1520) ≡ Λ∗ resonance to the K̄∗ vector meson and nucleon.
This coupling is not directly measured from the resonance decay, but is expected to be
important in hyperon production reactions, in particular for the exotic Θ+ production. We
compute the coupling in two different schemes, one in the chiral unitary model where the Λ∗

is dominated by the quasi-bound state of mesons and baryons, and the other in the quark
model where the resonance is a p-wave excitation in the three valence quarks. Although it is
possible to construct both models such that they reproduce the K̄N and πΣ decays, there is
a significant difference between the Λ∗K̄∗N couplings in the two models. In the chiral unitary
model |gΛ∗K̄∗N | ∼ 1.5, while in the quark model |gΛ∗K̄∗N | ∼ 10. The difference of the results
stems from the different structure of the Λ∗ in both models, and hence, an experimental
determination of this coupling would shed light on the nature of the resonance. This topic is
reported in Ref. [14].

7.1 Introduction

In chapter 5, we have seen that the Λ(1405) resonance is generated in s-wave K̄N scattering.
An interesting feature of such a dynamically generated Λ(1405) is that it is a superposition
of two poles near the nominal mass region, one of which couples dominantly to the K̄N and
the other to πΣ state.

Recently, another Λ resonance, the Λ(1520) ≡ Λ∗ of JP = 3/2−, has been investigated
in the chiral unitary models. In Refs. [561, 415], the resonance was described as a quasi-
bound state of πΣ(1385) and KΞ(1530) in s wave. In these studies, the identification of some
baryon resonances with s-wave quasi-bound state of an octet meson and a decuplet baryon
has been extensively studied. This approach is further extended in particular to the Λ∗, by
including the d-wave channels of mesons and ground state baryons [638, 639, 640], leading to
a successful description of existing data.

The Λ∗K̄∗N coupling is worth being studied. In the experimental data [641] and its
analysis for Λ∗ photoproduction [642], the important role of K̄∗ vector meson was suggested,
while a similar behavior was recently explained by means of the photo-K∗ contact term [643].
Not much is known for the properties of the interaction with K̄∗, which is expected to be
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important in associated Λ∗ and Θ+ production from deuteron as observed recently by the
LEPS collaboration [207]. As compared to the interactions with a kaon, we must rely much
on models for the estimation of the K̄∗ interaction, since there is no theoretical framework
to introduce it such as chiral symmetry, nor experimental information on the decay of the Λ∗

to K̄∗N , which is kinematically forbidden.
In this chapter, we investigate exclusively the K̄∗ coupling to the Λ∗, where the Λ∗ is

formed dominantly by the s-wave πΣ(1385) quasi-bound state, which is supplemented by the
KΞ(1530) state and the d-wave K̄N and πΣ states. The result is then compared with that of
the conventional quark model, where the Λ∗ is described as a p-wave excitation of one of the
three valence quarks. This comparison should be useful in testing the very different nature
of the two descriptions, as we will discuss in detail.

In section 7.2, we describe how the Λ∗K̄∗N coupling is computed in the chiral unitary
model for Λ∗. Numerical results and discussions are presented in section 7.3, where we
compare the result of the chiral unitary model with the quark model predictions. The final
section is devoted to summarize the present work.

7.2 Formulation

7.2.1 Structure of the amplitude

We consider an effective interaction Lagrangian [643] given by

LΛ∗K̄∗N =
gΛ∗K̄∗N
MK∗

Λ̄∗µγν(∂µK∗ν − ∂νK∗µ)N + h.c. , (7.2.1)

where MK∗ is the mass of the vector K∗ meson, h.c. denotes the hermitian conjugate, and
gΛ∗K̄∗N is the coupling constant. Because JP (Λ∗) = 3/2−, the coupling has two independent
components. In terms of multipoles, they are E1 and M2, which are related to the two
helicity amplitudes A1/2 and A3/2. In the E1 amplitude, the orbital angular momentum of
the decaying channel of K̄∗N is s wave, while in M2, it is d wave. Here, we investigate the
s-wave coupling which is the E1 amplitude in the chiral unitary model. We expect that the
s-wave coupling dominates in the small three momentum |k| region, where k is the relative
momentum of the (virtual) K̄∗ and N . Assuming the interaction region of about 1 fm, the
d-wave and hence the M2 component will become important for |k| > 400 MeV.

Applying the non-relativistic reduction to Eq. (7.2.1), and picking up the s-wave compo-
nent, we obtain the transition amplitude of K̄∗N → Λ∗ as

−itΛ∗K̄∗N = gΛ∗K̄∗NS† · ε , (7.2.2)

Here ε is the polarization vector of the K̄∗ and S is the spin transition operator [605],
which is defined by 〈 3/2,m+ λ |S†λ| 1/2,m 〉 = C(1

2 1 3
2 ;m,λ) where λ represents a spherical

component ±1 or 0 and C(j1 j2 J ;µ1, µ2) denotes the SU(2) Clebsch-Gordan coefficient for
J(µ1 + µ2) = j1(µ1) + j2(µ2).

In the chiral unitary model, the Λ∗ is generated dynamically in the scattering of the πΣ∗

and KΞ∗ channels in s wave and the K̄N and πΣ channels in d wave [638, 639]. In order
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Figure 7.1: Diagrams for the microscopic mechanism of K̄∗N → Λ∗ → πΣ∗ calculated in the
chiral unitary model.

to estimate the coupling of the Λ∗ resonance to the K̄∗N channel, we follow the microscopic
mechanism as illustrated in Fig. 7.1. In this case, the K̄∗N couples to the dynamically
generated Λ∗, represented by the amplitude T in the figure, decaying into the πΣ∗ channel.
Notice that the KΞ∗ channel does not appear in the first intermediate loop, since there is no
direct coupling from K̄∗N to KΞ∗. Schematically, the process K̄∗N → Λ∗ → πΣ(1385) can
be expressed as

−itChU =
∑

l

(−iTπΣ∗l)iGl(−itlK̄∗N ) , (7.2.3)

where TπΣ∗l is l → πΣ∗ amplitude obtained by the chiral unitary model [638, 639], Gl is
the loop function of the intermediate state l, and −itlK̄∗N is the amplitude of K̄∗N → l.
As shown in Fig. 7.1, there are four types of transition amplitudes for −itlK̄∗N with three
different intermediate states πΣ∗, πΣ, and K̄N .

Since we are considering first the s-wave coupling, the amplitude −itlK̄∗N should be written
as −itlK̄∗N = glK̄∗NS† ·ε, where glK̄∗N will be calculated later. We denote the total energy as√
s, and consider the energy region close to the Λ∗ pole

√
s ∼MΛ∗ with MΛ∗ being the mass

of the Λ∗ resonance. In this region, the chiral unitary amplitude Tij can be approximated by
the Breit-Wigner propagator Tij ∼ gΛ∗igΛ∗j/(

√
s−MΛ∗) with coupling constants gΛ∗i, where

i stands for the channels coupling to Λ∗. Then we have

−itChU ∼ −igΛ∗πΣ∗
i√

s−MΛ∗

∑

l

gΛ∗lGlglK̄∗NS† · ε . (7.2.4)
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Figure 7.2: Diagram for the resonance dominance model of K̄∗N → Λ∗ → πΣ∗.

On the other hand, with the s-wave coupling Eq. (7.2.2), the resonance model for the ampli-
tude K̄∗N → Λ∗ → πΣ(1385) can be written as shown in Fig. 7.2,

−itres = −igΛ∗πΣ∗
i√

s−MΛ∗
gΛ∗K̄∗NS† · ε ,

where gΛ∗K̄∗N is the Λ∗K̄∗N coupling constant that we are interested in. Hence comparing
this amplitude with Eq. (7.2.4), we extract the Λ∗K̄∗N coupling as

gΛ∗K̄∗N =
∑

l

gΛ∗lGlglK̄∗N . (7.2.5)

In the previous study [639], the coupling constants gΛ∗l have been determined as

gΛ∗πΣ∗ = 0.91 , gΛ∗πΣ = −0.45 , gΛ∗K̄N = −0.54 , (7.2.6)

which well reproduce the partial decay widths of the Λ(1520) resonance to these channels. In
the following, we evaluate GlglK̄∗N by calculating the diagrams in Fig. 7.1 one by one.

7.2.2 Computation of loop diagrams

Let us first consider the diagrams (a) and (b) in Fig. 7.1. The amplitudes for these diagrams
−it(a) and −it(b) are related to each other through the gauge condition

(−it(a)
µ − it(b)µ )kµ = 0 , (7.2.7)

where −it(i) ≡ −it(i)µ εµ and kµ is the momentum of the K̄∗. First we consider the diagram
(b). Utilizing the interaction Lagrangians given in Appendix, the amplitude of, for instance,
K̄∗0n→ π+Σ∗− for the meson pole diagram (b) at tree level is written as

−it(b)
π−Σ∗+K̄∗−n

=
1√
2
igεµ(2qµ − kµ)

i

(q − k)2 −m2
K

1√
3
g∗A
2f

S† · (q − k) . (7.2.8)

The momentum valuables in Eq. (7.2.8) are assigned as shown in Fig. 7.3, mK is the mass
of kaon, g = −6.05, g∗A = (D + F ) × 2.13, D + F = 1.26, f = fπ = 93 MeV. In order to
obtain the corresponding tree level amplitude for the contact diagram (a), −it(a)

π−Σ∗+K̄∗−n
,

we first replace εµ by kµ in Eq. (7.2.8), set q2 = m2
π = M2

K assuming the SU(3) limit (this
manipulation is only for the purpose of determining the contact term) and set q = 0. Then,
the contact term has to be

−it(a)

π−Σ∗+K̄∗−n
=

g√
2
g∗A
2f

1√
3
S† · ε ,
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Figure 7.3: Momentum assignment for the diagram (b) in Fig. 7.1.

in order to satisfy Eq. (7.2.7).
We can repeat the same operation for other charge states. Writing the K̄∗N and πΣ∗

states in isospin basis (recalling that |K∗− 〉 = −| 1/2,−1/2 〉 and |π+ 〉 = −| 1, 1 〉 in our
convention), we find

−it(a)

πΣ∗K̄∗N =
g

2
g∗A
2f

S† · ε , (7.2.9)

after projecting over I = 0. Inserting Eq. (7.2.9) into Eq. (7.2.3), we can now write

−it(a) = (−iTπΣ∗πΣ∗)iGπΣ∗gπΣ∗K̄∗NS† · ε , (7.2.10)

where GπΣ∗ is the loop function involving the π and the Σ∗:

GπΣ∗(
√
s) =i

∫
d4q

(2π)4
1

q2 −m2
π + iε

1√
s− q0 −EΣ∗ + iε

,

where EΣ∗(q) =
√
M2

Σ∗ + q2 and the coupling constant is given by

gπΣ∗K̄∗N =
1
2
g
g∗A
2f

. (7.2.11)

On the other hand, we can also extract the s-wave component of the meson pole term from
Eq. (7.2.8) after projecting over I = 0, and we find

−it(b)
lK̄∗N = gπΣ∗K̄∗N

2
3

q2

(q − k)2 −m2
K

S† · ε , (7.2.12)

where the variable q should be included in the loop function. Therefore, the amplitude for
this process can be expressed similarly as in Eq. (7.2.10) but with the meson-baryon loop
function GπΣ∗ replaced by the loop function with an additional factor, which is defined by

G̃πΣ∗K(
√
s, k) =i

∫
d4q

(2π)4
q2

(q − k)2 −m2
K + iε

1
q2 −m2

π + iε

1√
s− q0 − EΣ∗ + iε

.

Finally, combining the contributions from (a) and (b), we obtain

−it(a) − it(b) = (−iTπΣ∗πΣ∗)i
(
GπΣ∗ +

2
3
G̃πΣ∗K

)
gπΣ∗K̄∗NS† · ε .
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Figure 7.4: Momentum and spin indices assignment for the loop diagram in (d) in Fig. 7.1.

We now evaluate the amplitude for the diagram (c) and (d) in Fig. 7.1. The structure of
the first loop can be found from Fig. 7.4. Since we need the d-wave projection of the meson
pole term to balance the d-wave K̄N → πΣ∗ amplitude in the loop, we study the amplitude in
some detail. Using the interaction Lagrangians given in the Appendix, the I = 0 component
of the tree level amplitude for (d), for instance, is given by

−it(d)

K̄NK̄∗N = −3ig
D + F

2f
εµ(2qµ − kµ)

i

(q − k)2 −m2
π

σ · (k − q) .

The spin structure takes the form (ε · q)(σ · q), neglecting k which is assumed to be small.
Now, the d-wave structure obtained from σiqiεjqj → σiεj(qiqj − q2δij/3) will combine with
the d-wave structure coming from the K̄N → πΣ∗ vertex to produce a scalar quantity after
the loop integration is performed. We write

σiεj(qiqj − 1
3q2δij) = A

[
[σ ⊗ ε]2µ Y2(q̂)

]0

0
, (7.2.13)

where A is a constant. This indicates that the two vector operators σ and ε combine to
produce an operator of rank 2, which couples to the spherical harmonic Y2(q̂) to produce a
scalar. The right hand side can be written as

A
∑

µ

(−1)µ[σ ⊗ ε]2µ Y2,−µ(q̂) = A
∑
µ,α

(−1)µY2,−µ(q̂) C(1 1 2;α, µ− α)σαεµ−α .

To find the value of A we take the matrix element of both sides of Eq. (7.2.13) between the
states m and m′ so that

〈m|σiεj(qiqj − 1
3 |q|2δij)|m′〉

=A
∑

µ

(−1)µ Y2,−µ(q̂) εµ−m+m′C(1 1 2;m−m′, µ−m+m′) C(1
2 1 1

2 ;m′,m−m′) ,

(7.2.14)

where we have used 〈m|σα|m′〉 =
√

3 C(1
2 1 1

2 ;m′, α) with m = m′ + α. Considering specific
values of m and m′, we obtain

A =

√
8π
15

q2 . (7.2.15)

Following Ref. [638], we now include the K̄N → πΣ∗ vertex given by

−itK̄N→πΣ∗ = −iβK̄N q2 C(1
2 2 3

2 ;m,M −m)Y2,m−M (q̂)(−1)M−m
√

4π , (7.2.16)
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so that the total spin structure of the loop shown in Fig. 7.4 is essentially given by

J =
∑
m

∫
dΩq

4π
〈m|σiεj(qiqj − 1

3q2δij)|m′〉 C(1
2 2 3

2 ;m,M −m)Y2,m−M (q̂)(−1)M−m
√

4π ,

where we perform an average over the angular dependence in the integration over the loop
momentum q. Using Eqs. (7.2.14) and (7.2.15) this can be written as

J =

√
2
3

q2 (−1)1−M+m′
εm′−M

×
∑
m

C(1
2 1 1

2 ;m′,m−m′) C(1
2 2 3

2 ;m,M −m) C(1 2 1;m−m′,M −m) ,

where we have used the well known relations
∫

dΩq Y2,−µ(q̂) Y2,m−M (q̂) = (−1)µδµ,m−M ,

and

C(1 1 2;m−m′,m′ −M) = (−1)1−m+m′
√

5
3 C(1 2 1;m−m′,M −m) .

The product of three Clebsch-Gordan coefficients is then combined into a single one with
Racah coefficients, resulting in the identity

∑
m

C(1
2 1 1

2 ;m′,m−m′) C(1
2 2 3

2 ;m,M −m) C(1 2 1;m−m′,M −m)

=−
√

1
2 C(1

2 1 3
2 ;m′,M −m′) ,

so that, we finally have

J =
1√
3

q2 S† · ε . (7.2.17)

The above relation implies that for practical purposes we can replace in the first vertex
(ε · q)(σ · q) by the simple form 1√

3
q2 S† · ε and for the second vertex the factor βK̄Nq2 and

continue with the formalism exactly as in s-wave. Putting everything together, the amplitude
for the process shown in Fig. 7.1 (d) can be written as

−it(d) = (−iTπΣ∗K̄N )iG̃K̄Nπ gK̄NK̄∗NS† · ε , (7.2.18)

which has the same form as Eq. (7.2.11). In the above equation, we have defined

gK̄NK̄∗N =
√

3g
D + F

2f
,

and

G̃K̄Nπ(
√
s, k) =i

∫
d4q

(2π)4
q2

(q − k)2 −m2
π + iε

q2

q2on

× 1
q2 −m2

K + iε

MN

EN

1√
s− q0 −EN + iε

, (7.2.19)
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with qon = λ1/2(s,m2
N ,m

2
K)/2

√
s. The factor q2 appearing in the vertex of Eq. (7.2.17) is kept

in the loop. On the other hand, the amplitudes which we use for K̄N → πΣ∗ of Eq. (7.2.18)
factorize the on shell value q2on. This is the reason for the factor q2

q2
on

in Eq. (7.2.19) since in
Eq. (7.2.18) we write explicitly TπΣ∗K̄N .

The amplitude for the process shown in Fig. 7.1 (c) can be evaluated in a similar way as
described above. In this case we have

−it(c) = (−iTπΣ∗πΣ)iG̃πΣKgπΣK̄∗NS† · ε ,

where

gπΣK̄∗N =
√

2g
D − F

2f
,

with D−F = 0.33 and GπΣK given similarly as in Eq. (7.2.19) with the replacements π → K

and N → Σ.
Following Eq. (7.2.5), we thus obtain the coupling of the Λ(1520) with K̄∗N as

gΛ∗K̄∗N (
√
s, k) =gΛ∗πΣ∗

[
GπΣ∗(

√
s) +

2
3
G̃πΣ∗K(

√
s, k)

]
gπΣ∗K̄∗N

+ gΛ∗πΣG̃πΣK(
√
s, k)gπΣK̄∗N + gΛ∗K̄N G̃K̄Nπ(

√
s, k)gK̄NK̄∗N .

(7.2.20)

7.3 Results and discussions

7.3.1 Chiral unitary model

Before calculating Eq. (7.2.20), let us consider the momentum variables. Since Eq. (7.2.4) is
valid close to the pole of the resonance, we choose

√
s = 1520 MeV. For this

√
s, Λ∗ cannot

decay into K̄∗(892) and N(940). Here we assume that the K̄∗ is off the mass shell with the
nucleon being on-shell, which would be compatible with the K∗ t-channel exchange in Λ∗

photoproduction on the nucleon target. Then the energy of the K̄∗ can be given by

k0 =
√
s− EN (k) =

√
s−

√
M2

N + k2 ,

where we are in the center of mass frame. As we have seen, our formulation is consistent with
|k| ∼ 0, where the s-wave interaction is dominant. If |k| = 0, we obtain k0 =

√
s−MN ∼ 580

MeV, which is the maximum energy of the K̄∗ when the nucleon is on-shell.
In order to study the finite momentum effect and stability of the result, we vary the

momentum |k| from zero to 400 MeV, and plot the real and imaginary parts as well as the
absolute value of the Λ∗K̄∗N coupling constant in Fig. 7.5. For reference, we also plot the
energy k0 in the lower panel in Fig. 7.5. We observe that the result is stable against the
momentum |k| up to ∼ 200 MeV, where the s-wave coupling is expected to be dominant.
Numerical values are

gΛ∗K̄∗N ∼ 1.53 + 0.41i , |gΛ∗K̄∗N | ∼ 1.58 .
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Figure 7.5: Upper : Numerical results for the Λ∗K̄∗N coupling constant as a function of K∗

momentum |k| in the chiral unitary model. Thick solid line, thin solid line, and dashed line
represent absolute value, real part, and imaginary part of the coupling constant, respectively.
Lower : Energy of the K∗ as a function of |k|, assuming the nucleon is on-shell.

The complex phase is the relative one to gΛ∗K̄N = −0.45 given in Eq. (7.2.6).
Let us look at each component in detail. Substituting the numerical factors, Eq. (7.2.20)

can be written as

gΛ∗K̄∗N ∼− 0.042GπΣ∗ − 0.028G̃πΣ∗K + 0.0068G̃πΣK + 0.038G̃K̄Nπ . (7.3.1)

Note that the contribution from G̃πΣK is factor 5 smaller than the others, due to the D− F
factor.
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7.3.2 Quark model

In the quark model, Λ(1520) resonance is a p-wave state of 70-dimensional representation of
SU(6) [329]. In the spin-flavor group, it is a superposition of 21, 28, and 48. Here we use
the notation 2S+1D, where 2S + 1 is the degeneracy of spin states and D denotes a flavor
representation. In the standard quark model, Λ∗ is dominated by the flavor singlet 21 with
some mixture of 28; the spin quartet 48 has only a small fraction.

Such a wave function has been tested for the decay of Λ∗ → K̄N, πΣ, and has been proven
to work reasonably well [329, 644]. For the decay to the chiral mesons, the matrix elements
of the meson-quark interaction can be taken;

Lmqq = −igmqq q̄γ5Φq → gmqq

2mq
χ†σ ·∇Φχ ,

where χ is a two-component spinor, and in the second line the non-relativistic approximation
is performed. The SU(3) meson field is defined here by

Φ =




π0 + η√
3

√
2π+

√
2K+

√
2π− π0 − η√

3

√
2K0

√
2K− √

2K0 − 2η√
3


 .

Note that the definition is different from that in the chiral Lagrangians B.1. The meson-
quark coupling constant gmqq ∼ 2.6 is determined from the πNN coupling gπNN ∼ 13, and
the constituent quark mass is taken as 330 MeV for all u, d, s quarks for simplicity. The use
of a larger mass for ms will change slightly the SU(6) symmetric wave function such that the
excitation of the strange quark will be easier than the excitation of the u, d quarks. But we
expect that the following results are not affected too much.

For the K̄∗ (vector meson) coupling, we can use the interaction Lagrangian at the quark
level

Lvqq =gvqq q̄γµV
µq → − gvqq√

2mq

{
u†(i∇− i∇)s+ ∇× (u†σs)

}
· ε(K∗+) + h.c. , (7.3.2)

where ε(K∗+) is the polarization vector of the K∗+, the quark flavor is indicated explicitly
for the K̄∗ coupling, and the gvqq ∼ 3 is determined by the empirical ρNN coupling strength.
This Lagrangian of vector type coupling works well for baryon magnetic moments when
the K̄∗ is replaced by the photon after SU(3) rotation. For the ρNN , however, the tensor
coupling is slightly underestimated gT /gV ∼ 4, as compared with the strong tensor coupling
gT /gV ∼ 6 [645]. For the present study of qualitative analysis, however, we simply adopt the
Lagrangian (7.3.2).

In order to extract the relevant coupling strength, we compute the two transverse helicity
amplitudes,

a3/2 = −〈N(sz = 1/2),K∗(h = +1) |Lvqq|Λ∗(sz = 3/2) 〉
a1/2 = −〈N(sz = −1/2),K∗(h = +1) |Lvqq|Λ∗(sz = 1/2) 〉 .

Here sz represents the third component of spin and h the helicity of the photon. In general,
for a massive vector meson, there is another type of scalar or longitudinal one, which can be
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computed by the time component of the current. For the present purpose, however, the two
transverse components are sufficient. They are then related to the multipole amplitudes by

E1 = −1
2
a1/2 −

√
3

2
a3/2 ,

M2 =
√

3
2
a1/2 −

1
2
a3/2 .

The quark model calculation is rather standard, and so we just show the final result:

E1 = −i3
√

2
√
α

mq
gvqq

(
1− k2

6α

)
e−k2/6α

M2 = −i
√

6
√
α

4mq
gvqq

k2

6α
e−k2/6α ,

where k is the momentum ofK∗ and α is a harmonic oscillator parameter of the wave function
of the non-relativistic quark model, which is related to the size of the system by

〈r2〉 = 3/α .

The Λ∗K̄∗N coupling constant is then related to the E1 amplitude by an overall constant

gΛ∗K̄N =
3√
6
E1 . (7.3.3)

In the calculation, we consider a mixing of 21 and 28 states for Λ(1520) as

|Λ(1520) 〉 = cos θ| 21 〉+ sin θ| 28 〉 .

In the Isgur-Karl model, the mixing angle was obtained θ ∼ 0.4 [329]. The result is shown in
Fig. 7.6, where the coupling constant gΛ∗K̄∗N is shown as a function of K∗ three momentum
k for different mixing angles θ. The quark model value, in contrast with that of the chiral
unitary approach, is of order gΛ∗K̄∗N ∼ 10. In particular, the value increases slightly as the
mixing angle increases, which is a consequence of the interference between the two flavor
states. The difference between the values of the chiral unitary model and the quark model is
large, and it would be interesting to test the coupling by experiments. In reality, the physical
resonance state may be a mixture of the two extreme schemes of the chiral unitary and the
quark models. The coupling gΛ∗K̄∗N could be used to investigate such a hybrid nature of the
resonance.

For completeness, we would like to mention the phenomenological analysis of the gΛ∗K̄∗N
coupling constant. In Ref. [207], the gΛ∗K̄∗N is estimated from the Λ∗ photoproduction
data [641]. They fit the cross section at Eγ = 2.8-4.8 GeV by a Regge trajectory of K∗

exchange, and match the amplitude at Eγ = 2.3 GeV to the one calculated by the Born
terms with the effective Lagrangian approach which includes the gΛ∗K̄∗N in the K∗ t-channel
exchange. The result in the present convention is

gΛ∗K̄∗N = +7.1 or − 12.6 , (7.3.4)
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Figure 7.6: Quark model result for the Λ∗K̄∗N coupling as a function of K∗ momentum k,
for different mixing angles θ.

where we denote the relative ± sign to gΛ∗K̄N . However, this conclusion depends on the
assumption of the Regge trajectory of K∗ exchange, and the same data [641] can be equally
well reproduced with gΛ∗K̄∗N = 0 in a different model [643], where the Kroll-Ruderman term
plays a dominant role. In order to perform a precise phenomenological analysis, we need
further experimental information of the Λ∗.

7.4 Summary and discussions

In this chapter, we have studied the Λ(1520)K̄∗N coupling constant. The motivations are
twofold; one is to offer a model estimation for the unknown coupling constant which is
expected to be important in hyperon production reactions, and the other one is to test
different types of models for baryon resonances. In the chiral unitary model the resonances
are described as a meson baryon quasi-bound state which may indicate the importance of
hadron-like correlations in hadron structure.

Since the coupling constant has not been calculated in the chiral unitary model before, we
have shown here a detailed derivation. The resulting coupling constant gΛ∗K̄∗N is expressed
as a sum over contributions from various channels necessary for the formation of Λ∗. The
actual number of the coupling gΛ∗K̄∗N turned out to be of order 1-2, which is significantly
smaller than the quark model value of order 10.

The difference in the results in two models should be a consequence of the difference of
the model setup in various aspects. First, the quark model describes the Λ∗ as a three-
quark system, while it is five-quark description in the chiral unitary model. Second, in the
chiral unitary model, the Λ∗ is mainly a member of flavor 8, while in the quark model it is
presumably dominated by the flavor singlet 1. Third, the wave function of the Λ∗ would be
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dominated by the s-wave component of πΣ(1385), while it is a p-wave excitation in the quark
model. Such differences in the internal structure should be reflected in the Λ∗K̄∗N coupling.
If the actual Λ(1520) has a mixed structure of the meson-baryon quasi-bound state and the
three-quark state, the relevant coupling constant will be an intermediate value.

Since we have no experimental information of the coupling it would be very interesting to
have the experimental value. Photoproduction reactions such as γN → Λ∗K and γN → Λ∗K∗

may discriminate the coupling constant. In the K production case, comparison between
proton target and neutron target will be useful, since the K exchange and contact terms are
absent for the neutron target [643]. As a consequence, the t-channel behavior is dominated
by the K∗ exchange, so that the angular dependence is very sensitive to the strength of
the Λ∗K̄∗N coupling constant. Hence, the angular dependence of the cross section ratio of
proton and neutron will give us the information of the coupling constant of interest. It is also
interesting to investigate the γp → Λ∗K and γp → Λ∗K∗ reactions with Λ∗ going forward,
which is naively dominated by the u-channel diagram. When the exchanged particle is the
Λ∗, the cross section ratio of the K production and the K∗ production provides the ratio of
the coupling constants Λ∗K̄N and Λ∗K̄∗N . Information from such experiments as well as
theoretical comparison would provide further understanding of the resonance structure.
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Chapter 8

Determining the Θ+ quantum
numbers through a kaon-induced
reaction

In this chapter, we study the K+p → π+KN reaction for the study of the production of
the Θ+ with JP = 1/2±, 3/2+. The KN spectrum in the final state is studied in various
kinematical regions. We show that, independently of the quantum numbers of the Θ+, a
resonance signal is always observed with the final kaon in forward direction. In addition,
we also show how a combined consideration of the strength at the peak, and the angular
dependence of polarization observables can help determine the Θ+ quantum numbers using
the present reaction. This topic is reported in Refs. [17, 18, 19, 20].

8.1 Introduction

A recent experiment by LEPS collaboration at SPring-8 found a clear signal for an S = +1
resonance around 1540 MeV [16]. There are more than ten experiments which confirm the
existence of the Θ+, however, the spin and parity of the Θ+ have not yet been determined
experimentally. Theoretically, the parity of Θ+ is interesting and important. In the naive
quark model, all quarks can be put in the lowest 1/2+ orbit. Since s̄ carries negative parity,
the Θ(uudds̄) in this naive picture would have negative parity, in contrast with the chiral
quark soliton model [77], which predicts the positive parity. Therefore, it is strongly desired
to present a method to determine the spin and parity experimentally. This is the issue we
pursue in this chapter.

The evidences for the existence of the Θ+ are found in several photoproduction exper-
iments [16, 101]. However, the dynamical mechanisms of photo-induced reactions in the
energy region of Θ+ production are generally very complicated, because of, for instance, the
large momentum transfer for the strangeness production. In such a situation, alternative
reactions based on known elementary processes are most welcome in order to increase our
knowledge of the resonance and help determine properties like spin, isospin and parity. We
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present one particularly suited reaction with the process

K+p→ π+Θ+ → π+K+n or π+K0p. (8.1.1)

Characteristic features of this reaction are as follows.

1. This is a hadronic reaction, so that a large cross section is expected compared with the
photoproductions.

2. Momentum transfer is smaller than the photoproduction, to which the low energy ef-
fective theory can be safely applied.

3. The KN invariant mass can be precisely determined by measuring the π+ momentum
alone.

4. By choosing small momenta of the π+ in the final state, some of the known non-resonant
background contributions can be suppressed, and hence the Θ+ resonance signal will
be more clearly seen.

We calculate this reaction by assuming the Θ+ is in KN s wave (JP = 1/2−) or in p wave
(JP = 1/2+ or 3/2+) with isospin I = 0 or 1. We shall study all these possibilities, but
states with higher partial waves and higher isospin are not considered here. Since model
calculations of this kind always contains the uncertainties coming from the form factors
and unknown coupling constants, quantitative result of cross sections is not adequate to
determine the quantum numbers. Therefore, our aim here is to identify observables which
differ qualitatively depending on the quantum numbers of the Θ+.

8.2 Formulation

8.2.1 Kinematics of the reaction

A successful model for the reaction (8.1.1) was considered in Ref. [646] based on the chiral
perturbation theory, consisting of the mechanisms depicted in terms of Feynman diagrams in
Fig. 8.1. The pion pole term (a) and contact term (b) provide spin flip amplitudes propor-
tional to σ, derived from the derivative coupling for the (generalized) Yukawa vertices, while
the ρ exchange term (c) contains both a spin flip part and a non spin flip part. Having an
amplitude proportional to σ is important in the present context in order to test the parity of
the resonance. Hence, we choose a situation, with the momentum of the final pion pπ+ small
compared to the momentum of the initial kaon, such that the diagram (c), which contains
the S ·pπ+ operator can be safely neglected and the terms of Fig. 8.1 (a) and (b) will provide
the bulk for this reaction. If there is a resonant state for KN then it will be seen in the final
state interaction of this system. This means that in addition to the diagrams (a) and (b) of
Fig. 8.1, we shall have the resonant amplitudes shown in Fig. 8.2.

The restriction to have small pion momenta eliminates also other possible resonant con-
tributions like the one in the diagram of Fig. 8.3, which involves the σ · pπ+ coupling. One
could in principle have negative parity resonances instead of the intermediate neutron, which
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Figure 8.1: Feynman diagrams of the reaction K+p → π+K+n in the model of Ref. [646].
For the K+p→ π+K0p reaction, similar diagrams can be obtained by the isospin symmetry.
Note that the η exchange exists for the K0p final state in addition to the π0 exchange.
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Figure 8.2: Feynman diagrams of the reaction K+p → π+K+n with the Θ+ resonance. For
the K+p→ π+K0p reaction, similar diagrams can be obtained by the isospin symmetry.

involve an s-wave πNN∗ coupling, but the lightest one would be the N∗(1535) which would
be very much off the mass shell, rendering the contribution of the diagram negligible. Note
also that the consideration of N∗ resonances instead of the intermediate n, p states in Fig 8.2
is not usually done in chiral dynamics calculations since it is accounted for by means of
counterterms, or subtraction constants in the loop function which can be equally taken into
account by the choice of the cutoff [512]. In summary, we take into account the diagrams (a)
and (b) as background contribution in the present calculation. We show the assignment of
the kinematic variables in Fig. 8.4, which is summarized in Appendix 8.4.

8.2.2 Background terms

Let us first evaluate the meson pole term (a) and contact term (b) in Fig. 8.1, which are the
background contributions to the present reaction. With the meson-meson and meson-baryon
interactions derived from the chiral Lagrangians, these diagrams lead to the K+n→ π+KN
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Figure 8.3: Feynman diagrams of the reaction K+p → π+K+n with the Θ+ resonance and
u-channel nucleon pole.
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Figure 8.4: Kinematics of the K+p→ π+K+n reaction.

amplitudes [646, 647]

−iti = (ai + bikin · q′ + ci)σ · kin + (−ai − bikin · q′ + di)σ · q′, (8.2.1)

where i = 1, 2 stands for the final stateK+n,K0p respectively and kin and q′ are the momenta
of initial and final kaons. The coefficients ai and bi are from meson exchange terms, and ci
and di from contact terms. They are given by

a1 =− 1
3f2

(m2
K − 2mπω(q′)− ω(kin)ω(q′)− ω(kin)mπ) ·

√
2(D + F )

2f
1

p2
ex −m2

π

,

(8.2.2)

a2 =a2,π + a2,η, (8.2.3)

a2,π =− 1√
2f2

mπ(ω(kin) + ω(q′)) · D + F

2f
1

p2
ex −m2

π

, (8.2.4)

a2,η =
1√
6f2

(2ω(kin)ω(q′) +mπω(q′)−mπω(kin)− 2
3
m2

K +
2
3
m2

π) · 3F −D
2
√

3f
1

p2
ex −m2

η

,

(8.2.5)

b1 =− 1
3f2
·
√

2(D + F )
2f

1
p2
ex −m2

π

, (8.2.6)

b2 =b2,π + b2,η, (8.2.7)

b2,π =0 , (8.2.8)

b2,η =− 1√
6f2
· 3F −D√

3f
1

p2
ex −m2

η

, (8.2.9)

c1 =
√

2(D + F )
12f3

, (8.2.10)
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c2 =−
√

2D
12f3

, (8.2.11)

d1 =
√

2(D + F )
24f3

, (8.2.12)

d2 =− D + 3F
2

√
2

12f3
, (8.2.13)

where pex is the momentum of the meson exchanged in the meson pole term and mX is the
mass of meson X, for which we neglect the tiny isospin breaking effect. The three momentum
of the final pion is already assumed to be vanish in these formulae.

8.2.3 Resonant terms

Now let us turn to the resonance diagrams of Fig. 8.2 containing a loop integral, which is
initiated by the tree diagrams of Figs. 8.1 (a) and (b). We denote the momentum of the
intermediate kaon as q, and the amplitudes (8.2.2)-(8.2.13) are incorporated by replacing q′

by q. The resonance contributions to the KN → KN amplitudes are given by

t
(s)
K+n(K0p)→K+n

=
(±)g2

K+n

MI −MR + iΓ/2
,

t
(p,1/2)
K+n(K0p)→K+n

=
(±)ḡ2

K+n(σ · q′)(σ · q)
MI −MR + iΓ/2

,

t
(p,3/2)
K+n(K0p)→K+n

=
(±)g̃2

K+n(S · q′)(S† · q)
MI −MR + iΓ/2

,

(8.2.14)

for s wave, p wave with JP = 1/2+, and p wave with 3/2+, respectively. In these expressions,
MI is the energy of the K+n system in the center of mass frame, MR and Γ the mass and
width of the resonance (1540MeV, 20MeV), and q and q′ the momenta of the initial and final
kaon, respectively. S† is the spin transition operator from spin 1/2 to 3/2 states, which is
defined in Appendix A.1.2. The signs + and − stand for the K0p→ K+n amplitude in the
case one has I = 1 or I = 0 for the Θ+ resonance. The values of the coupling constants g, ḡ
and g̃ can be obtained from the Θ+ width

g2
K+n =

πMRΓ
Mq

, ḡ2
K+n =

πMRΓ
Mq3

, g̃2
K+n =

3πMRΓ
Mq3

. (8.2.15)

Note that the coupling constants for the p-wave resonances have dimension of [mass−1]. A
derivation for these relations can be found in Appendix A.4.1.

In the loop diagrams of Fig. 8.2, the momentum of kaon is now an internal variable q. In
performing the loop integral, the fact that kin is reasonably larger than q, allows us to make
an angle average of the meson propagator which simplifies the integrals. Furthermore, as
shown in Ref. [8] and also found in the meson baryon scattering processes [5], the amplitude
K+p→ π+K+n factorizes inside the loops with its on-shell value, which means in Eqs. (8.2.2)-
(8.2.13) one takes

ω(q) =
M2

I +m2
K −M2

N

2MI
,
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although they are inside a loop. Note that since we have chosen the π+ momentum small,
the K+n final state is also approximately in its center of mass frame and we assume this
kinematics in the variables.

In what follows, we calculate the K+p → π+K+n reaction, which can easily extrapolate
to the π+K0p final state by the isospin symmetry. The amplitudes for resonant terms are
given by

−it̃(s)i =
g2
K+n

MI −MR + iΓ/2

{
G(MI)(ai + ci)− 1

3
Ḡ(MI)bi

}
σ · kinSI(i),

−it̃(p,1/2)
i =

ḡ2
K+n

MI −MR + iΓ/2
Ḡ(MI)

{
1
3
bik

2
in − ai + di

}
σ · q′SI(i),

−it̃(p,3/2)
i =

g̃2
K+n

MI −MR + iΓ/2
Ḡ(MI)

1
3
bi

{
(kin · q′)(σ · kin)− 1

3
k2

inσ · q′
}
SI(i),

(8.2.16)

for s- and p-wave, and i = 1, 2 for K+n and K0p intermediate state, respectively. SI(i) gives
the sign for the K+n and K0p components in I = 0 and 1, namely, S0(1) = 1, S1(1) = 1,
S0(2) = −1 and S1(2) = 1. The function G(MI) and G̃(MI) are the loop functions of a
meson and a baryon propagator

G(MI) =
∫

d3q

(2π)3
1

2ω(q)
M

E(q)
1

MI − ω(q)− E(q) + iε
, (8.2.17)

G̃(MI) =
∫

d3q

(2π)3
q2 1

2ω(q)
M

E(q)
1

MI − ω(q)− E(q) + iε
, (8.2.18)

regularized with a three momentum cut off qmax = 630 MeV to reproduce the data of K̄N
scattering [5].

8.2.4 Formula for the cross section

When taking into account KN scattering through the Θ+ resonance, as depicted in Fig. 8.2,
the K+p→ π+K+n amplitude is given by the sum of the background term and the resonant
terms,

−it̃ = −it1 − it̃1 − it̃2. (8.2.19)

For completeness, as in the Λ(1405) production [8], we include a recoil factor in all terms to
account for O(p/M) relativistic corrections for the γµγ5∂µ BBM vertex, which is given by

Fi =

(
1− p

0(i)
ex

2Mp

)
.

In addition, we also consider the strong form factor of the BBM vertex for which we take a
standard monopole and static form factor

Ff (p) =
Λ2 −m2

π

Λ2 + p2
,
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with Λ ∼ 900 MeV. This form factor is applied both to the meson pole and contact terms to
preserve the subtle cancellation of off shell terms shown in Ref. [8]. Inside the loops, for the
reasons exposed above, the product of the form factor and propagator is replaced by its angle
averaged expression which simplifies the formulae. This is implicit in the ai, bi coefficients of
Eqs. (8.2.16).

We take an initial three momenta of K+ in the Laboratory frame kin(Lab.) = 850 MeV
(
√
s = 1722 MeV), which allows us to span K+n invariant masses up to MI = 1580 MeV,

thus covering the peak of the Θ+, and still is small enough to have negligible π+ momenta
with respect to the one of the incoming K+. The double differential cross section is given by

d2σ

dMId cos θ
=

1
(2π)3

1
8s

M2

λ1/2(s,M2,m2
K)

1
MI

λ1/2(s,M2
I ,m

2
π)λ1/2(M2

I ,M
2,m2

K)Σ̄Σ|t|2,

(8.2.20)

where cos θ is the angle between kin and q′ and λ(x, y, z) is the Källen function defined
by λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx. A derivation of this formula is given in
Appendix A.4.2. We show below the results for the different options of isospin, spin and
parity of the Θ+.

8.3 Numerical result

8.3.1 Cross sections

In Fig. 8.5, we show the invariant mass distribution d2σ/dMId cos θ in the K+ forward
direction (θ = 0), for several spin and parity assignments. Here we see that, independently
of the quantum numbers of Θ+, a resonance signal is always observed. The signals for the
resonance are quite clear for the case of I, JP = 0, 1/2+ (these would be the quantum numbers
predicted in Ref. [77]) and I, JP = 0, 1/2−, while in the other cases the signal is weaker and
the background more important, particularly for the case of I, JP = 1, 1/2+. With estimated
uncertainties in the theory of the order of 20-30 percent, from the approximations done, the
strength of the peak at the resonance could already serve to discriminate among the several
possibilities.

It is worth mentioning that the positions of the peak are slightly moved from the input
value in the Breit-Wigner propagator (MR = 1520 MeV), while the widths of the peak are
generally smeared. There is a tendency that the peak position of an s-wave resonance moves
to the lower energy side, whereas the position of a p-wave resonance goes to the higher
energy side. These effects are caused by the interference effect between the signal and the
background, that we take into account in the present calculation. Although the shifts of the
peak position are not very large in this case, the information of the background contribution
and understanding of its interference effect are important from the experimental point of
view.

We have used a Θ+ width of 20 MeV, but experimentally it could be smaller since the
experimental widths observed are mostly coming from the experimental resolution [134, 135].
It is easy to see how this would change our results. By looking at Eqs. (8.2.16) at the peak of
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Figure 8.5: The double differential cross sections d2σ/dMId cos θ with θ = 0 (forward direc-
tion) for I = 0, 1 and JP = 1/2−, 1/2+, 3/2+. Below, detail of the lower part of the upper
figure of the panel.

the resonance distribution and considering the couplings obtained in Eq. (8.2.15) we see that
the strength at the peak is independent of Γ. Only the width of the calculated distributions
would be smaller for smaller Γ. In Fig. 8.6, we show the spectra with Γ = 10 MeV and Γ = 1
MeV.

The angular dependence is shown in Fig. 8.7 for a value of MI = 1540 MeV. What we
observe there is that the angular dependence is rather weak in all cases. The background
has a weak angular dependence and the resonance signal for this unpolarized cross section
has angular dependence only for the case of spin 3/2, where it goes as (3 cos2 θ + 1), but in
this case the resonance contribution is much smaller than the background and this angular
dependence is not very visible. The different inflexions of the cross section at θ = 0 are
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Figure 8.6: The double differential cross sections d2σ/dMId cos θ with θ = 0 (forward direc-
tion) for I = 0, 1 and JP = 1/2−, 1/2+, 3/2+ with Γ = 10 MeV (Upper) and with Γ = 1 MeV
(Lower).

probably too small to be discriminated in an experiment, hence the conclusion is that this
unpolarized observable does not shed any further light on the quantum numbers.

8.3.2 Polarization observables

Let us now see what can one learn with resorting to polarization measurements. Eqs. (8.2.16)
account for the resonance contribution to the process. The interesting finding there is that if
the Θ+ couples to K+n in an s wave (hence negative parity) the amplitude goes as σ · kin,
while if it couples in a p-wave it has a term σ · q′. Hence, a possible polarization test to
determine which one of the couplings the resonance chooses is to measure the cross section
for initial proton polarization 1/2 in the direction z (kin) and final neutron polarization −1/2
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(the experiment can be equally done with K0p in the final state, which makes the nucleon
detection easier). In this spin flip amplitude 〈−1/2|t|+1/2〉, the σ ·kin term vanishes. With
this test the resonance signal disappears for the s-wave case, while the σ · q′ operator of the
p-wave case would have a finite matrix element proportional to q′ sin θ. This means, away
from the forward direction of the final kaon, the appearance of a resonant peak in the cross
section would indicate a p-wave coupling and hence a positive parity resonance.

In Fig. 8.8 we show the results for the polarized cross section measured at 90 degrees
as a function of the invariant mass. The two cases with s wave do not show any resonant
shape since only the background contributes. All the other cross sections are quite reduced
to the point that the only sizeable resonant peak comes from the I, JP = 0, 1/2+ case. A
clear experimental signal of the resonance in this observable would unequivocally indicate the
quantum numbers as I, JP = 0, 1/2+.

Finally, in Fig. 8.9 we show the angular dependence of the polarized cross section for a
fixed value of the invariant mass of 1540 MeV. The angular distributions look all of them
similar, as a consequence of the weakness or disappearance of the resonance contribution,
with a peak around 35 degrees, except for the case of I, JP = 0, 1/2+, where the peak is
found around 80 degrees and has a much larger size than in the other cases.

Since 100% polarization can not be achieved in actual experiments, we have computed
cross sections for the case of incomplete polarization. We have then found that for a typical
polarization rate of about 80% A), the previous results shown in Figs. 6 and 7 do not
change much. For instance, as shown in Fig. 8.10, the cross section decreases about 10% for
I, JP = 0, 1/2+. For I, JP = 0, 1/2−, the peak value at around MI ∼ 1540 MeV increases,
since there is no resonance contribution for the case of 100% polarization. However, the
absolute value is small as compared to the one of JP = 1/2+. For the totally unpolarized
case, the 1/2+ cross section reduces to about half of the polarized one, while the 1/2−

cross section shows a sizable peak. The tendency for other cross sections such as angular
dependence is also similar.

8.4 Summary

In summary, we have shown here an elementary reaction, K+p → π+KN , where, based
on the present knowledge of the Θ+ resonance, we can make predictions for Θ+ production
cross sections. We see that, independently of the Θ+ quantum numbers, a resonance signal
is always seen in the forward direction of the final kaon. The strength at the peak could
serve to discriminate among several cases. Further measurements of a polarized cross section
could serve to further eliminate other possibilities. In particular, a strong signal seen at 90
degrees for the polarized cross section would clearly indicate that the quantum numbers of
the resonance are those predicted in Ref. [77].

The reaction suggested here can be presumably performed and, in particular, a small
change in the set up of the experiment at ITEP used to detect the Θ+ could be made to
perform the reaction. The determination of the quantum numbers of the Θ+ is an essential

A)We define the polarization rate by (N+ −N−)/(N+ + N−).
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Figure 8.8: The double differential cross sections d2σ/dMId cos θ with θ = 0 (forward direc-
tion) for I = 0, 1 and JP = 1/2−, 1/2+, 3/2+. Below, detail of the lower part of the upper
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of JP = 3/2+ drawn by the two long-dashed curves also coincide.

step to further investigate its nature. The implementation of the present reaction would
represent a step forward in this direction.
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Chapter 9

Two-meson cloud contribution to
the baryon antidecuplet binding

In this chapter, we study the two-meson virtual cloud contribution to the self-energies of the
baryons in the SU(3) antidecuplet representation, to which the Θ+ pentaquark is assumed to
belong. This is motivated by the large branching ratio of the N(1710) decay into two pions
and one nucleon. We derive effective Lagrangians that describe the N(1710) decay into Nππ
with two pions in s and p waves. We find that the two-meson cloud contribution provides
attractive self-energies for all members of the antidecuplet. Self-energy contribution to the
mass splitting between states with different strangeness which is at least 20% of the empirical
one. We also provide predictions for three-body decays of the pentaquark antidecuplet. This
topic is reported in Refs. [21, 22, 23].

9.1 Introduction

The Θ+ has a light mass and a narrow width. These are interesting features, but it is not easy
to reproduce in models. For instance, let us consider a resonance in the KN scattering which
has these properties. Naively, we expect that the states in lower partial waves should be light,
but the width of the states become wide. On the other hand, the width is suppressed for the
states in higher partial waves due to the centrifugal barrier, but the mass should be heavy.
This is also the same for the quark models; light mass requires the small orbital excitation,
whereas the narrow width favors the states with higher spin.

One possible way to solve this problem is the πKN three body bound state conjecture [407,
411]. The energy of the free πKN system is about 1570 MeV, which is only slightly higher
than the observed mass of the Θ+, 1540 MeV. Therefore, an attraction in this channel could
make a bound state of the three-body state. In addition, once the bound state is produced,
the decay into KN channel should be suppressed, since it requires the absorption of one pion
which should be excited in p wave due to the structure of the πNN coupling.

This interesting idea of constructing the Θ+ as a KπN bound state [407, 411] has been
examined in some detail [410] employing meson-meson and meson-baryon interactions from
chiral Lagrangians. An attraction was found, but not strong enough to bind the system.
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Yet, this result leaves one wondering as to what role the two-meson cloud could play in the
stability of the state.

In this direction, here we would like to study the two-meson cloud contribution to the
masses of baryon antidecuplet, using the effective interactions based on flavor SU(3) symme-
try. We introduce the explicit fields for the antidecuplet, and evaluate the self-energies due
to the two-meson cloud. Since the contribution of two-meson cloud is of higher order in ms,
this provides another source of mass splitting not contemplated by the Gell-Mann–Okubo
(GMO) rule, whose origin is mainly due to the mass difference between the strange and light
quarks.

To start with, we assume that the Θ+ belongs to the antidecuplet representation, and the
N(1710) has a large component in the same antidecuplet. Here we implicitly assume JP =
1/2+ for the Θ+, which is compatible with the πKN bound state model. This assumption is
simple and naive, but still relevant to estimate the two-meson cloud effect to the antidecuplet
baryons. It is known that the N(1710) has a relatively large branching ratio into Nππ,
40-90% [144], while the ratio into Nπ is small as 10-20%. This fact is consistent with our
expectation of the narrow width of the Θ→ KN and potentially large coupling to the πKN
state.

An important experimental input relevant to the present study is the partial decay width
into two Nππ modes. The branching ratio decaying into Nππ with the two pions in an s

wave is 10− 40% and into ρN , 5− 25%. Certainly one has to accept a mixing with an octet
component for realistic resonances in order, for instance, to explain the N(1710) decay into
∆π, which is forbidden for its antidecuplet component [247, 391]. But we do not expect the
mixing angle to be close to ideal, as this would imply a stronger ΛK branching ratio than
the experimental observed one 5 − 25%. The decay pattern of N(1710) and N(1440) also
supports the small mixing angle [348, 349]. We will consider a problem of mixing with octet
in the next chapter.

In this study, we do not take into account the possible contribution of the one-meson
cloud to the antidecuplet binding, which can be easily addressed as a minor correction to our
results. The small width of the Θ+ to KN , in spite of the appreciable phase space available,
qualitatively demands that this contribution should be reasonably small; in fact, it has been
confirmed quantitatively in Refs. [437, 259, 413]. The self-energy of Θ+ with a two-meson
cloud has been studied in parallel [413] in the context of the medium modification of Θ+. We
here report in full on results for not only the Θ+ but also other members of the antidecuplet
in the vacuum.

This chapter is organized as follows. In section 9.2, we construct various PBMM interac-
tions with the two octet mesons M and one baryon B belonging to octets and with the other
baryon P to an antidecuplet. In section 9.3, we compute the contributions of two-meson
and one-baryon loops to the mass splittings among the members of antidecuplet baryons. In
section 9.4, we present numerical results and discuss the importance of two-meson contribu-
tions to the mass splittings and partial decay widths. As we will see, the contributions from
the two-meson loops provide sizable contributions to supplement the mass splittings naively
expected from the large constituent mass of the strange quark. We will then discuss ranges
of interaction strengths of various coupling terms. Section 9.5 is devoted to a summary.
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9.2 Construction of effective interaction Lagrangians

9.2.1 Definition of fields

Following a common convention [513, 40, 514], we write the physical meson and baryon fields
as follows

φ =




1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η


 ,

B =




1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ


 .

The antidecuplet containing the exotic pentaquark states is a tensor P ijk totally symmetric
in its three SU(3) indices. The components of P ijk are related to the physical fields by

P 333 =
√

6Θ+
10
,

P 133 =
√

2N0
10
, P 233 = −

√
2N+

10
,

P 113 =
√

2Σ−
10
, P 123 = −Σ0

10
, P 223 = −

√
2Σ+

10
,

P 111 =
√

6Ξ−−
10

, P 112 = −
√

2Ξ−
10
, P 122 =

√
2Ξ0

10
, P 222 = −

√
6Ξ+

10
,

where we have adopted the normalization in Ref. [249].
Now we consider the possible interaction Lagrangians, constrained to be SU(3) symmetric.

We intend to address the process

8M + 8M + 8B → 10P ,

where an octet baryon 8B and two octet mesons 8M couple to an antidecuplet baryon 10P .
To have an SU(3) invariant Lagrangian, we couple first the two 8M and then combine the
resulting irreducible representations with the baryon 8B to produce a 10BMM representation.
Irreducible decompositions of the SU(3) algebra give

8M ⊗ 8M ⊗ 8B

=(1⊕ 8s ⊕ 8a ⊕ 10⊕ 10⊕ 27)MM ⊗ 8B

=8 ← from 1MM ⊗ 8B

⊕ (1⊕ 8⊕ 8⊕ 10⊕ 10⊕ 27) ← from 8s
MM ⊗ 8B

⊕ (1⊕ 8⊕ 8⊕ 10⊕ 10⊕ 27) ← from 8a
MM ⊗ 8B

⊕ (8⊕ 10⊕ 27⊕ 35) ← from 10MM ⊗ 8B

⊕ (8⊕ 10⊕ 27⊕ 35′) ← from 10MM ⊗ 8B

⊕ (8⊕ 10⊕ 10⊕ 27⊕ 27⊕ 35⊕ 35′′ ⊕ 64) ← from 27MM ⊗ 8B.

Here 8s and 8a denote symmetric and antisymmetric combinations of the two-meson fields.
Hence we obtain four 10BMM representations after recoupling 8s

MM , 8a
MM , 10MM and 27MM

with 8B. In the following, we construct these Lagrangians one by one.
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Chapter 9. Two-meson cloud contribution to the baryon antidecuplet binding

9.2.2 Two-meson 8s representation

In constructing effective Lagrangians, we follow the principle of using the minimum numbers
of derivatives in the fields. This will be released later when we discuss possible structures
involving derivatives. To construct 8s from two 8M , we have in tensor notation

Di
j [8s

MM ] =φi
aφa

j + φi
aφa

j − 2
3
δi

jφa
bφb

a = 2φi
aφa

j − 2
3
δi

jφa
bφb

a. (9.2.1)

We combine this now with an 8B to give an antidecuplet

T ijk[10BMM(8s)] =2φl
aφa

iBm
jεlmk + (i, j, k symmetrized).

Hence, the interaction Lagrangian becomes

L8s =
g8s

2f
P̄ijkε

lmkφl
aφa

iBm
j + h.c., (9.2.2)

where h.c. denotes the hermitian conjugate terms, in order to take into account the processes
in which the antidecuplet is in the initial state. Note also that two φ fields have appeared,
and we have included a factor 1/2f in order to make g8s dimensionless (f is the pion decay
constant f = 93 MeV).

9.2.3 Two-meson 8a representation

Next we take the antisymmetric combination of the 8M and 8M , which for identical meson
octets leads to

Ai
j [8a

MM ] = φi
aφa

j − φi
aφa

j = 0.

So given the identity of the meson octets, this combination is zero. The simplest way to
construct a Lagrangian of this structure is to introduce a derivative in one of the fields,
which leads automatically to the vector current consisting of two meson fields. Proceeding
as before, we combine this structure with the 8B to give 10. Then finally we find

L8a = i
g8a

4f2
P̄ijkε

lmkγµ(∂µφl
aφa

i − φl
a∂µφa

i)Bm
j + h.c., (9.2.3)

where g8a is dimensionless. This interaction Lagrangian contains the coupling of the N(1710)
with Nππ, the two pions in a ρ-meson type correlation. From the experimental branching
ratio, we can determine the coupling constant g8a.

9.2.4 Two-meson 10 representation

To construct the 10 combination from two mesons, we have now

T ijk
MM [10MM ] =εlmkφl

iφm
j + (i, j, k symmetrized)

=εlmkφl
iφm

j + εlmkφl
jφm

i + εlmiφl
jφm

k

+ εlmiφl
kφm

j + εlmjφl
kφm

i + εlmjφl
iφm

k

=0,

which is identically zero for equal meson octets.
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9.2. Construction of effective interaction Lagrangians

9.2.5 Two-meson 27 representation

The expansion for the 27 representation leads to

Hjl
ik[27MM ] =φi

jφk
l + φi

lφk
j + φk

jφi
l + φk

lφi
j

− 1
5

(
δi

jDk
l + δi

lDk
j + δk

jDi
l + δk

lDi
j
)

− 1
6

(
δi

jδk
lφa

bφb
a + δi

lδk
jφa

bφb
a
)
,

where Di
j is defined in Eq. (9.2.1). Now the combination of 27MM to 8B to give the 10

representation leads to

L27 =
g27

2f

[
4P̄ijkε

lbkφl
iφa

jBb
a − 4

5
P̄ijkε

lbkφl
aφa

jBb
i
]

+ h.c., (9.2.4)

where the first term gives us a new SU(3) structure, but the second one is equal to L8s given
in Eq. (9.2.2).

To summarize briefly, for the possible SU(3) symmetric couplings of PBMM , there are two
independent terms with no derivatives, namely Eqs. (9.2.2) and (9.2.4). With one derivative,
there are four more terms available, but we will consider only Eq. (9.2.3), which has the
structure for the decay of N(1710)→ Nππ(p-wave) as observed experimentally.

9.2.6 Chiral symmetric Lagrangians

In the perturbative chiral Lagrangian approach, one would like to implement chiral symmetry
as a derivative expansion. In addition, one of the advantages of chiral Lagrangians is that
they relate coupling constants of different processes, in particular, with increasing number of
mesons. However, in the present case we cannot take advantage of any of these relations, since
the couplings for the present Lagrangians are a priori completely arbitrary, and we are only
interested in the two-meson problem. Still, in this section we build the lowest-order chiral
Lagrangian, with two derivatives. Let us remark that the chiral expansion with baryons is
known to converge much more slowly than chiral expansion for mesons, and this lowest-order
Lagrangian can only be expected to give a mere qualitative description of the physics. For
that reason, to build the Lagrangians of the previous subsections 9.2.2 and 9.2.5 we just
relied on flavor SU(3). However, we will check here that the lack of chiral symmetry in those
Lagrangians does not have much relevance to the mass splittings and decays we are interested
in, since already with the leading-order Lagrangian we get qualitatively the same results. In
other words, the relevant symmetry here is SU(3), not chiral symmetry.

To show this, we write a chiral invariant Lagrangian by making the substitution φ · φ →
Aµ ·Aµ in Eq. (9.2.2) such that

Lχ =
gχ

2f
P̄ijkε

lmk(Aµ)l
a(Aµ)a

iBm
j + h.c., (9.2.5)

189



Chapter 9. Two-meson cloud contribution to the baryon antidecuplet binding

where Aµ is the axial current written in terms of the chiral field ξ A):

Aµ = − i
2

(
ξ†∂µξ − ξ∂µξ

†
)
,

with ξ = eiφ/
√

2f . It is easy to show that the Eq. (9.2.5) is symmetric under chiral transfor-
mation, using the transformation lows in Appendix B.1. To the leading order in meson field,
Aµ ∼ ∂µφ/

√
2f , we find the interaction Lagrangian induced from Eq. (9.2.5) by making the

replacement

(Aµ)l
a(Aµ)a

i → 1
2f2

∂µφl
a∂µφa

i. (9.2.6)

Obviously, the SU(3) structure is not affected by this procedure, although the use of La-
grangians involving derivatives will introduce some degree of SU(3) breaking due to the
momenta of mesons. Hence, it is useful to verify that this chiral invariant Lagrangian will
lead eventually to the same results as those obtained from the Lagrangians without deriva-
tives in the fields. We also perform self-energy calculations using this 8s chirally symmetric
Lagrangian, Eq. (9.2.5).

Notice that the vector current cannot be used for the two-meson coupling of this type,
where the baryons in the initial and final states are different. Indeed, the insertion of vector
current instead of Aµ · Aµ is not invariant under chiral transformation. Vector current can
be implemented in the covariant derivative, which originates in the kinetic term of baryons,
and hence consists of the same baryon state in the initial and final states. In order to have
vector current coupling to two different baryons, we should construct the field strength tensor
first, and then combine it with baryon fields. This is however the higher order term in chiral
counting.

9.2.7 Explicit SU(3) breaking term

In this subsection, we consider the SU(3) breaking interaction term within the context of chiral
Lagrangians. Without using derivatives in the fields, the only possible term is a mass term
that violates both SU(3) and chiral symmetry, but in the way demanded by the underlying
QCD Lagrangian [513, 40, 514]. The mass term appears through the combination

S = ξχξ + ξ†χξ†,

with the mass matrix, written in terms of the meson masses,

χ =



m2

π

m2
π

2m2
K −m2

π


 .

Then it leads to the Lagrangian

LM =
gM

2f
P̄ijkε

lmkSl
iBm

j + h.c., (9.2.7)

A)In the paper [21], we defined the axial current in opposite sign. Here we use the consistent notation with
other chapters. The relevant Lagrangian does not affected because of Eq. (9.2.6)
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In the expansion of S, we have two meson fields with the structure

S(2) = − 1
2f2

(2φχφ+ φφχ+ χφφ).

Substituting S(2) for S in Eq. (9.2.7), we obtain the desired mass Lagrangian.

9.3 Self-energies

9.3.1 Two-meson loops

The antidecuplet self-energies deduced from one of the interaction Lagrangians can be ob-
tained by

Σ(j)
P (p0) =

∑

B,m1,m2

(
F (j)C

(j)
P,B,m1,m2

)
I(j)(p0;B,m1,m2)

(
F (j)C

(j)
P,B,m1,m2

)
, (9.3.1)

where the index j stands for 8s, 8a, 27, χ and M for corresponding Lagrangians (9.2.2),
(9.2.3), (9.2.4), (9.2.5) and (9.2.7); P denotes the antidecuplet states P = Θtenbar, N10, Σ10

and Ξ10; the argument p0 is the energy of the antidecuplet baryon; and the factors F (j) are

F 8s =
g8s

2f
, F 8a =

g8a

4f2
, F 27 =

g27

2f
, Fχ =

gχ

2f
, FM =

gM

2f
.

In Eq. (9.3.1), C(j)
P,B,m1,m2

are SU(3) coefficients that come directly from the Lagrangians
when evaluating the different matrix elements. We compile the results in Appendix D.3.1.

The function I(j)(p0;B,m1,m2) of argument p0 (the energy of the assumed state of the
antidecuplet at rest) is the two-loop integral with two mesons and one baryon as shown in
Fig. 9.1.

I(j)(p0;B,m1,m2)

=−
∫

d4k

(2π)4

∫
d4q

(2π)4
|t(j)|2 1

k2 −m2
1 + iε

1
q2 −m2

2 + iε

M

E

1
p0 − k0 − q0 −E + iε

, (9.3.2)

whereB)

|t(j)|2 =1 for j = 8s, 27,M, (9.3.3)

|tχ|2 =
(ω1ω2 − k · q)2

4f4
, (9.3.4)

|t8a|2 =
1

2M

{
(E +M)(ω1 − ω2)2 + 2(|k|2 − |q|2)(ω1 − ω2) + (E −M)(k − q)2

}
,

(9.3.5)

E =
√
M2 + (k + q)2, ω1 =

√
m2

1 + k2, ω2 =
√
m2

2 + q2.

B)Here we have neglected the (E +M)/2M factor in Eqs. (9.3.3) and (9.3.4), which will turn out to be small
in chapter 11.
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Figure 9.1: Self-energy of baryon antidecuplet caused by two-meson cloud.

In these expressions, M and mi are the masses of a baryon and mesons, E and ωi are
the energies of a baryon and mesons. A complicated integrand in |t(8a)|2 arises because of
the ūγµ(k − q)µu factor when one derivative is included as in Eq. (9.2.3). We neglect the
negative-energy intermediate baryon propagator as this is suppressed by a further power of
q/M , leading only to a small relativistic correction. The k0 and q0 integrations of Eq. (9.3.2)
are easily carried out, and we obtain

I(j)(p0;B,m1,m2) =
∫

d3k

(2π)3

∫
d3q

(2π)3
|t(j)|2 1

2ω1

1
2ω2

M

E

1
p0 − ω1 − ω2 −E + iε

, (9.3.6)

The real part of this integral is divergent. We regularize it with a cutoff Λ in the three mo-
mentum on k and q, which is a parameter of the calculation and its value must be somewhat
larger than the scale of the typical pion momenta. On the other hand, we use low-energy
Lagrangians with one or two derivatives at most, and thus the cutoff should not be too large;
otherwise, terms with more derivatives could become relevant. In this work we will take Λ in
the range 700-800 MeV, roughly the order of magnitude of the cutoff used to regularize the
meson-baryon loops in the study of the K̄N interaction [5]. With the Lχ of subsection 9.2.6,
the cutoff is smaller in order to reproduce analogous results to those with the 8s Lagrangian.

The imaginary part of the diagram represents the decay width, in accordance with the
optical theorem. The total decay width of a member of the antidecuplet to any BMM states
is given by

Γ(j)
P (p0) = −2ImΣ(j)

P (p0),

while the partial decay width to a particular channel is given by

Γ(j)
P (p0;B,m1,m2) =− 2Im

(
F (j)C

(j)
P,B,m1,m2

)
I(j)(p0;B,m1,m2)

(
F (j)C

(j)
P,B,m1,m2

)
,

(9.3.7)

As an example, let us give in detail the contribution from L8a to the Θ10 self-energy

Σ8a
Θ (p0) =

(
F 8a

)2 [18I8a(p0;N,K, π) + 18I8a(p0;N,K, η)],

and the contribution from L8s to the Ξ10 self-energy

Σ8s
Ξ (p0) =

(
F 8s

)2 [9I8s(p0; Σ, K̄, π) + I8s(p0; Σ, K̄, η)

+ 6I8s(p0; Ξ, K̄,K) + 4I8s(p0; Ξ, π, η)].
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Figure 9.2: Self-energy of baryon antidecuplet caused by two-meson cloud with vector meson
propagators.

The expression for all cases can be derived from Tables D.24-D.27 in Appendix D.3.2.
In Eq. (9.3.1), we gave a contribution to the self-energy from one interaction Lagrangian

L(j). For the total self-energy, the sum should be taken over the five interactions (j =
8s, 8a, 27, χ and M) at each vertex. This means that at each vertex function, we should make
the replacement as (F (j)C

(j)
P,B,m1,m2

|t(j)|) → (|∑j F
(j)C

(j)
P,B,m1,m2

t(j)|). We shall, however,
not take into account interference between the 8a term and the others because of the p-wave
nature of the term.

9.3.2 Inclusion of the ρ meson

It is known that N(1710) → Nππ(p wave) occurs through the Nρ decay. In order to keep
close to the experimental information, we shall also assume that the pair of mesons in the
8a case reconstruct a vector meson. Hence, we replace the contact interaction of the L8a to
account for the vector meson propagator (Fig. 9.2) and include the factor

m2
v

(q + k)2 −m2
v

, (9.3.8)

in each P → BMM vertex. The consideration of these contributions needs extra work on the
loop integrals since we introduce new poles. The imaginary part of the integrals (associated
to placing on-shell the BMM intermediate states) can be easily accounted for by multiplying
the integrand of Eq. (9.3.2) by

∣∣∣∣
m2

v

(q + k)2 −m2
v + imvΓ(q + k)

∣∣∣∣
2

, (9.3.9)

where Γ(q+k) accounts for the width of the vector meson v (ρ or K∗ depending on the MM)
incorporating the energy dependence through the factor (P (q + k)/Pon)3 multiplied to the
nominal width, with P (q+k) the relative three momentum of the mesons in the decay of the
vector meson in the rest frame and Pon = P ((Mv,0)).

For the real part, one must sort out the poles of the vector meson and the intermediate
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Chapter 9. Two-meson cloud contribution to the baryon antidecuplet binding

BMM state, which is technically implemented by means of the integral

Re
[
I8a(p0;B,m1,m2)

]

=−m4
v

∂

∂(m2
v)

P.V.
∫

d4q

(2π)4

∫
d4k

(2π)4
|t8a|2 1

k2 −m2
1 + iε

1
q2 −m2

2 + iε

× 1
(k + q)2 −m2

v + iε

M

E

1
p0 − k0 − q0 − E + iε

,

where P.V. stands for the principal value. Here, we neglected the width of the vector meson,
which does not play much of a role in the off-shell regions of integrations. The k0 and q0

integrations can be performed analytically, and one obtains the simple expression

Re
[
I8a(p0;B,m1,m2)

]

=m4
v

∂

∂(m2
v)

P.V.
∫

d3k

(2π)3

∫
d3q

(2π)3
|t8a|2 1

2ω1

1
2ω2

1
ωv

1
ωv + ω1 + ω2

× 1
p0 − ωv −E + iε

1
p0 − ω1 − ω2 −E + iε

M

E
(ω1 + ω2 + ωv − p0 +E),

(9.3.10)

where ωv is the on-shell energy of the vector meson. A derivation of this form can be found
in Appendix C.2.2.

9.4 Numerical examples

Next we present some numerical results that illustrate the antidecuplet mass shifts and decay
widths to three-body channels. One of the most exciting aspects in the antidecuplet is that
the Θ+ is located about 30 MeV below the NKπ threshold. Hence, it cannot decay into this
or any other BMM channels to which it couples. For the interaction Lagrangians, we obtain
the g(j) coefficients from the experimentally allowed decay amplitudes of the N(1710). We
give several examples that illustrate the general behavior of the two-meson cloud, common
to the Lagrangians described in previous sections.

Before studying each of the Lagrangians, let us recall that the mass splitting of the an-
tidecuplet has a contribution which follows the GMO rule, and it would be originated by the
difference of the masses of the constituent quarks and their correlations. To this, we add the
splitting coming from the real part of the self-energy due to the meson cloud that we are
studying. Thus, the masses of the antidecuplet are approximately given by

MΘ10
=M0 + ReΣΘ10

,

MN10
=M0 + ReΣN10

+ ∆,

MΣ10
=M0 + ReΣΣ10

+ 2∆,

MΞ10
=M0 + ReΣΞ10

+ 3∆,

(9.4.1)

where M0 is the bare mass of the antidecuplet and ∆ is the GMO mass splitting, part of
which simply comes from the difference of the constituent quark masses. In the constituent
quark model, ∆ is related to the difference between the constituent masses of u, d and s
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quarks, 3∆ = 〈ms − mu,d〉baryon. Certainly, quark correlations can also contribute to the
experimental value of ∆.

The difference between the light and strange quark masses has been obtained, for example
from hyperfine splittings, in Ref. [648],

〈ms −mu〉meson =
3(MK∗ −Mρ) + (MK −Mπ)

4
' 180 MeV, (9.4.2)

whereas for baryons

〈ms −mu〉baryon =MΛ −MN ' 177 MeV,

〈ms −mu〉baryon =
MN +M∆

6

(
M∆ −MN

MΣ∗ −MΣ
− 1

)
' 190 MeV.

But other differences like MK∗−Mρ, MΞ−MN or MΣ−MN suggest a wider range, from 122
to 190 and 250 MeV, respectively. As we will see, the values of 3∆ needed within this work
are of this order of magnitude but somewhat larger, leaving room for extra quark correlations
effects.

9.4.1 Antidecuplet mass shift with L8s and L8a

To fix the couplings of the Lagrangians, we start by taking L8s and L8a defined above and
adjusting the coupling constants to obtain the partial decay widths of the N(1710) to Nππ(s
wave, isoscalar) and Nρ→ Nππ(p wave, isovector) respectively. These are controlled by the
imaginary part of the self-energies (9.3.7), which are finite and independent of the cutoff.
The central values in the Particle Data Group (PDG) [144] are

Γ(Nππ, s wave) = 25 MeV, Γ(Nππ, p wave) = 15 MeV,

and the uncertainties (counting those of the branching ratio and the total width) can be a
large fraction of these numbers.

A fit to these central values gives us

g8s = 1.9, g8a = 0.32. (9.4.3)

With these couplings, we calculate the real part of the self-energies for all the antidecuplet.
For the bare antidecuplet mass p0 as input, we take an average value of p0 = 1700 MeV. We
also performed a calculation with different values of p0 and found that the results have the
same qualitative trend, but the depth of the binding varies. To estimate the binding, we show
the mass shift from the L8s with respect to p0 in Fig. 9.3. We see that, independently of the
values of p0, all the self-energies are attractive, and that the interaction is more attractive
the larger the strangeness; hence, the Θ10 is always more bound.

In Fig. 9.4 we show the results for the contributions from L8s and total contributions of
L8a and L8s, with p0 = 1700 MeV and cutoffs 700 and 800 MeV. The numerical values of
the mass shifts are displayed in Table 9.1. We see that L8s provides more binding than L8a

for the same cutoff. The total binding for Θ10 ranges from 90 to about 130 MeV, depending
on the cutoff. The splitting between the Θ10 and Ξ10 states is about 45 MeV for a cutoff of
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Figure 9.3: Mass shifts of baryon antidecuplet (ReΣP ) due to two-meson cloud from L8s with
cutoff = 800 MeV; p0 dependence.
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Figure 9.4: Mass shifts of baryon antidecuplet (ReΣP ) due to two-meson cloud with p0 = 1700
MeV at two cutoff values. Thin lines represent the results from contributions from L8s, and
thick lines denote the total contribution with L8s and L8a.

700 MeV and 60 MeV for a cutoff of 800 MeV. Since the experimental splitting is 320 MeV
for the Θ(1540) and Ξ(1860), the splitting provided by the two-meson cloud is on the order
of 20% of the experimental one.

We believe these magnitudes to be realistic (and hence one of the reasons to settle for a
cutoff) based on the findings of Ref. [410] that the meson-baryon interaction is insufficient
to bind the KπN system and that one has to increase the interaction by about a factor of 5
to have the three-particle system bound. Indeed, had the nature of the Θ(1540) been that of
the KπN system, we would have obtained all the splitting from the two-meson cloud. There
is, hence, a qualitative correlation between the moderate amount of the two-meson cloud
contribution claimed here and the difficulty to make the stable KπN system based alone on
the KπN dynamics.

Next we present the antidecuplet spectrum generated with the splitting obtained here. We
take the cutoff 800 MeV for reference. Inserting MΘ10

= 1540 MeV and MΞ10
= 1860 MeV

in Eq. (9.4.1), together with our calculated self-energies, we obtain M0 = 1670 MeV and
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Table 9.1: Mass shifts of baryon antidecuplet (ReΣP ) due to two-meson cloud with p0 = 1700
MeV and cutoffs 700 and 800 MeV. All values are shown in units of MeV.

cutoff 700 MeV cutoff 800 MeV
L8s L8a total L8s L8a total

Θ10 −71 −20 −91 −100 −32 −132
N10 −60 −7 −67 −87 −17 −104
Σ10 −54 −9 −63 −79 −15 −94
Ξ10 −40 −5 −45 −63 −9 −72

∆ = 87.5 MeV, then

MΘ10
=1540 MeV (input),

MN10
=1652 MeV,

MΣ10
=1749 MeV,

MΞ10
=1860 MeV (input).

The value 3∆ ∼ 260 MeV is fairly reasonable for our estimate purposes. It would indicate,
however, that about 30 MeV of ∆, above the 60 MeV coming from the constituent quark
consideration, would come from quark correlations. The large Θ10 binding with respect to
that of the N10 state is responsible for the new value MN10

= 1652 MeV, slightly higher
than the value we would obtain from an exact GMO rule splitting (1646 MeV), but still
far from the 1710 MeV resonance we have assumed for the antidecuplet. As discussed in
the introduction, a necessary mixture of an octet representation with the antidecuplet could
bring the mass close to that of the N(1710), although the possibility of having a new N∗

resonance belonging to the antidecuplet cannot be ruled out [237].

9.4.2 Antidecuplet decay widths from L8s and L8a

Now we show the partial decay width obtained according to Eq. (9.3.7). As already men-
tioned, Θ(1540) has no BMM channel to decay. Among all decay channels, the N(1710)
decays broadly into Nππ, and it can also decay into Nπη. The Σ(1770) can decay into NK̄π,
Λππ, and Σππ, and the Ξ(1860) into ΣK̄π and Ξππ, because of the threshold energies of
BMM channels.

To calculate the decay, since the phase space is essential for the imaginary part, we take
the observed masses,

MN10
= 1710, MΣ10

= 1770, MΞ10
= 1860. (9.4.4)

The results are shown in Table 9.2. We can see that the widths are not very large for all
channels. Among them, we obtain the partial decay widths of the Σ(1770) into Σππ and
NK̄π. When compared with the experimental data, indeed, the Σ(1770) would have a total
width into two-meson and baryon of about 24 MeV, which is well within the total width of
the Σ(1770) of about 70 MeV [144]. As to the Ξ(1860) resonance, we obtain a total width
of about 2 MeV, which is certainly compatible with the experimental total width less than
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Chapter 9. Two-meson cloud contribution to the baryon antidecuplet binding

Table 9.2: Partial decay widths for the allowed channels and total width for any BMM
channel, at the masses of the antidecuplet members. All values are in MeV.

Decay widths [MeV] Γ(8s) Γ(8a) Γtot
BMM

N(1710)→ Nππ (inputs) 25 15 40
N(1710)→ Nηπ 0.58 -
Σ(1770)→ NK̄π 4.7 6.0 24
Σ(1770)→ Σππ 10 0.62
Σ(1770)→ Λππ - 2.9
Ξ(1860)→ ΣK̄π 0.57 0.46 2.1
Ξ(1860)→ Ξππ - 1.1

Table 9.3: Mass shifts of baryon antidecuplet (ReΣP ) due to two-meson cloud with 800 MeV
cutoff for L8s and 525 MeV for Lχ. All values are in MeV.

Mass shifts [MeV] L8s Lχ

Θ10 −100 −99
N10 −87 −83
Σ10 −79 −70
Ξ10 −63 −57

18 MeV claimed by the NA49 collaboration [145]. Detailed information of the partial decay
widths of these resonances to three-body channels will give us more understanding of the
PBMM interaction.

9.4.3 Mass shifts and decay widths from Lχ

Here we show the results for the interaction Lagrangian given in subsection 9.2.6, namely the
two-meson coupling derived from the chiral symmetric Lagrangian Lχ. We fix the coupling
constant gχ from the N(1710) decay to Nππ(s wave, isoscalar), and we find gχ = 0.218. Then
the antidecuplet mass shifts and decay widths are calculated. However, for the mass shifts,
we obtain binding energies that are too large—on the order of several hundreds MeV with
cutoffs around 700-800 MeV—because the loop integral is more divergent than the previous
L8s case. To reach some reasonable results, we decrease the cutoff, and find that Λ = 525
MeV would give mass shifts similar to those of L8s without derivatives.

We compare the mass shifts of Lχ with cutoff 525 MeV and L8s with 800 MeV in Table 9.3.
The decay widths obtained from these Lagrangians are given in Table 9.4. As expected from
the fact that the C(j) coefficients of two Lagrangians are identical, we obtain almost the same
mass shifts for Lχ and L8s by properly adjusting the cutoffs. The decay widths are considered
to be in fair agreement qualitatively, when considering that the values span two orders of
magnitude. Some quantitative differences would come from the SU(3) breaking in the meson
momenta appearing in the Lχ loop, and they are regarded as the uncertainty in our analysis.
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Table 9.4: Partial decay widths for the allowed channels with L8s and Lχ, at the masses of
the antidecuplet members. All values are in MeV.

Decay widths [MeV] Γ(8s) Γ(χ)

N(1710)→ Nππ (input) 25 25
N(1710)→ Nηπ 0.58 0.32
Σ(1770)→ NK̄π 4.7 4.5
Σ(1770)→ Σππ 10 3.6
Ξ(1860)→ ΣK̄π 0.57 0.40

9.4.4 Effects of L27 and LM

Next we draw our attention to the L27 and LM Lagrangians, that we have not yet used.
First note that it is unrealistic to make these Lagrangians solely responsible for the N(1710)
decay width into Nππ(s wave) channel. This would lead to some unphysical results such as
very large decay widths of the Ξ10 into BMM channels, or a large binding energy of several
hundred MeV. Hence, combined with the analyses in the previous section, this fact would
justify the approach followed in Ref. [413], where only the L8s and L8a terms are taken to
study the Θ+ self-energies in a nuclear medium. Thus, assuming that one should not have
a large contribution from these Lagrangians, we will determine to what extent we can allow
the contributions from L27 and LM .

We first pursue a model that mixes L8s and L27. The coupling constants should be de-
termined such that the decay width of N10 → Nππ(s-wave) is unchanged. According to
Table D.21, the C(j)

B,m1,m2
coefficients for N10 → Nππ channels are

C8s
pπ0π0 =

1√
2
, C27

pπ0π0 = −2
√

2
5
,

C8s
pπ+π− =

√
2, C27

pπ+π− = −4
√

2
5
.

To see the contribution from each Lagrangian clearly, we set g8s = g27 = 1.88, and take the
combination

aL8s + bL27, b = −5
4
(1− a).

In this case,

C8s+27
pπ0π0 =

1√
2
a− 2

√
2

5
×

(
−5

4
(1− a)

)
=

1√
2
,

C8s+27
pπ+π− =

√
2a− 4

√
2

5
×

(
−5

4
(1− a)

)
=
√

2,

and, therefore, we have the same N(1710) → Nππ(s wave) decay independent of a, but
different decays into other channels. With this parametrization, a = 1 corresponds to the
limit where L27 is switched off, while a = 0 relates to the L27 contribution only. We vary
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Figure 9.5: Mass shifts of baryon antidecuplet due to two-meson cloud from L8s and possible
L27 contributions with two cutoff values. Horizontal bar: results with L8s only. Vertical bar:
band of values including L27 in the range of the text.

a around 1 and find that for 0.90 < a < 1.06 the results of the self-energy are acceptable
on physical grounds. If we exceed this range, the splitting of the different strangeness states
of the antidecuplet spoils agreement with the GMO rule. Taking this range of acceptable
values of a into account, we find the results for the binding energies shown in Fig. 9.5. As
we see in the figure, L27 tends to contribute to make the binding energy deeper. A possible
contribution from L27 would be considered as a theoretical uncertainty in our analysis.

Next we address the LM term. Once again, as in the L27 case, we set g8s = gM = 1.88
and take the combination

aL8s + bLM , b =
f2

m2
π

(1− a), (9.4.5)

in order to have the same N(1710)→ Nππ(s wave). In this case, we also see that the values
of 0.76 < a < 1.06 are acceptable on physical grounds, but larger deviations of a again lead
to undesired signs of the splitting between the members of the antidecuplet, as well as to
unacceptably large results of the binding energies. Within this interval of coupling constant,
the results obtained for the binding energies of the antidecuplet members are given in Fig. 9.6.
We observe that LM also contributes to attractive binding energy, and the splitting of Θ10

and N10 becomes large compared with the other splittings.

9.5 Discussion and conclusion

In this chapter we have studied two meson contributions to the self-energies of the antidecuplet
baryons based on flavor SU(3) symmetry. We have assumed that the Θ+ is a 1/2+ state with
I = 0 and that it belongs to an antidecuplet. In addition to these minimal assumptions,
we consider that the N(1710) also belongs to this same antidecuplet. The meson cloud
mechanism proposed in this chapter leads, in all different cases studied, to the following
conclusions:
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Figure 9.6: Mass shifts of baryon antidecuplet due to two-meson cloud from L8s and possible
LM contributions with two cutoff values. Horizontal bar: results with L8s only. Vertical bar:
band of values including LM in the range of the text.

1. The two-meson cloud yields an attractive self-energy for all members of the antidecuplet.
The observation of attraction is consistent with the previous attempts to describe the
Θ+ as a KπN state [407, 411, 410, 408], although the present study introduce the
explicit (kernel) field, which is absent in the previous studies to construct the three-
body bound state.

2. It also contributes to the splitting between antidecuplet members, which is only moder-
ately cutoff dependent. The two-meson cloud provides about 20% of the total splitting
for reasonable values of the cutoff. The role played by the two-meson cloud is therefore
of relevance for a precise understanding of the nature of the Θ+ and the antidecuplet.

3. The magnitude of 20% is also in agreement quantitatively with the strength of attraction
found in the previous study of BMM three-body system [410]. The values of the mass
splitting are such that they still leave some room for quark correlation effects after the
GMO mass splitting coming from the mass difference between u, d and s constituent
quarks is considered. The contribution to the splitting from the meson cloud is of the
same order of magnitude as the one provided by these quark correlations.

4. By calculating all the members of SU(3) multiplet, it is found that the non-exotic
members such as N and Σ have substantial two-meson cloud component. Since the
input of the present study is the N → ππN decay, this conclusion may hold when we
assign the N(1710) as an octet.

The models we work with in this chapter are rather phenomenological. However, our method,
based on symmetry principles, is suited to at least estimating meson cloud effects, which are
important for the understanding of pentaquark properties. The main conclusion of this
chapter is that the virtual “two-meson cloud” yields an attractive self-energy that provides
about 20% of the pentaquark mass splittings. From the experimental point of view, it is clear
that the investigation of the decay channels into two mesons and a baryon of the resonances
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N(1710), Σ(1770), and Ξ(1860) deserves renewed interest. We believe that our study here
will become useful when more data are available.
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Chapter 10

Phenomenology of spin 3/2 baryons
with pentaquarks

In this chapter, using a general framework based on the flavor symmetry, we examine several
assignments of spin and parity for the pentaquark Θ+ state (JP = 1/2±, 3/2±) in connection
with known baryon resonances. Assuming that the Θ+ belongs to an antidecuplet represen-
tation which mixes with an octet, we calculate the mass spectra of the flavor partners of the
Θ+ based on the SU(3) symmetry. The decay widths of the Θ+ and nucleon partners are ana-
lyzed for the consistency check of the mixing angle obtained from the masses. It is found that
a suitable choice of the mixing angle successfully reproduces the observed masses of Θ(1540)
and Ξ3/2(1860), when their spin and parity are assigned to be JP = 3/2−, together with
other nonexotic resonances of JP = 3/2−. The decay widths of Θ → KN , N(1520) → πN ,
and N(1700)→ πN are also reproduced simultaneously. This topic is reported in Ref. [24].

10.1 Introduction

In the study of the exotic particles, it is important to consider simultaneously other members
with nonexotic flavors in the same SU(3) multiplet which the exotic particles belong to. The
identification of the flavor multiplet provides the foundation of the model calculation, for
instance, when one tries to construct an effective Lagrangian as in the previous chapters.
From the successes of SU(3) flavor symmetry with its breaking in hadron masses and interac-
tions [649], it is naively expected that the exotic states also follows the symmetry relations.
In other words, the existence of exotic particles would require the flavor partners, if the flavor
SU(3) symmetry plays the same role as in the ordinary three-quark baryons.

To start with, we assume that Θ(1540) [16] and Ξ3/2(1860) [145] do exist at these energies,
despite the controversial situation of experimentsA). However, the symmetry relations we
derive here are rather general, and can be applied to any exotic states once they are assumed
to belong to the same SU(3) representations. Therefore, when any other exotic particles (with
the quantum number of Θ+ or Ξ−−) are found experimentally in future, we can immediately

A)In this section we refer to the S = −2 and I = 3/2 exotic state as Ξ3/2(1860) or Ξ−−, although the
particle is denoted as Φ(1860) in PDG [144].
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apply the formulae to these states.
Concerning the representation that the Θ+ belongs to, there are several conjectures in

model calculations. In the chiral soliton models [77], the Θ+ and Ξ−− belong to the antide-
cuplet (10) representation with spin and parity JP = 1/2+. An interesting proposal was
made by Jaffe and Wilczek [344] in a quark model with diquark correlation. The model is
based on the assumption of the strong diquark correlation in hadrons and the representation
mixing of an octet (8) with an antidecuplet (10). The attractive diquark correlation in the
scalar-isoscalar channel leads to again JP = 1/2+ for the Θ+. With the ideal mixing of
8 and 10, in which states are classified by the number of strange and anti-strange quarks,
N(1710) and N(1440) resonances are well fit into members of the multiplet together with
the Θ+. However, it was pointed out that mixing angles close to the ideal one encountered
a problem in the decay pattern of N(1710)→ πN and N(1440)→ πN . Rather, their decays
implied a small mixing angle [348, 349, 350]. This is intuitively understood by observing
the broad decay width of N(1440) → πN and the narrow widths of N(1710) → πN and
Θ→ KN [347, 348].

At this stage, it is worth noting that the flavor SU(3) symmetry itself does not constrain
the spin and parity. Therefore, employing the 8-10 mixing scenario which is the minimal
scheme to include the Θ+ and Ξ−−, here we examine the possibilities to assign other quantum
numbers, such as 1/2−, 3/2+, 3/2−, and search for the nucleon partners among the known
resonances. Although the formulae are already given previously, they are applied mainly
to the JP = 1/2+ case, and sometimes to the JP = 1/2−. The spin 3/2 states are rarely
examined. This is natural because the lower spin states are expected to be lighter. However,
once again, the flavor symmetry is nothing to do with the spin and parity by itself, therefore
we investigate the JP = 3/2± states as well. Indeed, we find a natural solution consistent
with both the masses and widths in the 3/2− case. For convenience, properties of relevant
resonances are summarized in Appendix E.3.

The present study is based on the flavor SU(3) symmetry, experimental mass spectra
and decay widths of the Θ+, the Ξ−− and known baryon resonances. Hence, our analysis
presented here is phenomenological, but does not rely upon any specific models. For instance,
we do not have to specify the quark contents of the baryons. Although the exotic states
require minimally five quarks, nonexotic partners do not have to. Instead, we expect that the
resulting properties such as masses and decay rates reflect information from which we hope
to learn internal structure of the baryons.

10.2 Analysis with pure antidecuplet

First we briefly discuss the case where the Θ+ belongs to the pure 10 without mixing with
other representations. In this case, the masses of particles belonging to the 10 can be deter-
mined by the Gell-Mann–Okubo (GMO) mass formula with equal splitting

M(10;Y ) ≡ 〈10;Y |H|10;Y 〉 = M10 − aY, (10.2.1)

where Y is the hypercharge of the state, and H denotes the mass matrix. Note that at this
point the spin and parity JP are not yet specified. The quantum numbers will be assigned

204



10.2. Analysis with pure antidecuplet

Table 10.1: Summary of subsection 10.2. Masses and Θ+ decay widths are shown for sev-
eral assignments of quantum numbers. For 1/2− the masses of Θ and Ξ3/2 are the input
parameters, while for 1/2+, 3/2±, the masses of Θ and N are the input parameters. Values
in parenthesis are the predictions, and we show the candidates to be assigned for the states.
All values are listed in units of MeV.

JP MΘ MN MΣ MΞ ΓΘ

1540 [1647] [1753] 1860
1/2− N(1650) Σ(1750) 156.1 +90.8

−73.3

1540 1710 [1880] [2050]
1/2+ Σ(1880) Ξ(2030) 7.2 +15.3

−4.6

1540 1720 [1900] [2080]
3/2+ - - 10.6 +7.0

−5.0

1540 1700 [1860] [2020]
3/2− - Ξ(2030) 1.3 +1.2

−0.9

as explained below.
In Eq. (10.2.1), there are two parameters, M10 and a, which are not determined by the

flavor SU(3) symmetry. However, we can estimate the values of these parameters by consid-
ering their physical meaning in some models. For instance, in a constituent quark model,
10 can be minimally expressed as four quarks and one antiquark. Therefore, M10 should be
larger than the masses of three-quark baryons, such as the lowest-lying octet baryons. In this
picture, the mass difference of Ξ(ssqqq) and Θ(qqqqs), namely 3a, should be the constituent
mass difference of the s and the ud quarks, which is about 100-250 MeV [21]. On the other
hand, in the chiral quark soliton model, 3a is related to the pion nucleon sigma term [316].
In this picture 3a can take values in the range of 300-400 MeV, due to the experimental
uncertainty of the pion nucleon sigma term ΣπN =64-79 MeV [236, 284]. Note that in the
chiral quark model, spin and parity are assigned as JP = 1/2+ for the antidecuplet.

Taking into account the above estimation, we test several parameter sets fixed by the
experimentally known masses of particles. The results are summarized in Table 10.1. First,
we determine the parameters by accommodating Θ(1540) and Ξ(1860) in the multiplet. In
this case we obtain the mass of the N and Σ states at 1647 and 1753 MeV, respectively.
Since these values are close to the masses of the 1/2− baryons N(1650) and Σ(1750), we
expect their spin and parity to be JP = 1/2−. For JP = 1/2+, we adopt the N(1710) as
the nucleon partner, and predict the Σ and Ξ states. This assignment corresponds to the
original assignment of the prediction [77]. For JP = 3/2+, we pick up N(1720), and for
JP = 3/2−, N(1700). In the three cases of JP = 1/2+, 3/2±, the exotic Ξ resonance is
predicted to be higher than 2 GeV, and the inclusion of Ξ(1860) in the same multiplet seems
to be difficult. Furthermore, the Σ states around 1.8-1.9 GeV are not well assigned (either
two-star for JP = 1/2+, or not seen for JP = 3/2±). Therefore, fitting the masses in the
pure antidecuplet scheme seems to favor JP = 1/2−.

Next we study the decay width of the N∗ resonances with the above assignments. For the
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decay of a resonance R, we define the dimensionless coupling constant gR by

ΓR ≡ g2
RFI

p2l+1

M2l
R

, (10.2.2)

where p is the relative three momentum of the decaying particles in the resonance rest frame,
l is the angular momentum of the decaying particles, ΓR and MR are the decay width and
the mass of the resonance R. FI is the isospin factor, which takes the value 2 for Θ→ KN

and 3 for N∗ → πN . This formula contains the correct l dependence, and it can be obtained
from the general expression given in Appendix A.4.1. Assuming flavor SU(3) symmetry, a
relation between the coupling constants of Θ→ KN and N∗ → πN is given by:

gΘKN =
√

6gN∗πN . (10.2.3)

Here we adopt the definition of the coupling constant in Ref. [248]. Note that this definition

is different from Refs. [348, 349], in which g ≡
√
g2
RFI is used. With these formulae (10.2.2)

and (10.2.3), we calculate the decay width of the Θ+ from those of N∗ → πN of the nucleon
partner, which is determined from the mass analysis. Results are also shown in Table 10.1.
We quote the errors coming from experimental uncertainties in the total decay widths and
branching ratios, taken from the Particle Data Group [144]. It is easily seen that as the
partial wave of the two-body final states becomes higher, the decay width of the resonance
becomes narrower, due to the effect of the centrifugal barrier. Considering the experimental
width of the Θ+, the results of JP = 3/2−, 3/2+, 1/2+ are acceptable, but the result of the
JP = 1/2− case, which is of the order of hundred MeV, is unrealistic.

In summary, it seems difficult to regard the Θ+ as a member of the pure antidecuplet 10
together with known resonances of JP = 1/2±, 3/2±, when we want to explain both their
masses and decay widths.

10.3 Analysis with octet-antidecuplet mixing

In this section we consider the representation mixing between 10 and 8. In principle, it is
possible to take into account the mixing with multiplets of higher dimension, such as 27 and
35. However, particles in such higher representations will have heavier masses. Furthermore,
the higher representations bring more states with exotic quantum numbers, which are not
controlled by the known experimental information. Here we work under the assumption of
minimal 8-10 mixing. Also we do not consider the possible mixing with other octets, such
as ground states [351].

The nucleon and Σ states in the 8 will mix with the states in the 10 of the same quantum
numbers. Denoting the mixing angles of the N and the Σ as θN and θΣ, the physical states
are represented as

|N1 〉 =|8, N 〉 cos θN − |10, N 〉 sin θN ,

|N2 〉 =|10, N 〉 cos θN + |8, N 〉 sin θN ,
(10.3.1)
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and

|Σ1 〉 =|8,Σ 〉 cos θΣ − |10,Σ 〉 sin θΣ,
|Σ2 〉 =|10,Σ 〉 cos θΣ + |8,Σ 〉 sin θΣ.

(10.3.2)

To avoid redundant duplication, the domain of the mixing angles is restricted in 0 ≤ θ < π/2,
and we will find solutions for N1 and Σ1 lighter than N2 and Σ2, respectively. The reason
for these restrictions is explained in Appendix E.2.

When we construct 10 and 8 from five quarks, the eigenvalues of the strange quark (anti-
quark) number operator ns of nucleon states become fractional. In the scenario of the ideal
mixing of Jaffe and Wilczek, the physical states are given as

|N1 〉 =

√
2
3
|8, N 〉 −

√
1
3
|10, N 〉,

|N2 〉 =

√
2
3
|10, N 〉+

√
1
3
|8, N 〉,

such that 〈N1 |ns|N1 〉 = 0 and 〈N2 |ns|N2 〉 = 2. In this case, the mixing angle is

θN ∼ 35.2◦. (10.3.3)

This value will be compared with the angle obtained from the mass spectrum of known
resonances. In the Jaffe-Wilczek model [344], N(1440) and N(1710) are assigned to N1 and
N2, respectively. Notice that the separation of the ss̄ component in the ideal mixing is only
meaningful for mixing between five-quark states, while the number of quarks in the baryons
is arbitrary in the present general framework.

It is worth mentioning that the mixing angle θN for 1/2+ case is calculated through the
dynamical study of constituent quark model [397]. The resulting value is θN ∼ 35.34◦, which
is very close to the ideal mixing angle (10.3.3).

10.3.1 Mass spectrum

Let us start with the GMO mass formulae for 10 and 8 :

M(10;Y ) ≡ 〈10;Y |H|10;Y 〉 = M10 − aY, (10.3.4)

M(8; I, Y ) ≡ 〈8; I, Y |H|8; I, Y 〉 = M8 − bY + c

[
I(I + 1)− 1

4
Y 2

]
, (10.3.5)

where Y and I are the hypercharge and the isospin of the state. Under representation mixing
as in Eqs. (10.3.1) and (10.3.2), the two nucleons (N8, N10) and the two sigma states (Σ8,Σ10)
mix, and their mass matrices are given by 2×2 matrices. The diagonal components are given
by Eqs. (10.3.4) and (10.3.5), while the off-diagonal elements are given as

〈8, N |H|10, N 〉 = 〈8,Σ |H|10,Σ 〉 ≡ δ.

The equivalence of the two off-diagonal elements can be verified when the symmetry breaking
term is given by λ8 due to a finite strange quark mass [236].
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The physical states |Ni 〉 and |Σi 〉 diagonalize H. Therefore, we have the relations

tan 2θN =
2δ

M10 −M8 − a+ b− 1
2c
,

and

tan 2θΣ =
2δ

M10 −M8 − 2c
.

Now we have the mass formulae for the states

MΘ =M10 − 2a,

MN1 =
(
M8 − b+

1
2
c

)
cos2 θN + (M10 − a) sin2 θN

− δ sin 2θN ,

MN2 =
(
M8 − b+

1
2
c

)
sin2 θN + (M10 − a) cos2 θN

+ δ sin 2θN ,

MΣ1 = (M8 + 2c) cos2 θΣ +M10 sin2 θΣ − δ sin 2θΣ,

MΣ2 = (M8 + 2c) sin2 θΣ +M10 cos2 θΣ + δ sin 2θΣ,

MΛ =M8,

MΞ8 =M8 + b+
1
2
c,

MΞ10
=M10 + a.

We have altogether six parameters M8, M10, a, b, c and δ. Eliminating the mixing angles
and δ, we obtain a relation independent of the mixing angle [236]

2(MN1 +MN2 +MΞ8) = MΣ1 +MΣ2 + 3MΛ +MΘ.

Let us first examine the case of JP = 1/2+ [349]. Possible candidates for the partners of
the exotic states Θ(1540) and Ξ10(1860) are the following:

N(1440), N(1710), Λ(1600), Σ(1660), Σ(1880).

In order to fix the six parameters, we need to assign six particles as input. Using Θ(1540),
N1(1440), N2(1710), Λ(1600), Σ1(1660), Ξ10(1860), we obtain the parameters as given in
Table 10.2. The resulting mass spectrum together with the two predicted masses, Σ1 = 1894
MeV and Ξ8 = 1797 MeV, are given in Table 10.3 and also shown in the left panel of
Fig. 10.1. In Fig. 10.1, the spectra from experiment and those before the representation
mixing are also plotted. For reference, in Table 10.2 and 10.3 we show the parameters and
masses of Ref. [349], in which all known resonances including Σ(1660) and Σ(1880) are used
to perform the χ2 fitting.

As we see in Table 10.3 and Fig. 10.1, even without using the Σ2 for the fitting, this
state appears in the proper position to be assigned as Σ(1880). Taking into account the
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10.3. Analysis with octet-antidecuplet mixing

Table 10.2: Parameters for 1/2+ case. All values are listed in MeV except for the mixing
angles.

M8 M10 a b c δ θN θΣ
This work 1600 1753.3 106.7 146.7 100.1 114.4 29.0◦ 50.8◦

Ref. [349] 1600 1755 107 144 93 123 29.7◦ 41.4◦

Table 10.3: Mass spectra for 1/2+ case. All values are listed in MeV. Values in parenthesis
(Σ2 and Ξ8 of Set 1, Ξ8 of Ref. [349]) are predictions (those which are not used in the fitting).

Θ N1 N2 Σ1 Σ2 Λ Ξ8 Ξ10

This work 1540 1440 1710 1660 [1894] 1600 [1797] 1860
Ref. [349] 1541 1432 1718 1650 1891 1600 [1791] 1862
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Figure 10.1: Results of mass spectra with representation mixing. Theoretical masses of the
octet, antidecuplet, and the one with mixing are compared with the experimental masses. In
the left panel, we show the results with JP = 1/2+, while the results with JP = 3/2− (set
1) are presented in the right panel.
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Chapter 10. Phenomenology of spin 3/2 baryons with pentaquarks

experimental uncertainty in the masses, these two parameter sets (the one determined in this
work and the one in Ref. [349]) can be regarded as the same one. In both cases, we need
a new Ξ state around 1790-1800 MeV, but the overall description of the mass spectrum is
acceptable. Note that the mixing angle θN ∼ 30◦ is compatible with the one of the ideal
mixing (10.3.3), if we consider the experimental uncertainty of masses [349].

It is interesting to observe that in the spectrum of the octet, as shown in Fig. 10.1, the Ξ8

and the Σ8 are almost degenerate, reflecting the large value for the parameter c ∼ 100 MeV,
which is responsible for the splitting of Λ and Σ. For the ground state octet, Eq. (10.3.5) is
well satisfied with b = 139.3 MeV and c = 40.2 MeV [236]. This point will be discussed later.

Now we examine the other cases of JP . For JP = 1/2−, as we observed in the previous
section, the pure 10 assignment works well for the mass spectrum, which implies that the
mixing with 8 is small, as long as we adopt N(1650) and Σ(1750) in the multiplet. Then
the results of 1/2− with the mixing do not change from the previous results of the pure 10
assignment, which eventually lead to a broad width of Θ+ → KN of order 100 MeV. Hence,
it is not realistic to assign 1/2−, even if we consider the representation mixing.

Next we consider the 3/2+ case. In this case candidate states are not well established. As
we see in Appendix E.3, no state exists for Σ and Ξ, except for two- or one-star resonances.
Furthermore, the states are distributed in a wide energy range, and sometimes it is not
possible to assign these particles in the 8-10 representation scheme. For instance, if we
choose N(1720), N(1900), Λ(1890), Σ(1840) and exotic states, no solution is found for the
mixing angle. Therefore, at this moment, it is not meaningful to study the 3/2+ case unless
more states with 3/2+ will be observed.

Now we look at the 3/2− case. In contrast to the 3/2+ case, there are several well-
established resonances. Possible candidates are

N(1520), N(1700), Λ(1520), Λ(1690), Σ(1670), Σ(1940), Ξ(1820).

Following the same procedure as before, we first choose the following four resonances as
inputs: Θ(1540), N1(1700), N2(1520), and Ξ3/2(1860). For the remaining two to determine
the six parameters, we examine four different choices of Σ and Λ states;

Σ(1670) and Λ(1690) (set1),

Σ(1670) and Λ(1520) (set2),

Σ(1940) and Λ(1690) (set3),

Σ(1940) and Λ(1520) (set4).

We have obtained the parameters as given in Table 10.4, and predicted masses of other
members are shown in Table 10.5. The masses of N(1520) and N(1700) determine the
mixing angle of nucleons θN ∼ 33◦, which is close to the ideal one. In the parameter sets
1 and 2 (sets 3 and 4), the Σ(1670) state of a lower mass (the Σ(1940) state of a higher
mass) is chosen but with different Λ’s, Λ(1690) and Λ(1520). Accordingly, they predict the
higher Σ(1834) state (the lower Σ(1717) state) with the mixing angle θΣ = 44.6◦(= 66.2◦).
Interestingly, parameters of set 1 provide MΞ8 ∼ 1837 MeV, which is close to the known
three-star resonance Ξ(1820) of JP = 3/2−. Parameters of set 4 predict MΞ8 ∼ 1659 MeV,

210



10.3. Analysis with octet-antidecuplet mixing

Table 10.4: Parameters for 3/2− case. All values are listed in MeV except for the mixing
angles.

M8 M10 a b c δ θN θΣ
set 1 1690 1753.3 106.7 131.9 30.5 82.2 33.0◦ 44.6◦

set 2 1520 1753.3 106.7 4.4 115.5 82.2 33.0◦ 44.6◦

set 3 1690 1753.3 106.7 170.1 106.9 82.2 33.0◦ 66.2◦

set 4 1520 1753.3 106.7 42.6 191.9 82.2 33.0◦ 66.2◦

Table 10.5: Mass spectra for 3/2− case. All values are listed in MeV. Values in parenthesis
are predictions (those which are not used in the fitting).

Θ N1 N2 Σ1 Σ2 Λ Ξ8 Ξ10

set 1 1540 1520 1700 1670 [1834] 1690 [1837] 1860
set 2 1540 1520 1700 1670 [1834] 1520 [1582] 1860
set 3 1540 1520 1700 [1717] 1940 1690 [1914] 1860
set 4 1540 1520 1700 [1717] 1940 1520 [1659] 1860

which is close to another known resonance Ξ(1690). Since the JP of this state is not known,
this fitting scheme predicts JP of Ξ(1690) to be 3/2−. In these two cases, we have obtained
acceptable assignments, especially for set 1, although a new Σ state is necessary to complete
the multiplet in both cases. The spectrum of set 1 is also shown in Fig. 10.1.

Let us briefly look at the octet and antidecuplet spectra of 1/2+ and 3/2− resonances
as shown in Fig. 10.1. The antidecuplet spectrum is simple, since the GMO mass formula
contains only one parameter which describes the size of the splitting. Contrarily, the octet
spectrum contains two parameters which could reflect more information on different internal
structure. As mentioned before, in the octet spectrum of 1/2+, the mass of Σ8 is pushed up
slightly above Ξ8, significantly higher than Λ8. This pattern resembles the octet spectrum
which is obtained in the Jaffe-Wilczek model, where baryons are made with two flavor 3̄
diquarks and one antiquark. In contrast, the spectrum of the octet of 3/2− resembles the one
of the ground state octet; we find the parameters (b, c) = (131.9, 30.5) MeV, which are close
to (b, c) = (139.3, 40.2) MeV for the ground states. This is not far from the prediction of an
additive quark model of three valence quarks. It would be interesting to investigate further
the quark contents from such a different pattern of the mass spectrum.

10.3.2 Decay width

In the previous subsection, mass spectra of the JP = 1/2+ and JP = 3/2− are reasonably
well described. Here we study the consistency of the mixing angle obtained from mass spectra
and the one obtained from nucleon decay widths for these two cases. Using Eq. (10.2.3), we
define a universal coupling constant g10 as

gΘKN =
√

6gN10πN ≡ g10.
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Chapter 10. Phenomenology of spin 3/2 baryons with pentaquarks

Table 10.6: Experimental data for the decay of N∗ resonances. We denote the total decay
width and partial decay width to the πN channel as Γtot and ΓπN , respectively. Values in
parenthesis are the central values quoted in PDG [144].

JP Resonance Γtot [MeV] Fraction (ΓπN/Γtot)
1/2+ N(1440) 250-450 (350) 60-70 (65) %

N(1710) 50-250 (100) 10-20 (15) %
3/2− N(1520) 110-135 (120) 50-60 (55) %

N(1700) 50-150 (100) 5-15 (10) %

Table 10.7: Decay width of Θ+ determined from the nucleon decays and the mixing angle
obtained from the mass spectra. Phase 1 corresponds to the same signs of gN8 and g10, while
phase 2 corresponds to the opposite signs. All values are listed in MeV.

JP θN ΓΘ (Phase 1) ΓΘ (Phase 2)
1/2+ 29◦ (Mass) 29.1 103.3

35.2◦ (Ideal) 49.3 131.8
3/2− 33◦ (Mass) 3.1 20.0

35.2◦ (Ideal) 3.9 21.3

The coupling constants of the πN decay modes from the N8, N1, and N2 are defined as gN8 ,
gN1 , and gN2 , respectively. The coupling constants of the physical nucleons N1 and N2 are

gN1 = gN8 cos θN − g10√
6

sin θN , (10.3.6)

gN2 =
g10√

6
cos θN + gN8 sin θN , (10.3.7)

which are related to the decay widths through Eq. (10.2.2). However, we cannot fix the
relative phase between gN8 and g10. Hence, there are two possibilities of mixing angles both
of which reproduce the same decay widths. In Refs. [349, 350], one mixing angle is determined
by neglecting g10 in Eqs. (10.3.6) and (10.3.7), which is considered to be small due to the
narrow width of Θ+. Here we include the effect of g10 explicitly.

For JP = 1/2+ and 3/2−, we display the decay widths and branching ratios to the πN
channel of relevant nucleon resonances in Table 10.6. Using the mixing angle determined
from the mass spectrum and experimental information of N∗ → πN decays, we obtain the
decay width of the Θ+ as shown in Table 10.7. The widths calculated with the ideal mixing
angle are also presented for reference. Among the two values, the former corresponds to the
same signs of gN8 and g10 (phase 1), while the latter to the opposite signs (phase 2).

For the 1/2+ case, the width is about 30 MeV when the mixing angle is determined by
the mass spectrum, while about 50 MeV for the ideal mixing angle. Both values exceed
the upper bound of the experimentally observed width. In contrast, the case 3/2− predicts
much narrower widths of the order of a few MeV both for the two mixing angles, which are
compatible with the experimental upper bound of the Θ+ width.

Alternatively, we can determine θN using the experimental decay widths of Θ → KN ,
N1 → πN and N2 → πN . Here we choose the decay width of Θ+ as 1 MeV. Using the central
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10.4. Summary and discussion

values of the decay widths of N(1440) and N(1710) and the experimental uncertainty, we
obtain the nucleon mixing angle for the 1/2+ case

θN = 6◦ +9◦
−4◦ , θN = 14◦ +10◦

−4◦ , (10.3.8)

where the former corresponds to the phase 1 and the latter to the phase 2. On the other
hand, with N(1520) and N(1700), the mixing angle for the 3/2− case is

θN = 9◦ +9◦
−8◦ , θN = 24◦ +9◦

−9◦ . (10.3.9)

For the case of 1/2+, the mixing angle of Eq. (10.3.8) may be compared with θN ∼ 30◦,
which is determined from the fitting to the masses. If we consider the large uncertainty of
the πN decay width of N(1440), the mixing angle (10.3.8) can be 24◦, which is not very far
from the angle determined by the masses θN ∼ 30◦. On the other hand, for the case of 3/2−,
the mixing angle (10.3.9) agrees well with the angle determined by the masses θN ∼ 33◦.
Considering the agreement of mixing angles and the relatively small uncertainties in the
experimental decay widths, the results with the 3/2− case are favorable in the present fitting
analysis.

10.4 Summary and discussion

We have studied masses and decay widths of the baryons belonging to the octet (8) and
antidecuplet (10) based on the flavor SU(3) symmetry. As pointed out previously [348, 349,
350], it is confirmed again the inconsistency between the mass spectrum and decay widths
of flavor partners in the 8-10 mixing scenario with JP = 1/2+. However, the assignment of
JP = 3/2− particles in the mixing scenario well reproduced the mass spectrum as well as the
decay widths of Θ(1540), N(1520), and N(1700). Assignment of 3/2− predicts a new Σ state
at around 1840 MeV, and the nucleon mixing angle is close to the one of ideal mixing. The
1/2− assignment is not realistic since the widths are too large for Θ+. In order to investigate
the 3/2+ case, better experimental data of the resonances is needed.

The assignment of JP = 3/2− for exotic baryons seems reasonable also in a quark model
especially when narrow width of the Θ+ is to be explained [389]. The (0s)5 configuration
for the 3/2− Θ+ is dominated by the K∗N configuration [399], which however cannot be the
decay channel, since the total masses of K∗ and N is higher than the mass of Θ+. Hence
we expect naturally (in addition to a naive suppression mechanism due to the d-wave KN
decay) a strong suppression of the decay of the Θ+. The possibility of the spin 3/2 for the
Θ+ or its excited states has been discussed not only in quark models [398, 393, 389, 399],
but also in the KN potential model [404], the K∆ resonance model [414], QCD sum rule
calculations [474], and lattice QCD [491, 492].

The 3/2− resonances of nonexotic quantum numbers have been also studied in various
models of hadrons. A conventional quark model description with a 1p excitation of a single
quark orbit has been successful qualitatively [329]. Such three-quark states can couple with
meson-baryon states which could be a source for the five- (or more-) quark content of the
resonance. In the chiral unitary approach, 3/2− states are generated by s-wave scattering
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Chapter 10. Phenomenology of spin 3/2 baryons with pentaquarks

states of an octet meson and a decuplet baryon [561, 414, 415]. By construction, the resulting
resonances are largely dominated by five-quark content. These two approaches generate octet
baryons which will eventually mix with the antidecuplet partners to generate the physical
baryons. In other words, careful investigation of the octet states before mixing will provide
further information.

In the present phenomenological study, we have found that JP = 3/2− seems to fit the
observed data. As we have known, other identifications have been also discussed in the
literature, for instance, using large Nc expansion [275, 276, 277]. It is therefore important
to determine the quantum numbers of Θ+ in experiments, not only for the exotic particles
but also for the baryon spectroscopy of nonexotic particles. Study of high spin states in
phenomenological models and calculations based on QCD are strongly encouraged.
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Chapter 11

Two-meson couplings of the Θ+ and
application to reactions

We evaluate two-meson couplings of Θ+, using experimental information of nucleon reso-
nances decaying into ππN channels, in which the two pions are in scalar- and vector-type
correlations. We examine two assignments of spin and parity of JP = 1/2+ and 3/2−, for
which the experimental spectra of known resonances with exotic baryons are properly re-
produced by an octet-antidecuplet representation mixing scheme in previous chapter. Using
the obtained coupling constants, total cross sections of the reactions π−p → K−Θ+ and
K+p → π+Θ+ are calculated. Substantial interference of two terms may occur in the reac-
tion processes for the JP = 1/2+ case, whereas the interference effect is rather small for the
3/2− case. This topic is reported in Ref. [25].

11.1 Introduction

A particularly interesting property that is expected to be characteristic for exotic baryons is
their strong coupling to two-meson states in transitions to an ordinary baryon, as studied in
chapter 9. Studying two-meson couplings of the exotic baryon Θ+ is important for several
reasons.

First, a heptaquark model has been proposed in the early stage of development to explain
a light mass and a narrow decay width [407, 411, 410, 408, 412]. Although a quantitative
study—in particular with a model of hadrons where Θ+ is regarded as a bound state of πKN
system—does not work with the present knowledge of hadron interactions, a two-meson
contribution to the self-energy of Θ+ has been shown to be consistent with the expected
pattern of the masses of the antidecuplet members [21].

Second, the importance of two-meson coupling has been implied from an empirical ob-
servation of the generalized OZI rule [54]. The dominance of connected quark lines favors
creation of a qq̄ pair in the transition of Θ+(qqqqq̄)→ N(qqq), which is naturally associated
with couplings to two mesons, whereas couplings to a single meson are suppressed.

Finally, two-meson couplings play important roles in reaction studies. Without two-meson
couplings, all the amplitudes for Θ+ production are proportional to the Θ+KN coupling,
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which is fixed by the very small decay width of the Θ+. However, two-meson couplings are
determined from other source as we will see in the following, independently of the Θ+KN

coupling. Therefore, even with the extremely narrow width of Θ+, a sizable cross section can
be obtained with two-meson couplings.

In chapter 9 (Ref. [21]), an analysis of the two-meson coupling was performed in the
study of the self-energy of the Θ+, assuming that JP = 1/2+ with N(1710) in the same
antidecuplet (10). Since the Θ+ cannot decay intoKπN channel, the coupling constants were
determined from the N∗ decay into the ππN channel and flavor SU(3) symmetry. Two types
of Lagrangians were found to be important for the self-energy of the baryon antidecuplet. It
was also shown that the two-meson contribution was indeed dominant over a single-meson
contribution. However, the assumption of pure 10 may not be the case in reality.

This point was clarified in chapter 10 (Ref. [24]), where we studied the phenomenology
of flavor partners for the Θ+. We assigned the masses of experimentally known particles in
an octet-antidecuplet mixing scheme, finding good fits for JP = 1/2+ and 3/2−. The decay
width of the Θ+ was also evaluated in the same scheme, and the JP = 3/2− case naturally
explained the narrow width, in accordance with the quark model estimation [389]. In both
JP cases, we obtained relatively large mixing angles, which implies the importance of the
representation mixing.

Hence, combining these two findings, in this chapter, we would like to calculate the two-
meson couplings including the representation mixing. First we determine the coupling con-
stants of N∗ → ππN from the experimental widths and separate the 10 component from
the 8 component. Then, by using SU(3) symmetry, the coupling constants of ΘKπN are
determined for JP = 1/2+ and 3/2−, including representation mixing of 8 and 10. We focus
on the decay channels in which the two pions are correlated in scalar-isoscalar and vector-
isovector channels, which are the main decay modes of the resonances and play a dominant
role in the Θ+ self-energy [21].

As an application of the effective Lagrangians, we perform the analysis of the π−p →
K−Θ+ and K+p→ π+Θ+ reactions. These reactions were studied using effective Lagrangian
approaches [17, 188, 208, 190]. Experiments for π−p → K−Θ+ have been performed at
KEK [650, 131], and a high-resolution experiment for the K+p→ π+Θ+ reaction is ongoing.
We can compare the results with these experiments.

This chapter is organized as follows. In the next section, we show the framework of
representation mixing and relevant experimental information of nucleon decay. In section 9.2,
the effective interaction Lagrangians for nucleons and for the antidecuplet are introduced for
both JP = 1/2+ and 3/2− cases. The coupling constants are determined in section. 11.4
by considering the decay widths of N∗ resonances and the self-energy of the Θ+. With the
effective Lagrangians, the reaction processes π−p→ K−Θ+ and K+p→ π+Θ+ are analyzed
in section 3.3. The final section is devoted to a summary.
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Figure 11.1: Feynman diagram for the three-body decay of the N∗ resonance.

11.2 Representation mixing scheme and experimental infor-
mation

Let us briefly review the representation mixing scheme in the previous chapter [24] and sum-
marize the experimental data for the decays of nucleon resonances. We have performed a
phenomenological analysis on the exotic particles using flavor SU(3) symmetry. It is found
that the masses of Θ(1540) and Ξ3/2(1860) are well fitted into an antidecuplet (10) represen-
tation which mixes with an octet (8), with known baryon resonances of JP = 1/2+ or 3/2−.
The 1/2− case gives too large a decay width for the Θ+, and not enough resonances are well
established for 3/2+ to complete the analysis. Under the representation mixing, the physical
nucleon states are defined as

|N1 〉 =|8, N 〉 cos θN − |10, N 〉 sin θN ,

|N2 〉 =|10, N 〉 cos θN + |8, N 〉 sin θN .
(11.2.1)

Two states N1 and N2 represents N(1440) and N(1710) for the 1/2+ case and N(1520) and
N(1700) for the 3/2− case. The mixing angles θN can be determined by experimental spectra
of known resonances as

θN =29◦ for JP = 1/2+, θN = 33◦ for JP = 3/2−. (11.2.2)

Both angles are close to the ideal mixing θN ∼ 35.2◦, in which the nucleon states are classified
by the number of strange quarks (antiquarks). In other words, states are well mixed and the
effect of mixing of states is important.

Using these mixing angles and decay widths of nucleon resonances (ΓN∗→πN ), we can
calculate the decay width of Θ (ΓΘ→KN ) through the SU(3) relation between the coupling
constants

gΘ =
√

6(gN2 cos θN − gN1 sin θN ),

where gΘ, gN1 , and gN2 are the coupling constants of Θ and nucleon resonances. With the
known coupling constants gN1 and gN2 , we obtained ΓΘ ∼ 30 MeV for JP = 1/2+ and
ΓΘ ∼ 3 MeV for JP = 3/2−. Here we extend this approach to three-body decays, as shown
in Fig. 11.1.

In Table 11.1, we show the experimental information of the decay pattern of the nucleon
resonances N∗ → ππN taken from the Particle Data Group (PDG) [144]. For convenience,
we refer to ππ(I = 0, s wave)N and ππ(I = 1, p wave)N modes as “scalar” (s) and “vector”
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Table 11.1: Experimental information of two-pion decay of nucleon resonances. “Scalar”
represents the mode ππ(I = 0, s wave)N and “Vector” means ππ(I = 1, p wave)N mode.
Values in parenthesis are averaged over the interval quoted in PDG [144].

JP State Γtot [MeV] Scalar [%] Vector [%]
1/2+ N(1440) 350 5-10(7.5) <8

N(1710) 100 10-40(25) 5-25(15)
3/2− N(1520) 120 10-40(25) 15-25(20)

N(1700) 100 < 85-95A) <35

(v), respectively. There is no information for the scalar decay of N(1700). PDG shows only
the fraction decaying via the ππN mode (85-95%) and an upper bound for ρN mode (<35%),
although several intermediate states including ππ(I = 0, s wave)N are shown in the table. For
the estimation of the coupling constants, we adopt the total branching ratio to ππN channel
as the upper limit of the branch for ππ(I = 0)N state, BRN(1700)→ππ(I=0)N < 85-95%.

11.3 Effective interaction Lagrangians

Here we write down the effective Lagrangians that account for the interactions in the present
analysis. We need two steps, namely, the extraction of the 10 component from theN∗ → ππN

decay and the extrapolation of that term to the ΘπKN channel. Lagrangians for nucleons
will be used for the former purpose; the Lagrangians for the antidecuplet will tell us the
SU(3) relation between channels in the multiplet.

In general, for an N∗ → ππN vertex with an N∗ in octet or antidecuplet representations,
there are several structures of interaction Lagrangians that are SU(3) symmetric. However,
for octet N∗, information of other channels are not relevant here, because we do not want to
study other channels. Therefore, we write down only the N∗ππN channels, instead of listing
all possible Lagrangians.

Using the partial decay widths of the two nucleon resonances Γs,v
i , we determine the abso-

lute values of the coupling constants |gs,v
i |, where superscripts s and v stand for the scalar-

and vector-type correlations of two mesons. From them, we can obtain the antidecuplet and
octet components of the N∗ππN coupling constants as

gs,v(10) = −|gs,v
1 | sin θN ± |gs,v

2 | cos θN ,

gs,v(8) = |gs,v
1 | cos θN ± |gs,v

2 | sin θN ,
(11.3.1)

based on Eq. (10.3.1). Since the relative phase of the two coupling constants cannot be de-
termined, the ± sign appears. Here we use θN obtained from the mass spectra as shown in
Eqs. (11.2.2). When the coupling constants have ambiguities due to experimental uncertain-
ties, we vary the couplings gs,v

1 and gs,v
2 within the allowed region and check the minimum

and maximum of corresponding values of gs,v(10).
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11.3.1 Lagrangians for nucleons with JP = 1/2+

Let us consider the JP = 1/2+ case. The interaction Lagrangians for nucleons can be written
as

Ls
i =

gs
i

2
√

2f
N
∗
i π · πN + h.c. (11.3.2)

and

Lv
i = i

gv
i

4
√

2f2
N
∗
i (π ·

←→
/∂ π)N + h.c. = i

gv
i

4
√

2f2
N
∗
i (π · /∂π − /∂π · π)N + h.c., (11.3.3)

where f = 93 MeV is the pion decay constant, gs,v
i are dimensionless coupling constants,

and h.c. stands for the hermitian conjugate. Subscript i = 1, 2 denotes the two nucleons
N(1440) and N(1710), respectively. The numerical factors are chosen such that the coupling
constants gs,v

i should be consistent with the Lagrangians for the antidecuplet, which will be
given later. For nucleon, N∗, and pion fields, we adopt the convention

N =
(
p
n

)
, N∗

i =
(
p∗i
n∗i

)
, π =

(
π0

√
2π+√

2π− −π0

)
. (11.3.4)

11.3.2 Lagrangians for the antidecuplet with JP = 1/2+

To relate the coupling constant of the process N∗ππN to that of ΘKπN , we write down
the interaction Lagrangian for the antidecuplet. Flavor SU(3) structure of these terms are
studied in Ref. [21]. In the present case, for the scalar-type correlation, we have

Ls
1/2+ =

gs
1/2+

2f
P ijkε

lmkφl
aφa

iBm
j + h.c., (11.3.5)

whereas for the vector-type correlation, we have

Lv
1/2+ = i

gv
1/2+

4f2
P ijkε

lmkγµ(∂µφl
aφa

i − φl
a∂µφa

i)Bm
j + h.c. (11.3.6)

In Eqs. (11.3.5) and (11.3.6), the coupling constants are for the antidecuplet baryon, which
corresponds to Eq. (11.3.1). These Lagrangians correspond to L8s and L8a in Ref. [21]. The
octet meson (baryon) field φ (B) and the antidecuplet baryon field P are defined as

φ =




1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K
0 − 2√

6
η


 ,

B =




1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ


 ,
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P 333 =
√

6Θ+
10
,

P 133 =
√

2N0
10
, P 233 = −

√
2N+

10
,

P 113 =
√

2Σ−
10
, P 123 = −Σ0

10
, P 223 = −

√
2Σ+

10
,

P 111 =
√

6Ξ−−
10

, P 112 = −
√

2Ξ−
10
, P 122 =

√
2Ξ0

10
, P 222 = −

√
6Ξ+

10
,

Note that the coefficients for N∗ππN in the expansion of the Lagrangians are the same as
Eqs. (11.3.2) and (11.3.3), respectively. This means that the normalization of the coupling
constants in both Lagrangians are the same.

There is another Lagrangian for the scalar-type correlation L27 [21]. However, the contri-
bution of this term can be expressed by the following parametrization:

aL8s + bL27, b = −5
4(1− a),

with g8s = g27. The ratio of L8s and L27 is controlled by the parameter a, without changing
the total coupling constant of N∗ππN . The important point is that this combination of the
two Lagrangians also does not change the ΘKπN channel, as we can see in the table in
Appendix D.3. Therefore, in the present purpose, it is sufficient to consider the Lagrangians
(11.3.5) and (11.3.6).

11.3.3 Lagrangians for nucleons with JP = 3/2−

We express the spin 3/2 baryons as Rarita-Schwinger fields Bµ [651], whose definition is given
in Appendix A.1.2. The effective Lagrangians can be written as

Ls
i = i

gs
i

4
√

2f2
N
∗µ
i ∂µ(π · π)N + h.c. = i

gs
i

4
√

2f2
N
∗µ
i (∂µπ · π + π · ∂µπ)N + h.c.

and

Lv
i = i

gv
i

4
√

2f2
N
∗µ
i (π · ←→∂µπ)N + h.c.

Here i = 1, 2 denotes the two nucleons N(1520) and N(1700), respectively. Notice that
a derivative of meson field is needed for the scalar Lagrangian whose Dirac index is to be
contracted with that of Rarita-Schwinger field. Since the flavor structure of these Lagrangians
is the same as in Eqs. (11.3.2) and (11.3.3), we will have the same flavor coefficients. The
antidecuplet component of the coupling constants can be determined as in Eq. (11.3.1).

11.3.4 Lagrangians for the antidecuplet with JP = 3/2−

We write the Lagrangians for the antidecuplet as a straightforward extension of those in 1/2+

case:

Ls
3/2− = i

gs
3/2−

4f2
P

µ
ijkε

lmk∂µ(φl
aφa

i)Bm
j + h.c.

while for the vector type correlation we have

Lv
3/2− = i

gv
3/2−

4f2
P

µ
ijkε

lmk(∂µφl
aφa

i − φl
a∂µφa

i)Bm
j + h.c.

Here the flavor structure is the same as in Eq. (11.3.6).
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11.4 Evaluation of the coupling constants

To study the coupling constants, let us start with the decay width of a resonance into two
mesons and one baryon, which is given by

ΓNππ =
∫

d3p

(2π)3
M

E

∫
d3k

(2π)3
1
2ω

∫
d3k′

(2π)3
1

2ω′
ΣΣ|t(ω, ω′, cos θ)|2(2π)4δ(4)(P − p− k − k′)

=
M

16π3

∫ ωmax

ωmin

dω

∫ ω′max

ω′min

dω′ΣΣ|t(ω, ω′, a)|2Θ(1− a2),

with

ωmin =ω′min = m, ωmax = ω′max =
M2

R −M2 − 2Mm

2MR
,

a =
(MR − ω − ω′)2 −M2 − |k|2 − |k′|2

2|k||k′| ,

where we assign the momentum variables P = (MR,0), k = (ω,k), k′ = (ω′,k′), and p =
(E,p) as in Fig. 11.1; MR, M , and m are the masses of the resonance, baryon, and mesons,
respectively; and θ is the angle between the momenta k and k′. The on-shell energies of
particles are given by ω =

√
m2 + k2, ω′ =

√
m2 + (k′)2, and E =

√
M2 + p2; Θ denotes

the step function; and ΣΣ stands for the spin sum of the fermion states. A derivation can be
found in Appendix A.4.2.

In the following, we evaluate the squared amplitude ΣΣ|t(ω, ω′, cos θ)|2 for the N∗ → ππN

decay in the nonrelativistic approximation. For the 1/2+ case, from Eq. (11.3.2), the scalar
Lagrangian gives the term

ΣΣ|ts1/2+ |2 = 3

(
gs
1/2+

2f

)2
E +M

2M
.

Note that we include the normalization factor (E +M)/2M to be consistent with the other
amplitude, although the effect of this factor is small (of the order of a few percent) in the
results.

For the vector-type coupling, we insert the vector meson propagator to account for the ρ
meson correlation [21], as shown in Fig. 11.2. Then the squared amplitude becomes

ΣΣ|tv1/2+ |2 =6

(
gv
1/2+

4f2

)2
1

2M

{
(E +M)(ω − ω′)2 + 2(|k|2 − |k′|2)(ω − ω′)

+ (E −M)(k − k′)2
}
×

∣∣∣∣∣
−m2

ρ

s′ −m2
ρ + imρΓ(s′)

∣∣∣∣∣
2

, (11.4.1)

where mρ is the mass of ρ meson, s′ = (k+ k′)2. Furthermore, Γ(s′) is the energy-dependent
width given by

Γ(s′) = Γρ ×
(
pcm(s′)
pcm(m2

ρ)

)3

,
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Figure 11.2: Three-body decay of the N∗ resonance with insertion of the vector meson
propagator.

where the relative three-momentum of the final two particles in the ρ rest frame is given by

pcm(s′) =

{
λ1/2(s′,m2

π,m2
π)

2
√

s′
for s′ > 4m2

π,

0 for s′ 6 4m2
π,

using the Källen function λ(a, b, c). Note that in Eq. (11.4.1) we take the terms up to next to
leading order in the nonrelativistic expansion, since the leading order term (ω − ω′) appears
as the difference of two energies, which can be zero.

The squared amplitudes for JP = 3/2− can be obtained in a similar way:

ΣΣ|ts3/2− |2 =

(
gs
3/2−

4f2

)2

(k + k′)2
E +M

2M
,

ΣΣ|tv3/2− |2 =2

(
gv
3/2−

4f2

)2

(k − k′)2
E +M

2M

∣∣∣∣∣
−m2

ρ

s′ −m2
ρ + imρΓ(s′)

∣∣∣∣∣
2

.

11.4.1 Numerical result for the JP = 1/2+ case

Now we evaluate the coupling constants numerically. Using the averaged values in Table 11.1,
we obtain the coupling constants gs

i and gv
i for these channels:

|gs
N(1440)| = 4.28, |gv

N(1440)| < 3.68,

|gs
N(1710)| = 1.84, |gv

N(1710)| = 0.31. (11.4.2)

By substituting them into Eq. (11.3.1) (but suppressing the label 10 for simplicity), the
antidecuplet components are extracted as

|gs
1/2+ | = 0.47, 3.68, (11.4.3)

where two values correspond to the results with different relative phases between the two
coupling constants. For |gv

1/2+ |, only the upper bound is given for N(1440); therefore we can
not fix the central value.

When we take into account the experimental uncertainties in branching ratio, the antide-
cuplet components can vary within the following ranges:

0 < |gs
1/2+ | < 1.37, 0 < |gv

1/2+ | < 2.14,

2.72 < |gs
1/2+ | < 4.42,
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Figure 11.3: Numerical results for the coupling constants with JP = 1/2+. The two choices
of the relative phase between coupling constants are marked as “phase 1” and “phase 2”.
Allowed regions of the coupling constants are shown by the vertical bar. Horizontal bars
represent the results obtained with the averaged values, which are absent for the vector case.
Horizontal dashed lines show the upper limits of the coupling constants derived from the
self-energy |ReΣ| < 200 MeV.

including both cases for the phase. These uncertainties are also shown by the vertical bar in
Fig. 11.3, with the horizontal bars being the result with the averaged value in Eq. (11.4.3).

Now let us consider phenomenological implications of this result. In the study of self-
energy [21], the coupling constants have been derived by assuming that the Θ+ belongs to
a pure antidecuplet together with N(1710), where we have determined |gs

1/2+ | = 1.88 and
|gv

1/2+ | = 0.315 (essentially the same as values in Eq. (11.4.2) and the values in Eq. (9.4.3)
given in chapter 9). In the calculation of the self-energy of Θ+, the effect of the mixing only
changes the coupling constants, by neglecting the small contribution from L27. In this case,
the Θ+ self-energy with the new coupling constants can be written as

Σs
Θ+(gs

1/2+) =Σs
Θ+(1.88)×

|gs
1/2+ |2
1.882

, (11.4.4)

Σv
Θ+(gv

1/2+) =Σv
Θ+(0.315)×

|gv
1/2+ |2

0.3152
. (11.4.5)

The real parts of the self-energy depend on the initial energy and the cutoff value of the
loop integral. We have estimated ReΣs

Θ+(g = 1.88) ∼ −75 MeV and ReΣv
Θ+(g = 0.315)) ∼

−18 MeV for an initial energy of 1540-1700 MeV and with a cutoff of 700-800 MeV. Using
Eqs. (11.4.4) and (11.4.5) with the values of Eq. (11.4.3), we obtain

Σs
Θ+ = −287, −4.7 MeV, 0 > Σv

Θ+ > −770 MeV.

The sum of these values are the contribution to the self-energy of Θ+ from the two-meson
cloud. Naively, we expect that it should be of the order of 100 MeV, at most ∼20% of the
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total energy [652, 21]. From this consideration, we adopt the condition that the magnitude
of one of the contributions should not exceed 200 MeV: |ReΣv

Θ+ | < 200.
For the scalar coupling, this condition is satisfied when

|gs
1/2+ | < 3.07. (11.4.6)

Therefore, we can exclude the choice of “phase 2” in Fig. 11.3. In the same way, the upper
limit of |gv

1/2+ | should be imposed as

|gv
1/2+ | < 1.05 (11.4.7)

to be consistent with the condition |ReΣv
Θ+ | < 200 MeV. This is compatible with Eq. (11.4.3),

although Eq. (11.4.7) gives a more stringent constraint. These upper limits are also shown
in Fig. 11.3 by the dashed lines.

11.4.2 Numerical result for the JP = 3/2− case

Now we consider the JP = 3/2− case. Using the central values in Table 11.1, we obtain the
coupling constants gs

i and gv
i for these channels:

|gs
N(1520)| = 3.56, |gv

N(1520)| = 1.11,

|gs
N(1700)| < 2.66, |gv

N(1700)| < 0.32.

In this case, with the same reason as in the vector coupling for the 1/2+ case, the central
value cannot be determined. Experimental uncertainties allows the antidecuplet components
to vary within the following ranges:

0 < |gs
3/2− | < 4.68, 0.25 < |gv

3/2− | < 0.94,

including both cases for the phase. The result are shown by the vertical bars in Fig. 11.4.
It is worth noting that the region of |gv

3/2− | does not reach zero, even though the |gv
N(1700)|

can be zero. The condition for gs,v(10) = 0 leads to

|gs,v
2 |
|gs,v

1 |
= tan θN ∼

{
0.55 for 1/2+,

0.65 for 3/2−.
(11.4.8)

This means that gs,v(10) becomes zero only if the condition (11.4.8) is satisfied within the
uncertainty of coupling constants.

We can also estimate the magnitude of the self-energy, by substituting the squared ampli-
tudes for 3/2− case in the formulas of the self-energy shown in Ref. [21]. For |gs

3/2− | = 4.17,
we estimate the real part of the self-energy as −1518 MeV for an initial energy of 1540-1700
MeV and a cutoff of 700-800 MeV. This huge self-energy for 3/2− case is due to the p-wave
nature of the two-meson coupling, namely, the existence of a momentum variable in the loop
integral. A similar large self-energy was observed when the self-energy is calculated with the
chiral Lagrangian in chapter 9 (subsection 9.4.3). Thus, to have some reasonable values for
the self-energy |ReΣs

Θ+ | < 200 MeV,

|gs
3/2− | < 1.51. (11.4.9)
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Figure 11.4: Numerical results for the coupling constants with JP = 3/2−. The two choices
of the relative phase between coupling constants are marked as “phase 1” and “phase 2”.
Allowed regions of the coupling constants are shown by the vertical bar. Horizontal dashed
lines show the upper limit of the coupling constants derived from the self-energy |ReΣ| < 200
MeV.

In the same way, for the vector term with |gv
3/2− | = 0.61, we estimate the real part of

the self-energy as −130 MeV. In this case, the self-energy is suppressed by the vector meson
propagator. The use of small number 0.61 for the coupling constant also accounts for the
small value of the self-energy. The condition of the self-energy |ReΣv

Θ+ | < 200 MeV gives the
constraints

|gv
3/2− | < 0.76. (11.4.10)

Both upper limits (11.4.9) and (11.4.10) are indicated by horizontal dashed lines in Fig. 11.4.

11.5 Analysis of the meson-induced reactions

As an application of effective Lagrangians, we calculate the reaction processes π−p→ K−Θ+

and K+p → π+Θ+ via tree-level diagrams as shown in Fig. 11.5. These are alternative
reactions to, for instance, photo-induced reactions, which are useful for further study of the
Θ+. The amplitudes for these reactions are given by

−its1/2+(π−p→ K−Θ+) =− its1/2+(K+p→ π+Θ+)

=i
gs
1/2+

2f
(−
√

6)NΘ+Np, (11.5.1)

−itv1/2+(π−p→ K−Θ+) =itv1/2+(K+p→ π+Θ+)

=i
gv
1/2+

4f2
(−
√

6)(2
√
s−MΘ −Mp)NΘ+NpF (k − k′) (11.5.2)
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Figure 11.5: Feynman diagrams for the meson-induced reactions for Θ+ production.
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Figure 11.6: Feynman diagram for the meson-induced reaction for Θ+ production with a
vector meson propagator.

for the 1/2+ case and by

−its3/2−(π−p→ K−Θ+) =− its3/2−(K+p→ π+Θ+)

=i
gs
3/2−

4f2
(−
√

6)(k − k′) · S†NΘ+Np,

−itv3/2−(π−p→ K−Θ+) =itv3/2−(K+p→ π+Θ+)

=− i
gv
3/2−

4f2
(−
√

6)(k + k′) · S†NΘ+NpF (k − k′) (11.5.3)

for the 3/2− case, where the normalization factor is Ni =
√

(Ei +Mi)/2Mi, S is the spin
transition operator defined in Appendix A.1.2B),

√
s is the initial energy, and k and k′ are

the momenta of the incoming and outgoing mesons, respectively. Here we define the vector
meson propagator (Fig. 11.6) as

F (k − k′) =
−m2

K∗

(k − k′)2 −m2
K∗ + imK∗Γ[(k − k′)2] , (11.5.4)

which is included in the vector-type amplitude. In the kinematical region in which we are
interested, the momentum-dependent decay width of K∗, Γ[(k−k′)2] vanishes. Note that the
scalar-type amplitude gives the same sign for π−p→ K−Θ+ and K+p→ π+Θ+, whereas the
vector one gives opposite signs, reflecting the symmetry under exchange of two meson fields
in the effective Lagrangians.

Since the two amplitudes must be summed coherently, the squared amplitudes are given
by

ΣΣ|t1/2+ |2 =ΣΣ|ts1/2+ ± tv1/2+ |2

=6
(

1
2f

)2

N2
Θ+N

2
p

[
(gs

1/2+)2 ± 2gs
1/2+g

v
1/2+

2
√
s−MΘ −Mp

2f
F (k − k′)

B)In the paper [25], we defined S as in Ref. [604]. Here we define S as in Ref. [605] to be compatible with
other chapters. Accordingly, we change the notation in Eq. (11.5.3).

226



11.5. Analysis of the meson-induced reactions

+ (gv
1/2+)2

(2
√
s−MΘ −Mp)2

4f2
F 2(k − k′)

]
, (11.5.5)

ΣΣ|t3/2− |2 =4
(

1
4f2

)2

N2
Θ+N

2
p

[
(gs

3/2−)2(k − k′)2 ∓ 2gs
3/2−g

v
3/2−(|k|2 − |k′|2)F (k − k′)

+ (gv
3/2−)2(k + k′)2F 2(k − k′)

]
, (11.5.6)

where ± and ∓ signs denote the π−p → K−Θ+ and K+p → π+Θ+ reactions, respectively.
Notice that the relative phase between the two coupling constants is important, which affects
the interference term of the two amplitudes. To determine the phase, we use the experimental
information from π−p → K−Θ+ reaction at KEK [650, 131], where the upper limit of the
cross section has been extracted to be a few µb.

The differential cross section for these reactions is given by

dσ

d cos θ
(
√
s, cos θ) =

1
4πs
|k′|
|k|MpMΘ

1
2
ΣΣ|t(√s, cos θ)|2,

which is evaluated in the center-of-mass frame. The total cross section can be obtained by
integrating Eq. (8.2.20) with respect to cos θ:

σ(
√
s) =

∫ 1

−1
d cos θ

dσ

d cos θ
(
√
s, cos θ).

11.5.1 Qualitative analysis for JP = 1/2+ and 3/2−

Now let us calculate the cross section using the coupling constants obtained previously. In
this section, we focus on the qualitative difference between JP = 1/2+ and 3/2− cases. A
more quantitative estimation of cross sections will be given in later sections.

We first calculate for the 1/2+ case, with coupling constants

gs
1/2+ = 0.47, gv

1/2+ = 0.47, (11.5.7)

where gs
1/2+ is one of the solutions that satisfies the condition (11.4.6). Since the result (11.4.3)

spreads over a wide range, we choose gv
1/2+ = gs

1/2+ , which is well within the interval (11.4.7)
determined from the self-energy. The result is shown in Fig. 11.7, with contributions from
s and v terms. Each contribution is calculated by switching off the other term. As we see,
the use of the same coupling constant for both terms results in the dominance of the vector
term. However, there is a sizable interference effect between s and v terms, although the
contribution from the s term itself is small. The two amplitudes interfere constructively for
the π−p→ K−Θ+ channel, whereas in the K+p→ π+Θ+ case they destructively interfere.

As already mentioned, the relative phase of the two coupling constants is not determined.
If we change the sign,

gs
1/2+ = 0.47, gv

1/2+ = −0.47, (11.5.8)

then the results change as in Fig. 11.8, where constructive and destructive interference appears
in an opposite manner. It is worth noting that the amplitude for π−p → K−Θ+ with
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Figure 11.7: Total cross sections for the JP = 1/2+ case with gs = 0.47 and gv = 0.47.
The thick line shows the result with full amplitude. Dash-dotted and dashed lines are the
contributions from s and v terms, respectively.
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Figure 11.8: Total cross sections for the JP = 1/2+ case with gs = 0.47 and gv = −0.47.
The thick line shows the result with full amplitude. Dash-dotted and dashed lines are the
contributions from s and v terms, respectively.

the relative phase of Eq. (11.5.7) and that for K+p → π+Θ+ with Eq. (11.5.8) are the
same, as seen in Eq. (11.5.5). The difference only comes from the kinematic factors in cross
section (8.2.20).

There is a preliminary result from KEK [650, 131] that the cross section of π−p→ K−Θ+

was found to be very small, of the order of a few µb. At this stage, we do not want to calculate
the cross section quantitatively, but the experimental result suggests that the relative phase
of Eq. (11.5.8) should be plausible, for the small cross section for the π−p→ K−Θ+ reaction.
In this case, the cross section for K+p→ π+Θ+ becomes large.

As a trial, let us search for the set of coupling constants with which the most destructive
interference takes place in π−p → K−Θ+, by changing gv

1/2+ within the interval (11.4.7).
This means that the difference between cross sections of π−p → K−Θ+ and K+p → π+Θ+

is maximal. Then we find

gs
1/2+ = 0.47, gv

1/2+ = −0.08. (11.5.9)

The result is shown in Fig. 11.9. A huge difference between π−p→ K−Θ+ and K+p→ π+Θ+
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can be seen. In this case, we observe the ratio of cross sections

σ(K+p→ π+Θ+)
σ(π−p→ K−Θ+)

∼ 50. (11.5.10)

Here we estimated the cross section σ as the average of the cross section shown in the figures
(from threshold to 2.6 GeV). Notice that the ratio of the coupling constants gs

1/2+/g
v
1/2+ ∼

−5.9 is relevant for the interference effect. It is possible to scale both coupling constants
within experimental uncertainties. This does not change the ratio of cross sections, but it
does change the absolute values.

Next we examine the case with JP = 3/2−. Again, we observe constructive and destructive
interferences, depending on the relative sign of the two amplitudes. The interference effect
is prominent around the energy region close to the threshold but is not very strong in the
higher energy region, compared with 1/2+ case.

We search for the coupling constants with which the most destructive interference takes
place for π−p → K−Θ+. We find that destructive interference is maximized when the ratio
of the coupling constants is gs

3/2−/g
v
3/2− ∼ 0.5. Taking, for instance, the values

gs
3/2− = 0.2, gv

3/2− = 0.4, (11.5.11)

which are within the experimental bounds given in Sec. 11.4, we obtain the results shown
in Fig. 11.10. In contrast to the JP = 1/2+ case, here the ratio of cross section is not very
large:

σ(K+p→ π+Θ+)
σ(π−p→ K−Θ+)

∼ 3.3. (11.5.12)

The high-energy behavior in this case is understood from the p-wave nature of the coupling.
Let us mention the effect of the vector meson propagator. For simplicity, we take the

same value for the coupling constants. First, we address the JP = 1/2+ case. Without
introducing the vector meson propagator F (k−k′), the magnitude and energy dependence of
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the vector term is not similar to the scalar one, reflecting the structure of amplitudes (11.5.1)
and (11.5.2). The difference between s and v amplitudes is (2

√
s −MΘ −Mp)/2f with the

same coupling constant, which ranges from 3 to 14 in the energy region under consideration.
The cross section is proportional to its square, and therefore the vector term becomes the
dominant one. The inclusion of the vector meson propagator reduces the cross section of
the vector term, especially in the high-energy region. This eventually leads to the similar
energy dependence of the two amplitudes ts and tv, resulting in a large cancellation between
them, as seen in Fig. 11.9, although a factor gs

1/2+/g
v
1/2+ ∼ −5.9 is still required to make the

magnitude the same.
For the JP = 3/2− case, without including the vector meson propagator, the scalar and

vector contributions to the total cross section [the first and the third terms in Eq. (11.5.6)]
become exactly the same, when we take the same coupling constant. Obviously, as seen in
Eq. (11.5.6), the difference of the squared amplitudes is the term proportional to k ·k′ ∝ cos θ,
which goes away when the angular integral is performed. This, however, does not lead to
complete destructive interference, owing to the second term in Eq. (11.5.6). The vector
meson propagator acts in the same way as before, and we obtain somehow a different energy
dependence of the s and v results (Fig. 11.10) and a factor gs

3/2−/g
v
3/2− ∼ 0.5 to compensate

for the reduction of the cross section of the vector term.

11.5.2 Hadronic form factor

Here we consider the reaction mechanism in detail to give a more quantitative result. First we
introduce a hadronic form factor at the vertices, which accounts for the energy dependence
of the coupling constants. Physically, it is understood as the reflection of the finite size of the
hadrons. In practice, however, the introduction of the form factor has some ambiguities in its
form and the cutoff parameters [189], which hopefully can be determined from experiment.

In Ref. [190], the π−p → K−Θ+ reaction is studied with a three-dimensional monopole-
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type form factor

F (
√
s) =

Λ2

Λ2 + q2
, (11.5.13)

where q2 = λ(s,M2
N ,m

2
in)/4s with min being the mass of the incoming meson and Λ = 0.5

GeV. Here we adopt this form factor and apply it to the present process. We obtain the results
for JP = 1/2+ in Fig. 11.11 and for JP = 3/2− in Fig. 11.12, with the coupling constants
given in Eqs. (11.5.9) and (11.5.11). With this form factor, the energy of the K+p→ π+Θ+

reaction of the ongoing experiment at KEK (Plab ∼ 1200 MeV,
√
s ∼ 1888 MeV) is close to

the maximum value for the cross section.
Notice that the ratio of the cross sections of π−p → K−Θ+ and K+p → π+Θ+ becomes

larger than those of Eqs. (11.5.10) and (11.5.12). This is due to the use of the form fac-
tor (11.5.13), which contains the mass of the initial meson. It further contributes a factor
∼ 2 for the ratio of π−p→ K−Θ+ and K+p→ π+Θ+.

We observe that the cross section is suppressed down to ∼ 1µb for the π−p → K−Θ+

reaction in the 1/2+ case. However, this is also a consequence of our choice of small coupling
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constants. Indeed, with these coupling constants, the self-energy of Θ+ becomes

ReΣ1/2+

Θ+ = ReΣs
Θ+ + ReΣv

Θ+ ∼ −5.3− 1.6 = −6.9 MeV,

for p0 = 1700 MeV and a cutoff 750 MeV. This is too small, but as we mentioned before, we
can scale these constants without changing the ratio of K+p → π+Θ+ and π−p → K−Θ+.
We would like to search for the coupling constants which provide a small cross section for
π−p → K−Θ+ reaction compatible with experiment and a moderate amount of self-energy,
which guarantee the dominance of the two-meson coupling terms compared with the KNΘ+

vertex.
In Fig. 11.13, we plot the cross section of π−p→ K−Θ+ reaction and the self-energy of Θ+

by fixing the ratio of coupling constants. The cross section is the value at
√
s = 2124 MeV,

which corresponds to the KEK experiment Plab ∼ 1920 MeV. The horizontal line denotes the
factor F , which is defined by

gs
1/2+ = F × 0.47, gv

1/2+ = −F × 0.08. (11.5.14)

We use F = 1 for the calculation of Fig. 11.11. Both the cross section and self-energy are
proportional to the square of the coupling constant. Using the maximum value of cross section
∼ 4.1µb C) estimated by KEK experiment [650, 131], we have

gs
1/2+ = 1.59, gv

1/2+ = −0.27, (11.5.15)

σπ−p→K−Θ+ = 4.1µb, ReΣΘ = −78 MeV.

Furthermore, if we use the upper limit of the scalar term of the coupling constant, we fix

gs
1/2+ = 1.37, gv

1/2+ = −0.23,

σπ−p→K−Θ+ = 3.2µb, ReΣΘ = −58 MeV.

However, if we want to obtain ReΣΘ = −100 MeV, we have

gs
1/2+ = 1.80, gv

1/2+ = −0.31, (11.5.16)

σπ−p→K−Θ+ = 5.0µb, ReΣΘ = −100 MeV.

We see that a sizable self-energy is obtained with the coupling constants (11.5.15) and
(11.5.16). These results are summarized in Table 11.2.

For the JP = 3/2− case, with gs
3/2− = 0.2 and gv

3/2− = 0.4, the self-energy of Θ+ becomes

ReΣ3/2−
Θ+ = ReΣs

Θ+ + ReΣv
Θ+ ∼ −4− 80 = −84 MeV.

C)Here we use the preliminary value 4.1µb reported in Ref. [650], which has been later corrected as
4.3µb [131]. Qualitative conclusions remain unchanged for the upper limit of 4.3 µb. This upper limit is
determined by assuming the isotropic decay of Θ+ → KN . In our calculation, the angular dependence of the
decay is not very large, as shown in the following. Therefore we simply use this value for the estimation of
upper limit here.
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Figure 11.13: The total cross section of π−p→ K−Θ+ at Plab = 1920 MeV and the real part
of the self-energy of Θ+ as functions of the factor F defined in Eqs. (11.5.14) and (11.5.17)
for JP = 1/2+ (left) and JP = 3/2− (right). Solid, dashed and dash-dotted vertical lines
show the upper limit of cross section given by the KEK experiment [650, 131], the limit of
coupling constant, and the point where ReΣ = −100 MeV.

Table 11.2: Summary of the coupling constants, cross sections and self-energies. σπ− is the
total cross section for π−p → K−Θ+ are the values at Plab = 1920 MeV; σK+ is that for
K+p→ π+Θ+, which is the upper limit of the cross section at Plab = 1200 MeV.

JP gs gv σπ− [µb] σK+ [µb] ReΣΘ [MeV]
1/2+ 1.59 −0.27 4.1 <1928 −78

1.37 −0.23 3.2 <1415 −58
1.80 −0.31 5.0 <2506 −100

3/2− 0.104 0.209 4.1 < 113 −23
0.125 0.25 5.9 < 162 −32
0.22 0.44 18 < 502 −100
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In Fig. 11.13, we plot the cross section of the π−p → K−Θ+ reaction and the self-energy of
Θ+ by fixing the ratio of coupling constants. The horizontal line denotes the factor F , which
is defined by

gs
1/2+ = F × 0.2, gv

1/2+ = F × 0.4. (11.5.17)

Using the maximum value of cross section ∼ 4.1µb estimated by the KEK experiment, we
have

gs
3/2− = 0.104, gv

3/2− = 0.209,

σπ−p→K−Θ+ = 4.1µb, ReΣΘ = −23 MeV.

In the region plotted in the figure, the coupling constants do not exceed the upper bounds,
but the lower limit of gv

3/2− appears:

gs
3/2− = 0.125, gv

3/2− = 0.25,

σπ−p→K−Θ+ = 5.9µb, ReΣΘ = −33 MeV.

To make ReΣΘ = −100 MeV, we have

gs
3/2− = 0.22, gv

3/2− = 0.44,

σπ−p→K−Θ+ = 18µb, ReΣΘ = −100 MeV.

Finally, we show the angular dependence of the cross sections. In Figs. 11.14 and 11.15, we
plot the angler dependence of the differential cross sections at the energy of KEK experiment:
Plab ∼ 1920 MeV for π−p → K−Θ+ and Plab ∼ 1200 MeV for K+p → π+Θ+. For the
JP = 1/2+ case, the contribution from the s term has no angular dependence, whereas the v
term shows a forward peak, owing to the t-channel exchange of the vector meson propagator.
Because of the interference of the two amplitudes, the total result becomes zero at cos θ ∼ 0.5
for the π−p → K−Θ+ reaction. For the JP = 3/2− case, the s term varies linearly in cos θ,
leading to a backward peak. The v term shows a forward peak, which is enhanced by the
vector meson propagator. Interference of the two amplitude leads to a clear forward peak for
both π−p→ K−Θ+ and K+p→ π+Θ+ reactions.

11.5.3 Effect of Born terms

In this subsection, we briefly discuss the possible effect from the Born terms, as shown in
Fig. 11.16, which have not been taken into account in the present studies. However, there
are reasons that the Born terms are not important in the present reactions. First, the Born
terms are proportional to the decay width of Θ+ and therefore suppressed if the decay width
of the Θ+ is narrow. Second, in the energy region of Θ+ production, the energy denominator
of the exchanged nucleon suppresses the contribution, especially for the s-channel term in
the π−p→ K−Θ+ reaction. Here we would like to confirm this explicitly.

At the tree level, there are s-, t-, and u-channel diagrams. However, assuming I = 0 for Θ+,
there is only a u channel inK+p→ π+Θ+ (Fig. 11.16, left), whereas there is only an s channel
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in π−p → K−Θ+ (Fig. 11.16, right). For these terms, we need the Yukawa couplings such
as KNΘ+ and πNN couplings. There are two schemes to introduce the Yukawa couplings,
namely, pseudoscalar (PS) and pseudovector (PV) schemes. For the construction of the Born
amplitude, it is reasonable to rely on chiral symmetry, where the two schemes should provide
the same results.

In this case the meson-baryon scattering amplitude should be a quantity of O(k) or higher,
where k is a momentum of mesons. In the PV scheme, since each KNΘ coupling is of O(k),
the Born amplitude behaves as O(k2), consistent with this observation. In contrast, a naive
construction of the Born term in the PS scheme leads to an amplitude of O(1). It is well-
known that a scalar exchange term cancel the term of O(1). However, the interaction of the
scalar channel is not well understood. Therefore, we adopt the PV scheme in the following
study. Another advantage of the PV scheme is that it can be extended easily to the JP = 3/2−

case, while it is not so simple in the PS scheme [643]. In this respect, our method differs from
the previous study of similar reactions [190, 208], in which the PS scheme was used.

The interaction Lagrangians for 1/2+ are

L1/2+

KNΘ =
g
∗,1/2+

A

2f
Θ̄+γµγ5∂

µKN + h.c.,

LπNN =
gA

2f
N̄γµγ5∂

µπN.

The fields N and π are defined in Eq. (11.3.4), and the kaon field is defined as

K =
(−K0 K+

)
,

and the coupling constants are determined as

g
∗,1/2+

A = 0.0935,

which is determined by ΓΘ+ = 1 MeV, and we use

gA = 1.25. (11.5.18)

The amplitude for π−(k)p(p)→ K−(k′)Θ+(p′) is given by

−it = i
√

2
g
∗,1/2+

A gA

4f2
(σ · k′)M

E

1
p0 + k0 −E(p + k)

(σ · k),

and for K+(k)p(p)→ π+(k′)Θ+(p′),

−it = i
√

2
g
∗,1/2+

A gA

4f2
(σ · k)

M

E

1
p0 − k′0 − E(p− k′)

(σ · k′).

In Fig. 11.17 we show the results including Born terms. We can observe that the effect of
Born terms is indeed small in both reactions.

For the JP = 3/2− case, the interaction Lagrangian can be written as

L3/2−
KNΘ =

g
∗,3/2−
A

2f
Θ̄+µγ5∂µKN + h.c.,
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with the same πNN vertex in Eq. (11.5.18). In the nonrelativistic expansion this term
yields a d-wave coupling so that the square of momenta appears in the vertex. It reduces the
contribution further than the 1/2+ case, and therefore, the effect of Born terms for JP = 3/2−

is also small.

11.6 Summary

In this chapter, we have studied the two-meson couplings of Θ+ for JP = 1/2+ and 3/2−.
The effective interaction Lagrangians for the two-meson couplings were given, and these
coupling constants were determined based on the 8-10 representation mixing scheme, by
using information of the N∗ → ππN decays. These values were further constrained in order
to provide appropriate size of the self-energy of the Θ+. Finally, we have applied the effective
interaction Lagrangians to the meson induced reactions π−p→ K−Θ+ and K+p→ π+Θ+.

(summary for the couplings)
We have found that there was an interference effect between the two amplitudes of the

scalar and vector types, which could help to explain the very small cross section for the
π−p → K−Θ+ reaction observed at KEK [650, 131]. In this case, reflecting the symmetry
under exchange of two amplitudes, large cross sections for K+p→ π+Θ+ reaction would be
obtained as a consequence of the interference. The interference occurs in both 1/2+ and 3/2−

cases.
In Table 11.2, we have summarized the results obtained in the present analysis. For a

given set of coupling constants, the upper bound of the cross sections of the K+p → π+Θ+

reactions were estimated by maximizing the interference effect. We observed that large cross
sections of the order of millibarns for K+p→ π+Θ+ was obtained for the 1/2+ case, whereas
the upper limit of the cross section was not very large for 3/2− case. Therefore, if large cross
sections are observed in the K+p→ π+Θ+ reaction, it would indicate JP = 1/2+ for the Θ+.

For completeness, we would like to mention the case where the cross sections for both
π−p→ K−Θ+ and K+p→ π+Θ+ reactions are small. If the cross section of K+p→ π+Θ+
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reaction is also small, it is not due to an interference effect, since the interference effect results
in relatively large cross sections both for the two reactions. It could be explained by small
coupling constants. For the JP = 1/2+ case, both coupling constants can be zero within the
experimental uncertainties. However, for the 3/2− case, there is a lower limit for the gv

3/2− ,
which means that the lower limit is also imposed for the cross sections. We search for the set
of coupling constants that provide the minimum value for the K+p → π+Θ+ cross section,
keeping a π−p→ K−Θ+ cross section to be less than 4.1µb. We obtain σK+p→π+Θ+ ∼ 58µb
with gs

3/2− = 0.04 and gv
3/2− = 0.18. However, one should notice that the small coupling

constants do not guarantee the dominance of two-meson coupling, and the Born terms and
interference effect may play a role, which is beyond our present scope.

The present analysis provides an extension of effective interactions obtained in Ref. [413]
with representation mixing and JP = 3/2−. It is also interesting to apply the present exten-
sion to the study of the medium effect of Θ+ [413] and the production of Θ+ hypernuclei [439].
From the experimental point of view, the cross section of K+p → π+Θ+ reaction is of par-
ticular importance to the present results. To perform a better analysis for the two-meson
coupling, more experimental data for three-body decays of nucleon resonances are strongly
desired.
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Chapter 12

Summary

In this thesis, we have studied the properties of exotics in meson-baryon dynamics from vari-
ous points of view. In part II, chiral unitary model was used to investigate baryon resonances
which have been considered to contain a large amount of q̄q components, although their
quantum numbers can be reproduced by the conventional three-quark picture. In part III,
manifestly exotic states such as pentaquarks were studied, mainly based on the flavor SU(3)
symmetry and πKN molecule picture for the Θ+. Here we summarize what we have done
and what we have learned.

In chapter 4, we reviewed the formulation of the chiral unitary model in some detail, and
demonstrated how the resonances were dynamically generated in meson-baryon scattering.
Then we introduced SU(3) breaking effects into the interaction kernel, with the hope that
the channel dependence in the subtraction constants would be absorbed into the coefficients
in the chiral Lagrangian. However, the effect of the symmetry breaking interaction was so
strong that the results were affected very much. Therefore, it was found that the suitable
choice of the subtraction constants was essential in the present framework.

The two-pole structure of the Λ(1405) resonance was extensively studied together with
the reaction dynamics to produce the Λ(1405) in chapter 5. In the chiral unitary model,
two poles have different coupling strengths to the K̄N and πΣ channels, which allows us to
study this structure in experiments. Indeed, it was found that the π−p → K0πΣ reaction
favored the lower energy pole, whereas the γp → K∗MB reaction was dominated by the
higher energy pole, leading to different shapes of the invariant mass distributions in the two
reactions. Therefore, we have revealed the possibilities to verify the two-pole structure in
experiments, combining the results from both reactions.

In subsequent chapters 6 and 7, we utilized the amplitudes obtained in the chiral unitary
model in order to extract various coupling constants of the dynamically generated resonances.
Magnetic moments of the N(1535) resonance and coupling constant of the Λ(1520)K̄∗N
vertex were evaluated. These results were compared with those obtained in a constituent
quark model, and we found substantial differences between the results. Since the differences
are expected to reflect the internal structure of the resonances (meson-baryon or three-quark),
experimental determination of these coupling constants will shed light on the understanding
of the properties of the resonances. We have discussed several possibilities to observe the
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coupling constants in experiments.
Then we have turned our subject to the pentaquarks. In chapter 8, we studied the Θ+

production in the K+p→ π+KN reaction, demonstrating how the observables qualitatively
depended on the spin and parity of the Θ+ for the JP = 1/2± and 3/2+ cases. This was
the first theoretical attempt to extract the spin and parity of the Θ+ in actual experiments.
Specifying the polarization of initial and final baryons, it was found possible to extract the
information of spin and parity of the Θ+, although the detection of the spin of the final state
baryon in experiments would be difficult.

In chapter 9, we have studied two-meson cloud components in the Θ+ baryon and flavor
partners in an antidecuplet representation. We constructed the effective Lagrangians for
two-meson couplings based on flavor SU(3) symmetry, and evaluated the self-energies of
the antidecuplet baryons. We found two important structures among several terms, that
is, the couplings with two mesons in scalar-isoscalar and vector-isovector channels. With
these terms, we observed attractive contributions to the masses of the antidecuplet baryons,
which qualitatively agree with the results of the previous attempts to describe the Θ+ as
a πKN bound state. The contributions of the two-meson clouds to the mass splittings of
the antidecuplet baryons were found to be about 20%, which was much larger than those of
one-meson clouds due to the narrow decay widths of the Θ+.

In order to determine the flavor representation that the Θ+ belongs to, we have performed a
general analysis of SU(3) symmetry in chapter 10. We assigned the known baryon resonances
together with the Θ+ and the Ξ3/2 into the 8-10 mixing scheme, which was the minimal for
the inclusion of the Θ+. Analyzing the mass formula with symmetry breaking up to linear
order in ms, we obtained reasonable descriptions for the JP = 1/2+ and JP = 3/2− cases.
The JP = 1/2+ case has been studied previously, but we applied the mixing scheme to the
3/2− case for the first time, which was found to be better than the 1/2+ case through the
analysis of the decay widths.

Since we obtained a successful description of the Θ+ and baryon resonances in the 8-10
mixing scheme, we evaluated the two-meson couplings within this scheme in chapter 11. The
coupling constants were determined from the nucleon resonances in the multiplet, and also
restricted by the self-energy analysis. We then applied the couplings to the meson-induced
Θ+ productions, since the two-meson couplings were expected to be dominant, based on the
analysis in chapter 9. We examined production reactions for the Θ+ with JP = 1/2+ and
3/2−, and found that the interference effects were different in the two cases.

Now we would like to make some remarks based on the above findings.
We have studied several reaction processes for the production of resonances in chapters 5

and 8. A unique point in these studies was that we included not only the resonant terms but
also (a part of) background contributions. This is important from the experimental point
of view. The background terms always exist in actual experiments, and may disturb the
signal of the resonance through the interference with the resonant amplitude. In our studies,
since the interference effects were taken into account, we could suggest a way to suppress
background contributions, for instance, by choosing suitable kinematical conditions. This
may help the experimental studies.

In chapters 8 and 11, we presented the method to determine the spin and parity of the
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Θ+ through the production reactions. We calculated the processes by assuming certain
quantum numbers for the Θ+, and compared the results which differ qualitatively depending
on the quantum numbers of the Θ+. The study in this direction is important for the newly
discovered states, but also for the well-established states, since the JP of the most of known
resonances have been assigned by theoretical speculations. For instance, no one knows the JP

of the Ω state experimentally. Therefore, determination of the quantum numbers for several
resonances by experimentally available method would be an interesting subject.

In chapters 4 and 9, we observed that the introduction of the SU(3) breaking in the
interaction Lagrangians gave strong effects to the observables, which may destroy a good
description of the SU(3) symmetric interaction. On the other hand, we have used the physical
masses of the particles, which include the SU(3) breaking effects. The symmetry breaking
in masses leads to the splitting of the threshold energies of two-body channels, which is
important for the dynamics of hadrons. This tells us that we should include the SU(3)
breaking in the masses of the particles, while the interaction should be symmetric at the
leading order. This observation implicitly justify the approaches with the SU(3) symmetric
interaction and with physical masses of hadrons, that we have been taken in chapters 5-8, 10
and 11, at least for the qualitative analysis.

Since the pentaquarks and manifestly exotic particles can provide a firm ground to study
the multi-quark physics, it is important to study very the existence (or absence) of exotic
particles in QCD. Of course, it is difficult to study QCD directly, but the symmetry principle
can help to do it. Symmetries provide restrictions on the masses and interactions and simplify
the models in the symmetric limit. The relations under symmetric limit have some relevance
in the physical world where the symmetry is not exact, as we can see for instance the low
energy theorem of the chiral symmetry. In the same way, scattering theory would be a good
tool, since the resonances are observed in the scattering of the hadrons and the scattering
theory also restricts the dynamics by, for instance, unitarity, analyticity, crossing symmetry,
and so on.

A key issue in this thesis is the study of the multi-quark components, which eventually
leads us to the understanding of the quark and hadronic matter. The multi-quark components
should exist in various hadrons, since the excited hadrons have been observed in scatterings
of ground state hadrons such as meson-meson or meson-baryon scatterings. Indeed, we have
shown the importance of the additional q̄q components in excited baryons and pentaquarks
in the chiral unitary model (part II) and two-meson cloud contributions (chapter 9). This
may indicate the importance of the q̄q correlation in quark dynamics, or the importance
of the meson clouds in hadronic description. Of course, the meson cloud complements the
description by valence quarks, and reality would be a mixture of them. However, the relative
importance of the meson clouds to the valence quarks would depend on the states. It is
therefore interesting to study the role of these components in various states, and investigate
the internal structure of excited baryons.
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Chapter 12. Summary
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Appendix A

Convention and kinematics

A.1 Convention

A.1.1 Dirac spinor

Here we summarize the conventions for Dirac spinor. Our convention is mostly taken from
Bjorken and Drell [653, 654]. The metric in Minkowski space is defined by

gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 ,

so that the inner product of four vectors aµ = (a0,a) and bµ = (b0, b) is a · b = aµb
µ =

a0b0 − a · b. We utilize the Dirac matrices in Dirac-Pauli representation

γ0 =
(

1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
0 1
1 0

)
,

with the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

As easily checked, these matrices satisfy

{γµ, γν} = 2gµν , {γµ, γ5} = 0, (γ5)2 = 1, (γµ)† = γ0γµγ0, (γ5)† = γ5,

tr(σi) = 0, (σi)† = σi, σiσj = δij + iεijkσk.

With this representation, plane wave solutions for the Dirac equation with positive and
negative energies are given by

u(p, s) =

√
E +M

2M

(
χs

σ·p
E+Mχs

)
, v(p, s) =

√
E +M

2M

( σ·p
E+Mχs′

χs′

)
, (A.1.1)
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with M , pµ = (E,p), and s, s′ being the mass, four momentum, and spin indices of the
fermion, respectively and E =

√
M2 + p2. The two-component spinor χs is defined by

χs=+1 =
(

1
0

)
, χs=−1 =

(
0
1

)
,

and χs′ = −iσ2(χs)∗. The spinor χs satisfy the orthonormal and completeness conditions

χ†sχr = δsr,
∑

s

χsχ
†
s =

(
1 0
0 1

)
.

Here s = ±1 stand for the eigenvalues of σ3, which is the twice of the spin in z direction.
The Dirac conjugate of the fermion states is given by

ū(p, s) = u(p, s)†γ0 =

√
E +M

2M

(
χ†s −χ†s σ·p

E+M

)
, v̄(p, s) = v(p, s)†γ0,

and the normalization of spinors is

ū(p, s)u(p, r) =
E +M

2M
χ†s

(
1− (σ · p)(σ · p)

(E +M)2

)
χr

=
E +M

2M
(E +M)2 − (E2 −M2)

(E +M)2
χ†sχr

=
1

2M
2EM + 2M2

E +M
δsr

= δsr,

u†(p, s)u(p, r) =
E +M

2M
(E +M)2 + (E2 −M2)

(E +M)2
χ†sχr

=
1

2M
2E2 + 2EM
E +M

δsr

=
2E
2M

δsr,

v̄(p, s)v(p, r) = −δsr,
v†(p, s)v(p, r) =

2E
2M

δsr.

With this convention, we have

/p = p0γ0 − p · γ

=
(
p0 −σ · p

σ · p −p0

)
.

In the fermion rest frame p = (M,0), Eq. (A.1.1) reduces into much simpler form as

u(p, s) =
(
χs

0

)
,

which gives the leading order contribution for the non-relativistic reduction.
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A.1.2 Spin 3/2 fields

We denote the spin 3/2 fields Bµ(p, S) with momentum p and third component of spin
S = +3/2,+1/2,−1/2, and −3/2 by Rarita-Schwinger field [651], which satisfies the Rarita-
Schwinger equations

(/p−MB)Bµ(p, S) = 0, pµB
µ(p, S) = γµB

µ(p, S) = 0.

A general form of the solution is obtained byA)

Bµ(p, S) =
∑
r,s

C(1
2 1 3

2 ; s
2 , λ)eµλ(p)u(p, s) (A.1.2)

where S = λ+s/2, u(p, s) is the Dirac spinor of spin 1/2 in Eq. (A.1.1), and C(j1 j2 J ;µ1, µ2)
denotes the SU(2) Clebsch-Gordan coefficient for J(µ1+µ2) = j1(µ1)+j2(µ2). In Eq. (A.1.2),
eµλ(p) is defined by

eµλ(p) =
(

êλ · p
M

, êλ +
p(êλ · p)
M(E +M)

)
,

which is obtained by boosting the spin 1 vector eµλ(p) in spherical coordinate

ê+1 = − 1√
2
(1, i, 0), ê0 = (0, 0, 1), ê−1 =

1√
2
(1,−i, 0).

More explicitly, Eq. (A.1.2) can be written as

Bµ(p,+3/2) = eµ+1(p)u(p,+1/2),

Bµ(p,+1/2) =

√
2
3
eµ0 (p)u(p,+1/2) +

√
1
3
eµ+1(p)u(p,−1/2),

Bµ(p,−1/2) =

√
1
3
eµ−1(p)u(p,+1/2) +

√
2
3
eµ0 (p)u(p,−1/2),

Bµ(p,−3/2) = eµ−1(p)u(p,−1/2),

In the rest frame pµ = (M,0), spin 1 vector reduces into eµλ(M,0) = (0, êλ), and therefore

Bµ(M,0,+3/2) = (0, ê+)
(
χ+

0

)
,

Bµ(M,0,+1/2) = (0, ê0)

√
2
3

(
χ+

0

)
+ (0, ê+)

√
1
3

(
χ−
0

)
,

Bµ(M,0,−1/2) = (0, ê−)

√
1
3

(
χ+

0

)
+ (0, ê0)

√
2
3

(
χ−
0

)
,

Bµ(M,0,−3/2) = (0, ê−)
(
χ−
0

)
.

A)Notice that s is defined by the twice of the third component of the spin.
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In this case, it is useful to define the spin transition operatorB)

(S†)S,s =
∑

λ

C(1
2 1 3

2 ; s
2 , λ)êλ, S = λ+ s

2 ,

The operator (S†)S,s is a three-component spatial vector with two-component Pauli spinor
index s on the right, and four-component index S on the left. Then Bµ can be written as

Bµ(M,0, S) =
∑

s

(0, (S†)S,sχs).

The spin suffices S and s are usually not written explicitly. By assigning the complete set,
we obtain

∑

S

Si|S 〉〈S |S†j = δij − 1
3
σiσj =

2
3
δij − i

3
εijkσk,

which is useful for the spin summation explained in next section.

A.2 Spin summation

Here we summarize the issue that appears when we take the square of an amplitude, that we
denote Σ̄Σ. Basically, we should take

• average over the degrees of freedom in the initial state and

• sum over the degrees of freedom in the final state.

In this thesis, we are interested in the processes in which at most one baryon is included.
Therefore, we sum over the spin of the baryon in the final state s and average over the spin
of the baryon in the initial state r. If an amplitude −it does not contain the spin matrices,
χ†sχr can be factorized out as |t|2 = |χ†sχr|2|t′|2, and then

Σ̄Σ|t|2 =
1
2

∑
s

∑
r

|χ†sχr|2|t′|2

=
1
2

∑
s

∑
r

|δs,r|2|t′|2

=|t′|2.

B)Here we follow the definition in Ref. [605], while S and S† are defined inversely in Ref. [604].
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If the Pauli matrices remains in the amplitude, writing −it = σit
′
i, we have

Σ̄Σ|t|2 =
1
2

∑
s

∑
r

χ†rσ
†
iχsχ

†
sσjχr|t′∗i t′j |

=
1
2

∑
r

χ†rσiσjχr|t′∗i t′j |

=
1
2

∑
r

χ†r(δij + iεijkσk)χr|t′∗i t′j |

=
1
2
2δij |t′∗i t′j |

=δij |t′∗i t′j |.
Next we consider the amplitude including spin transition from 1/2 to 3/2. For the 3/2 state
in the initial state, we have (−it = S†i t

′
i)

Σ̄Σ|t|2 =
1
2

∑
r

∑

S

χ†rSi|S 〉〈S |S†jχr|t′∗i t′j |

=
1
2

∑
r

χ†r

(
2
3
δij − i

3
εijkσk

)
χr|t′∗i t′j |

=
1
2

2
3
2δij |t′∗i t′j |

=
2
3
δij |t′∗i t′j |.

When the 3/2 state is in the initial state, the 1/2 factor should be replaced by 1/4, and
therefore the result becomes 1

3δij |t′∗i t′j |.
The above argument for spin summation can also be applied to the isospin, when one needs

the isospin averaged amplitude. For example, let us consider the decay of N∗ → πN . Both
initial and final states have two isospin state ±1/2. So the amplitude square should be

Σ̄Σ|t|2 ≡ 1
2

∑
s

∑
r

|ts→r|2

=
1
2

(
|tn∗→π0n|2 + |tn∗→π−p|2 + |tp∗→π+n|2 + |tp∗→π0p|2

)

= |tn∗→π0n|2 + |tn∗→π−p|2
= |tp∗→π+n|2 + |tp∗→π0p|2.

The last two lines are obtained by isospin symmetry. This summed amplitude leads to the
decay width of N∗ → πN , written in the isospin state. This indicate that in practice, we
can obtain the isospin averaged amplitude by taking one initial isospin state (since the initial
states will be averaged) and all possible decay channels.

A.3 Kinematics

Here we summarize kinematic variables of the reactions. We first consider the kinematics
of two-body scattering process, and then study the case with three-body final state, which
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m M

(Ecm(M),−pcm(M))(Ecm(m), pcm(m))

m M

(Elab(m), plab(m)) (M,0)

Figure A.1: Kinematics in the center of mass frame (left) and in the laboratory frame (right).

appears in particular calculations in chapters 5 and 8.

A.3.1 Kinematics for two-body process

We consider the energy and momentum of the system with two particles of masses m and M ,
for a given total energy in the center of mass frame

√
sC). Since the total energy is conserved

between the initial and final states, we can apply the formulae to the inelastic channels by
replacing the masses of the particles, as long as they are two-body channels.

In the center of mass frame (Fig. A.1, left), energies of particles are given by

Ecm(M) =
s−m2 +M2

2
√
s

, Ecm(m) =
s−M2 +m2

2
√
s

, (A.3.1)

where Ecm(X) is the energy of the particle with mass X. The absolute values of three
momenta are given by

|pcm(M)| = |pcm(m)| =
√

(s− (M −m)2)(s− (M +m)2)
2
√
s

=
λ1/2(s,m2,M2)

2
√
s

, (A.3.2)

with the Källen function defined by

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx.

These quantities can be easily obtained by the energy-momentum conservation and on-shell
condition for the particles. It is obvious to see that s = [Ecm(M) + Ecm(m)]2.

In the laboratory frame (Fig. A.1, right), where the particle with mass M is the target
and that with m is the beam, the energy and momentum of initial particle are given by

Elab(m) =
s−m2 −M2

2M
, Elab(M) = M, (A.3.3)

and the absolute values of the three momentum of the beam is given by

|plab| = λ1/2(s,m2,M2)
2M

=

√(
s−m2 −M2

2M

)2

−m2, (A.3.4)

where we observe the relation

|pcm| = |plab|M√
s
.

C)√s is often denoted as Ecm or W .
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Figure A.2: Three momenta of the beams (plab) as functions of the
√
s for the γN , πN , and

K(K̄)N reactions. Left, detail of the lower energy part of the right panel.

Note that this plab is the three momentum of the initial particle of beam, not for general
momentum in laboratory frame. It is easy to confirm that

√
s can be written in terms of the

variables in the laboratory frame s = [Elab(m) +M ]2 − |plab|2. In Fig. A.2, we plot |plab| as
functions of

√
s for the γN , πN , and K(K̄)N reactions. From Eq. (A.3.4), we obtain

√
s =

√
2M

√
|plab|2 +m2 +m2 +M2,

which expresses
√
s in terms of |plab|.

For a special case of the photon m = 0 in the initial state, Eqs. (A.3.1), (A.3.2), (A.3.3),
(A.3.4), can be written as

Ecm(M) =
s+M2

2
√
s
, Ecm(0) = |pcm| = s−M2

2
√
s
,

Elab(0) = |plab| = s−M2

2M
.

A.3.2 Mandelstam variables

In general, a scattering amplitude is expressed by the Mandelstam variables which are Lorentz
invariant. For a process shown in Fig. A.3, they are defined by

s = (p1 + p2)2 = (k1 + k2)2,

t = (k1 − p1)2 = (k2 − p2)2,

u = (k2 − p1)2 = (k1 − p2)2.

There is one constraint coming from the four momentum conservation

s+ t+ u =
∑

i

mi,
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Figure A.3: Two-body scattering process.

hence, the number of independent variables is two. In order to see the angular dependence
of these variables, let us evaluate them in the center of mass frame.

s = (p1 + p2)2 = (E1 +E2)2 = m2
1 +m2

2 + 2E1E2,

t = (k1 − p1)2 = (m′
1)

2 +m2
1 − 2(E1E

′
1 − |k1||k′1| cos θ),

u = (k2 − p1)2 = (m′
2)

2 +m2
1 − 2(E′2E1 + |k1||k′2| cos θ),

where θ is the scattering angle in the center of mass frame. The energies and momenta
are expressed in terms of

√
s as shown in Eqs. (A.3.1) and (A.3.2), so all the mandelstam

variables can be expressed in terms of
√
s and cos θ.

When all the masses of the particles are the same, t and u can be written as

t = −|k1|2(1− cos θ), u = −|k1|2(1 + cos θ). (A.3.5)

We can see that both t < 0 and u < 0. It is instructive to not that the amplitudes of the
Born diagrams is

t(X) ∝ 1
X −m2

ex

, (A.3.6)

with X being s, t, or u, and mex is the mass of the exchanged particle. Putting Eqs. (A.3.5)
into Eq. (A.3.6), we observe the following angular dependence:

• s channel is isotropic

• t channel is forward peak

• u channel is backward peak

In practice, this is not everything and the coupling structure also provides the angular de-
pendence.

A.3.3 Kinematics for three-body final state

Here we consider the three-body final state which corresponds to the π−p→ K0MB reaction
in chapter 5 and the K+p → π+KN reaction in chapter 8. We assign momentum variables
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Figure A.4: Kinematics of the π−p → K0MB reaction. For the K+p → π+KN reaction,
we perform the replacements given in Eq. (A.3.7). In both cases, we consider the threshold
production of the resonance, then the three momentum kout is assumed to be small.

as shown in Fig. A.4 for the π−p → K0MB reaction. In the following, we consider the
π−p→ K0MB reaction for simplicity, and one can translate the arguments into the case for
the K+p→ π+KN reaction, which is shown in Fig. 8.4, by the following replacements:

K0 → π+, M(q)→ K(q′), B → N, Λ(1405)→ Θ+. (A.3.7)

The energy region that we are interested in is around the threshold of K0 and Λ(1405) which
is generated in the final state interaction in the MB system. Then the three momentum of
K0 is considered as small, (kout ∼ 0). In the limit of the final K0 is at rest (kout = 0), the
center of mass system of the initial π−p and the center of mass system of the final MB are
the same. We define the total energy of the initial state as

√
s and the invariant mass of MB

as MI . The momenta of particles are given by

kin = (k0
in,kin), pin = (p0

in,−kin), kout = (mK0 ,0), q = (q0, q)

where

|kin| =
λ1/2(s,M2

p ,m
2
π−)

2
√
s

, k0
in =

s−M2
p +m2

π−

2
√
s

, p0
in =

s−m2
π− +M2

p

2
√
s

,

|q| = λ1/2(M2
I ,M

2
B,m

2
M )

2MI
, q0 =

M2
I −M2

M +m2
M

2MI
.

For the kinematical factor (phase space), we need to take small |kout| into account, other-
wise the MI is fixed at MI =

√
s−MK0 . In general, in the center of mass frame of the initial

particles,

√
s = Eout +EMI

=
√
m2

K0 + k2
out +

√
M2

I + k2
out.

The maximum of the MI is obtained by setting kout = 0, then

MI =
√
s−mK0 , (A.3.8)

On the other hand, in the center of mass frame of M and B, defining the relative momentum
between M and B as prel, the invariant mass of MI can be written as

MI =
√
m2

M + p2
rel +

√
M2

B + p2
rel.
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which has a minimum at prel = 0, leading to

MI = MB +mM . (A.3.9)

Hence, from Eqs. (A.3.8) and (A.3.9), kinematically allowed region for MI is determined as

MB +mM ≤MI ≤
√
s−mK0 .

The upper bound corresponds to the K0 at rest, while the lower bound takes place when the
relative momentum of M and B is zero. The maximum of the kout is then obtained as

|kout| =
λ1/2(s, (mM +mB)2,M2

K0)
2
√
s

.

A.4 Phase space, decay width, and cross section

Here we present formulae for cross sections and decay widths, which are used in the text. In
general, n-body phase space dΠ can be written as

dΠ = (2π)4δ(4)

(
P −

n∑

i=1

ki

)
n∏

i=1

d3ki

(2π)3
Ni, (A.4.1)

where P is the total four momentum, ki is the momentum of channel i, and

Ni =





1
2ωi

for bosons,

2Mi

2Ei
for fermions,

with the conventions given in Appendix A. Here ωi and Ei are the on-shell energies of the
boson and the fermion.

The decay width of a resonance of mass MR to n-body channel is

ΓR =
∫
dΠ Σ̄Σ|t|2, (A.4.2)

where P = (MR,0) for the resonance rest frame and spin sum of the squared amplitude
Σ̄Σ|t|2, which is explained in section A.2.

The total cross section with two particles 1 and 2 in the initial state is

σ =
1
vrel

N1N2

∫
dΠ Σ̄Σ|t|2, (A.4.3)

where vrel is defined by

vrel =

√
(p1 · p2)2 −m2

1m
2
2

p0
1p

0
2

,
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which coincides with the “relative velocity” |v1 − v2| when v1 is parallel to v2. In the center
of mass frame, Pµ = (

√
s,0) and the relative velocity vrel takes the form

vrel =
∣∣∣∣
|p1|
ω1
− −|p1|

ω2

∣∣∣∣ =
ω2|p1|+ ω1|p1|

ω1ω2
=
√
s|p1|
ω1ω2

.

This gives a simple form for two-boson system;

1
vrel

N1N2 =
1

4
√
s|p1| =

1
2λ1/2(s,m2

1,m
2
2)
. (A.4.4)

where we used Eq. (A.3.2). For a fermion, we can multiply 2M in the numerator. In the
following, we calculate these formulae for specific cases.

A.4.1 Two-body final state

Let us evaluate the phase space for the two-body final state (n = 2 for Eq. (A.4.1)) explicitly
in the center of mass frame Pµ = (

√
s,0). As an example, we demonstrate a two-boson

system, with masses and momenta being mi and kµ
i = (ωi,ki), i = 1, 2. The result is easily

extended to the fermion system by replacing 1/2ωi by 2Mi/2Ei, i.e., multiplying 2Mi. In the
following, we express the variables with proper arguments, and perform integrations for the
δ functions implicitly;

dΠ =
d3k1

(2π)3
1

2ω1(|k1|)
d3k2

(2π)3
1

2ω2(|k2|)(2π)4δ(3)(−k1 − k2)δ(
√
s− ω1(|k1|)− ω2(|k2|))

=
d3k1

(2π)3
1

2ω1(|k1|)
1

2ω2(|k1|)(2π)δ(
√
s− ω1(|k1|)− ω2(|k1|))

=
1

(2π)2
d|k1||k1|2dΩ 1

2ω1(|k1|)
1

2ω2(|k1|)δ(
√
s− ω(|k1|)− ω(|k1|)).

Now we transform the variables |k1| → ω1 + ω2
D);

ω1 + ω2 =
√
m2

1 + |k1|2 +
√
m2

2 + |k1|2

d(ω1 + ω2) =
1
2
(m2

1 + |k1|2)−1/22|k1|d|k1|+ 1
2
(m2

2 + |k1|2)−1/22|k1|d|k1|

=
(

1
ω1

+
1
ω2

)
|k1|d|k1|

|k1|d|k1| =
(

1
ω1

+
1
ω2

)−1

d(ω1 + ω2) =
ω1ω2

ω1 + ω2
d(ω1 + ω2), (A.4.5)

then dΠ becomes

dΠ =
1

4π2
dΩd(ω1 + ω2)

ω1ω2

ω1 + ω2
|k1(ω1 + ω2)| 1

2ω1

1
2ω2

δ(
√
s− (ω1 + ω2))

=
1

16π2
dΩ
|k1(
√
s)|√
s

=
dΩ
4π
|k1(
√
s)|

4π
√
s
. (A.4.6)

D)For brevity, we denote dk ≡ d|k| in the following.
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Following Eqs. (A.4.2) and (A.4.6), the decay width of a resonance with mass MR is given
by

ΓR =
∫
dΠ Σ̄Σ|t|2 =

|k1|
4πMR

∫
dΩ
4π

Σ̄Σ|t|2. (A.4.7)

The cross section for the scattering as shown in Fig. A.3 is given by

σ =
1
vrel

1
2ω(p1)

1
2ω(p2)

∫
dΠ Σ̄Σ|t|2

=
1

4
√
s|p1|

∫
dΩ
4π
|k1|

4π
√
s
Σ̄Σ|t|2

=
1

16πs
|k1|
|p1|

∫
dΩ
4π

Σ̄Σ|t|2, (A.4.8)

where we have used Eqs. (A.4.3), (A.4.4), and (A.4.6).
Let us compare the above results with some cases in the text. Eq. (A.4.8) coincides with

Eq. (4.3.1) by multiplying 2m12m′
1 and performing the angle integration. The decay widths

used in chapter 8, can be derived from Eq. (A.4.7). For s- and p-wave Θ+ resonances, the
decay amplitudes can be written as

−it =





−ig for s wave,
−iḡ(σ · q) for p wave and J = 1/2,
−ig̃(S · q) for p wave and J = 3/2,

with gΘ+→K+n being the coupling constant. Since there are two final states K+n and K0p,
the squared amplitudes are given by

Σ̄Σ|t|2 =





| − ig|2 × 2 = 2g2 for s wave,
δij |iḡqi(−iḡqj)| × 2 = 2q2ḡ2 for p wave and J = 1/2,
δij

3 |ig̃qi(−ig̃qj)| × 2 = 2
3q

2g̃2 for p wave and J = 3/2,

where we write the three momentum of the final state as q. Then Eq. (A.4.7) gives the decay
widths (with 2M for the nucleon in the final state)

Γ = 2M
q

4πMR

∫
dΩ
4π

Σ̄Σ|t|2 =





Mq

πMR
g2 for s wave,

Mq3

πMR
ḡ2 for p wave and J = 1/2,

Mq3

3πMR
g̃2 for p wave and J = 3/2.

With these formulae, we can verify Eq. (8.2.15) in chapter 8. Eq. (5.2.17) can be reproduced
by removing the isospin factor 2 from the result for p wave and J = 1/2. Defining the
amplitude as

Σ̄Σ|t|2 = FIg
2
R

nπ

M

p2l

M2l−1
R

,
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with n being numeric factor (1 for J = 1/2 and 3 for J = 3/2), we obtain

ΓR ≡ g2
RFI

p2l+1

M2l
R

,

which corresponds to the formula (10.2.2) in chapter 10.

A.4.2 Three-body final state

In this thesis, we have encountered the calculation for the three-body final state. Let us
consider the cases used in our study, namely,

• the decay width of N∗ → ππN (chapters 5 and 11), and

• the differential cross section for MMB channel in terms of the invariant mass of MB

channel (chapters 5 and 8).

We first evaluate the decay width of the process R → BMM ′ where R is a resonance with
mass MR, B is a baryon with mass M , and M and M ′ are mesons with mass m and m′,
respectively. We assume that the transition amplitude depends on the energies of two mesons
and relative angle between them, which is the case for what we used. In the rest frame of
the resonance R, we assign the momentum variables as R(P ) → B(p)M(k)M ′(k′) with
Pµ = (MR,0), pµ = (E,p), kµ = (ω,k), and k′µ = (ω′,k′). Following Eqs. (A.4.1) and
(A.4.2), the decay width is given by

ΓBMM ′ =
∫

d3p

(2π)3
M

E

∫
d3k

(2π)3
1
2ω

∫
d3k′

(2π)3
1

2ω′
Σ̄Σ|t(ω, ω′, cos θ)|2(2π)4δ(4)(P − p′ − k − k′),

=
∫

d3p

(2π)3
M

E
δ(3)(−p− k − k′)

∫
d3k

(2π)3
1
2ω

∫
d3k′

(2π)3
1

2ω′

× Σ̄Σ|t(ω, ω′, cos θ)|2(2π)4δ(MR − E − ω − ω′)

=
∫

d3k

(2π)3

∫
d3k′

(2π)3
M

E

1
2ω

1
2ω′

Σ̄Σ|t(ω, ω′, cos θ)|2(2π)δ(MR − E − ω − ω′)

with the condition p = −k−k′. We define cos θ by the angle between k and k′. Then E can
be written as

E =
√
M2 + p2 =

√
M2 + k2 + (k′)2 + 2|k||k′| cos θ.

Integrating over the trivial angular variables, we obtain

ΓBMM ′ =
4π

(2π)3

∫
k2dk

2π
(2π)3

∫
(k′)2dk′

∫ 1

−1
d cos θ

M

E

1
2ω

1
2ω′

Σ̄Σ|t(ω, ω′, cos θ)|2

× (2π)δ(MR −
√
M2 + k2 + (k′)2 + 2|k||k′| cos θ − ω − ω′).

Utilizing the identity

δ[f(x)] =
∣∣∣∣
∂f(x)
∂x

∣∣∣∣
−1

x=x0

δ(x− x0),
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which are, in the present case,

f(cos θ) =MR −
√
M2 + k2 + (k′)2 + 2|k||k′| cos θ − ω − ω′,∣∣∣∣

∂f

∂ cos θ

∣∣∣∣ =
1
2

2|k||k′|√
M2 + k2 + (k′)2 + 2|k||k′| cos θ

=
|k||k′|
E

,

and the singularity point x0 is given by

MR − ω − ω′ =
√
M2 + k2 + (k′)2 + 2|k||k′| cos θ

[MR − ω − ω′]2 =M2 + k2 + (k′)2 + 2|k||k′| cos θ

cos θ =
(MR − ω − ω′)2 −M2 − k2 − (k′)2

2|k||k′| ≡ a. (A.4.9)

Hence, we obtain

δ[f(cos θ)] =
E

|k||k′|δ(cos θ − a),

which will be integrated as
∫ 1

−1
d cos θ δ(cos θ − a) = Θ(1− a)−Θ(−1− a) = Θ(1− a2),

where Θ(x) is the step function, 0 for x < 0 and 1 for 0 < x. Thus, we obtain

ΓBMM ′ =
4π

(2π)3

∫
k2dk

2π
(2π)3

∫
(k′)2dk′

M

E

1
2ω

1
2ω′

(2π)

×
∫ 1

−1
d cos θΣ̄Σ|t(ω, ω′, cos θ)|2 E

|k||k′|δ(cos θ − a)

=
4π

(2π)3

∫
k2dk

2π
(2π)3

∫
(k′)2dk′

M

E

1
2ω

1
2ω′

(2π)
E

|k||k′| |t(ω, ω
′, a)|2Θ(1− a2)

=
M

16π3

∫
|k|dk

∫
|k′|dk′ 1

ω

1
ω′

Σ̄Σ|t(ω, ω′, a)|2Θ(1− a2)

Now we transform

ω =
√
m2 + k2

dω =
1
2

2kdk√
m2 + k2

ωdω = kdk, ω′dω′ = k′dk′. (A.4.10)

Finally we obtain the decay width as

ΓBMM ′ =
M

16π3

∫
ωdω

∫
ω′dω′

1
ω

1
ω′

Σ̄Σ|t(ω, ω′, a)|2Θ(1− a2)

=
M

16π3

∫ ωmax

ωmin

dω

∫ ω′max

ω′min

dω′Σ̄Σ|t(ω, ω′, a)|2Θ(1− a2). (A.4.11)
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The regions of ω and ω′ are given by

ωmin = m, ω′min = m′,

ωmax =
M2

R + (m′)2 − (M +m′)2

2MR
, ω′max =

M2
R +m2 − (M +m)2

2MR
, (A.4.12)

where ωmax(ω′max) corresponds to the case when M ′(M) and B moves together. Eq. (5.2.12)
is reproduced by omitting the a dependence in the amplitude. Eq. A.4.11 gives a general
expression for the three-body phase space integration. For the specific example with the
N∗ → Nππ decay, in which m = m′, Eq. (A.4.12) reduces to a simpler form

ωmax = ω′max =
M2

R −M2 + 2mM
2MR

,

which, together with Eqs. (A.4.11) and (A.4.9) correspond to Eqs. (5.2.14), (5.2.12), and
(5.2.13) in chapter 5, respectively. The formulae are also used in section 11.4 in chapter 11.

Using Eq. (A.4.11), we can obtain the formula for the total cross section for three-body
final state with appropriate factors. Here we consider the processes in chapters 5 and 8,
in which we need the differential cross section in terms of MI , the invariant mass of final
two-body system. It is possible to differentiate the total cross section numerically, but here
we rather calculate it analytically. For convenience, we use the kinematical variables shown
in subsection A.3.3. Following Eqs. (A.4.1) and (A.4.3), with notations shown in Fig. A.4,
the total cross section is given by

σ =
1
vrel

1
2ωin

Mp

Ep

∫
dΠΣ̄Σ|t|2

=
Mp

λ1/2(s,M2
p ,m

2
π)

∫
d3kout

(2π)3
1

2ωout

∫
d3q

(2π)3
1

2ωm

∫
d3p′

(2π)3
MB

EB

× (2π)4δ(4)(P − kout − q − p′)Σ̄Σ|t|2

=
Mp

λ1/2(s,M2
p ,m

2
π)

∫
d3kout

(2π)3
1

2ωout

∫
d3q

(2π)3
1

2ωm

MB

EB
(2π)δ(

√
s− ωout − ωm − EB)Σ̄Σ|t|2

We transform one of the integration variables into MI , which can be expressed as M2
I =

s+m2
K − 2

√
sωout. This leads to

2MIdMI = 2
√
sdωout

Using this and Eq. (A.4.10) (ωdω = |k|dk), we have

σ =
Mp

λ1/2(s,M2
p ,m

2
π)

∫
dΩ

∫
dkout

(2π)3
|kout|2 1

2ωout

×
∫

d3q

(2π)3
1

2ωm

MB

EB
(2π)δ(

√
s− ωout − ωm − EB)Σ̄Σ|t|2

=
Mp

λ1/2(s,M2
p ,m

2
π)

4π
(2π)3

∫
dωout|kout|ωout

1
2ωout
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×
∫

d3q

(2π)3
1

2ωm

MB

EB
(2π)δ(

√
s− ωout − ωm − EB)Σ̄Σ|t|2

=
Mp

λ1/2(s,M2
p ,m

2
π)

1
2π2

∫
dMI

MI√
s
|kout|12

×
∫

d3q

(2π)3
1

2ωm

MB

EB
(2π)δ(MI − ωm −EB)Σ̄Σ|t|2

=
Mp

λ1/2(s,M2
p ,m

2
π)

1
2π

∫
dMI

MI√
s
|kout|

∫
d3q

(2π)3
1

2ωm

MB

EB
δ(MI − ωm − EB)Σ̄Σ|t|2.

Now we use a similar transformation as in Eq. (A.4.5), then

dq =
EBωm

EB + ωm
d(EB + ωm),

which leads to

σ =
Mp

λ1/2(s,M2
p ,m

2
π)

1
2π

∫
dMI

MI√
s
|kout|

×
∫
dΩ

1
(2π)3

∫
d(EB + ωm)

EBωm

EB + ωm
|q| 1

2ωm

MB

EB
δ(MI − ωm −EB)Σ̄Σ|t|2

=
Mp

λ1/2(s,M2
p ,m

2
π)

1
2π

∫
dMI

MI√
s
|kout||q|

∫
dΩ

1
(2π)3

1
MI

1
2
MBΣ̄Σ|t|2

=
1

(2π)3
MpMB

λ1/2(s,M2
p ,m

2
π)

∫
dMI

|kout||q|√
s

∫
dΩ
4π

Σ̄Σ|t|2

=
1

(2π)3
MpMB

λ1/2(s,M2
p ,m

2
π)

∫
dMI

1√
s

λ1/2(s,M2
I ,m

2
K0)

2
√
s

λ1/2(M2
I ,M

2
B,m

2
M )

2MI

∫
dΩ
4π

Σ̄Σ|t|2

=
1

(2π)3
1
4s

MpMB

λ1/2(s,M2
p ,m

2
π)

∫
dMI

1
MI

λ1/2(s,M2
I ,m

2
K0)λ1/2(M2

I ,M
2
B,m

2
M )

∫
dΩ
4π

Σ̄Σ|t|2

Hence, the differential cross section in terms of MI is written as

dσ

dMI
=

1
(2π)3

1
4s

MpMB

λ1/2(s,M2
p ,m

2
π)

1
MI

λ1/2(s,M2
I ,m

2
K0)λ1/2(M2

I ,M
2
B,m

2
M )Σ̄Σ|t|2 (A.4.13)

when the amplitude does not have the angular dependence. This corresponds to Eq. (5.2.9)
in chapter 5. When the amplitude contain the cos θ dependence as in chapter 8, we have

d2σ

dMId cos θ
=

1
(2π)3

1
8s

M2

λ1/2(s,M2,m2
K)

1
MI

λ1/2(s,M2
I ,m

2
π)λ1/2(M2

I ,M
2,m2

K)Σ̄Σ|t|2,

(A.4.14)

with the suitable replacements (A.3.7). This corresponds to Eq. (8.2.20) in chapter 8.

A.4.3 Four-body final state

Here we show the cross section for the γp → π+K0MB reaction studied in chapter 5. We
assign momentum variables as γp → K0(p1)π+(p2)M(p3)B(p4). According to Eqs. (A.4.1)

260



A.4. Phase space, decay width, and cross section

and (A.4.3), the total cross section for this process is given by

σ =
1
vrel

1
2ωγ

2Mp

2Ep

∫
dΠΣ̄Σ|t|2

=
Mp

λ1/2(s,M2
p , 0)

∫
d3p1

(2π)3
1

2ω1

∫
d3p2

(2π)3
1

2ω2

∫
d3p3

(2π)3
1

2ω3

∫
d3p4

(2π)3
2MB

2EB

× (2π)4δ(4)(P − p1 − p2 − p3 − p4)Σ̄Σ|t|2

=
2MpMB

s−M2
p

∫
d3p1

(2π)3
1

2ω1

∫
d3p2

(2π)3
1

2ω2

∫
d3p3

(2π)3
1

2ω3

∫
d3p4

(2π)3
1

2EB

× (2π)4δ(4)(P − p1 − p2 − p3 − p4)Σ̄Σ|t|2.

Since the phase space is Lorentz invariant, we evaluate the last two integrations and the δ
function in the center of mass frame of the MB system. Defining MI = (P − p1 − p2)2, we
obtain

∫
d3p̃3

(2π)3
1

2ω̃3

∫
d3p̃4

(2π)3
1

2ẼB

(2π)4δ(4)(P − p1 − p2 − p̃3 − p̃4)Σ̄Σ|t|2

=
∫

d3p̃3

(2π)3
1

2ω̃3

1
2ẼB

(2π)δ(MI − ω̃3 − ẼB)Σ̄Σ|t|2

=
1

(2π)3
2π

∫ 1

−1
d cos θ̄

∫
p̃2

3dp̃3
1

2ω̃3

1
2ẼB

(2π)δ(MI − ω̃3 − ẼB)Σ̄Σ|t|2

=
1
2π

1
4

∫ 1

−1
d cos θ̄

∫
|p̃3|d(ω̃3 + ẼB)

ω̃3 + ẼB

δ(MI − ω̃3 − ẼB)Σ̄Σ|t|2

=
1
8π

∫ 1

−1
d cos θ̄

|p̃3|
MI

Σ̄Σ|t|2,

where we use |p̃3|dp̃3 = ω̃3ẼBd(ω̃3+ẼB)/(ω̃3+ẼB) and θ̄ is the angle between the intermediate
K− and the final M , to account for the Σ∗ intermediate state. Finally we have

σ =
2MpMB

s−M2
p

∫
d3p1

(2π)3
1

2ω1

∫
d3p2

(2π)3
1

2ω2

1
8π

∫ 1

−1
d cos θ̄

|p̃3|
MI

Σ̄Σ|t|2,

which corresponds to Eq. (5.3.7) in chapter 5. It is also possible to derive the differential
cross section in terms of MI analytically as done in the previous subsection, but in practice
we adopt the Monte-Carlo method to integrate the cross section, and calculate the differential
cross section numerically.
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Appendix B

Effective Lagrangians

In this chapter, we present the effective Lagrangians that have been used in this thesis. First
we show the Lagrangians in chiral perturbation theory, and then display the other effective
Lagrangians used in the calculation of the reaction processes. We also demonstrate the
nonrelativistic reduction of the amplitudes which have been often used in this thesis.

B.1 Chiral Lagrangians

Here we summarize the Lagrangians of flavor SU(3) chiral perturbation theory. We follow
mainly the notation given in Ref. [48], but for the chiral transformation we use a common
notation [3, 41, 42, 565, 40, 513, 514].

B.1.1 Definition of the fields

Chiral perturbation theory is constructed based on the nonlinear realization of the chiral
symmetry group SU(3)L×SU(3)R , which spontaneously breaks down into the vector sub-
group SU(3)V . The octet pseudoscalar mesons are identified as the Nambu-Goldstone bosons
associated with the spontaneous breaking of chiral symmetry. Their fields are defined in the
SU(3) matrix form as

Φ =




1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η


 ,

and the chiral fields U and ξ are defined by

U(Φ) = exp

{
i
√

2Φ
f

}
, ξ(Φ) = exp

{
iΦ√
2f

}
, U(Φ) = ξ2(Φ), (B.1.1)

where f is a quantity of mass dimension, and will be identified with the meson decay constant.
Explicit SU(3) breaking quark mass term and electromagnetic and weak interactions are

introduced by the external fields vµ, aµ, s and p as in section 2.4. We define the scalar χ and
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left and right currents lµ and rµ as

χ = 2B0(s+ ip), lµ = vµ − aµ, rµ = vµ + aµ, (B.1.2)

where B0 is a coefficient and will be defined when we introduce the symmetry breaking mass
term in the Lagrangian. Associated with these external currents, the covariant derivative for
the chiral field is defined by A)

DµU = ∂µU − irµU + iUlµ, DµU
† = ∂µU

† + iU †rµ − ilµU †. (B.1.3)

The field strength tensors are defined by

Rµν = ∂µrν − ∂νrµ − i[rµ, rν ], Lµν = ∂µlν − ∂ν lµ − i[lµ, lν ].
These will be used to construct the Lagrangians for meson system.

For later convenience to introduce matter fields, here we define the scalar (σ) and pseu-
doscalar (ρ) quantities by

σ = ξχ†ξ + ξ†χξ†, ρ = ξχ†ξ − ξ†χξ†. (B.1.4)

We also introduce the vector (Vµ) and axial vector (Aµ) currents

Vµ =− i

2
(ξ†∂µξ + ξ∂µξ

†)− 1
2
(ξ†rµξ + ξlµξ

†), (B.1.5)

Aµ =− i

2
(ξ†∂µξ − ξ∂µξ

†)− 1
2
(ξ†rµξ − ξlµξ†), (B.1.6)

and the field strength tensors

Fµν
R = ξ†Rµνξ, Fµν

L = ξLµνξ†. (B.1.7)

It is useful to present the expansion of the chiral fields and currents:

U(Φ) =1 +
i
√

2
f

Φ− 1
f2

Φ2 − i
√

2Φ3

3f3
+

Φ4

6f4
+ · · · ,

U †(Φ) =1− i
√

2
f

Φ− 1
f2

Φ2 + i

√
2Φ3

3f3
+

Φ4

6f4
+ · · · ,

ξ(Φ) =1 + i
Φ√
2f
− Φ2

4f2
− i Φ3

12
√

2f3
+

Φ4

96f4
+ · · · ,

ξ†(Φ) =1− i Φ√
2f
− Φ2

4f2
+ i

Φ3

12
√

2f3
+

Φ4

96f4
+ · · · .

Using these, the vector and axial vector currents made from mesons are expressed as

Vµ =− i

4f2
(Φ∂µΦ− ∂µΦ · Φ) + · · · ,

Aµ =
∂µΦ√

2f
− 1

12
√

2f3

(
∂µΦ(Φ2)− 2Φ∂µΦ(Φ) + Φ2∂µΦ

)
+ · · · .

A)Here we adopt the convention in Refs. [40, 513, 514], because of the chiral transformation defined in the
next subsection.
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B.1. Chiral Lagrangians

Correspondence to the notations in Refs. [565, 40, 513, 514] can be expressed by the present
conventions as

u = ξ, Γµ = iVµ, uµ = ∆µ = −2Aµ.

The other hadrons than the pseudoscalar bosons are introduced as matter fields. The fields
of the octet baryons are defined as

B =




1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ


 ,

and the antidecuplet baryons are expressed in the totally symmetric tensor P ijk as

P 333 =
√

6Θ+
10
,

P 133 =
√

2N0
10
, P 233 = −

√
2N+

10
,

P 113 =
√

2Σ−
10
, P 123 = −Σ0

10
, P 223 = −

√
2Σ+

10
,

P 111 =
√

6Ξ−−
10

, P 112 = −
√

2Ξ−
10
, P 122 =

√
2Ξ0

10
, P 222 = −

√
6Ξ+

10
,

where we have adopted the normalization in Ref. [249], which is different from those used in
Refs. [259, 256, 258] by a sign and/or a factor. The covariant derivative for the octet baryon
fields can be defined as

DµB =∂µB + i[Vµ, B]. (B.1.8)

B.1.2 Chiral transformation

In order to construct chiral Lagrangians, we combine the above fields to be invariant under
chiral transformations. The Lagrangians are classified in terms of the number of derivatives
acting on the meson fields, according to the chiral order counting rule. In the following, we
denote the chiral Lagrangians as

LX(i)
n ,

where n is the chiral order, i denotes the number of mesons, if necessary, and X = M , B, or
P labels the Lagrangians for mesons, mesons and baryons, or those including antidecuplet.

Under a chiral transformation g ∈ SU(3)L×SU(3)R , chiral fields U and ξ in Eq. (B.1.1)
transform as

U
g→ RUL†, U † g→ LU †R†,

ξ
g→ Rξh† = hξL†, ξ† g→ Lξ†h† = hξ†R†,

where L ∈ SU(3)L, R ∈ SU(3)R, and h(Φ, g) ∈ SU(3)V .
The transformation low for the external fields in Eq. (B.1.2) are given by

χ
g→ RχL†, lµ

g→ LlµL
† + iL∂µL

†, rµ
g→ RrµR

† + iR∂µR
†.
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It is easy to confirm that the covariant derivative of the chiral field in Eq. (B.1.3) transforms
as in the same way with the original chiral field as

DµU
g→ RDµUL

†, DµU
† g→ LDµUR

†,

The transformation lows for the quantities defined in Eqs. (B.1.4), (B.1.6), and (B.1.7) are

O
g→ hOh† for O = σ, ρ,Aµ, F

µν
R , Fµν

L .

and that for the vector current is given by

Vµ
g→ hVµh

† − ih∂µh
†.

Using these external fields, we can introduce terms of explicit chiral symmetry breaking and
of photon coupling, by choosing

s = m, lµ = rµ = eQAµ,

where Aµ is the photon field and e is the unit electric charge and

m =



mu

md

ms


 Q =

1
3




2
−1

−1


 . (B.1.9)

The transformation lows for the matter fields follows the representation in SU(3)V . For
instance, baryon octet field B transform as

B
g→ hBh†, B̄

g→ hB̄h†,

and the antidecuplet field P ijk transforms as

P ijk g→ hi
ah

j
bh

k
cP

abc.

B.1.3 Meson system

For the meson system, the lowest order Lagrangian consists of terms with two derivatives on
the U field which is of order O(p2) and is uniquely given by [3, 41, 42]

LM
2 =

f2

4
Tr(DµU

†DµU + U †χ+ χ†U),

where f is the meson decay constant. Expanding the chiral field, we obtain the kinetic terms
and mass terms for mesons in the LM(2)

2 where two meson fields are included:

LM(2)
2 =

1
2
Tr(∂µΦ∂µΦ)−B0Tr

(
mΦ2

)
,

where the meson kinetic term and mass term appear. The terms including four meson fields
are responsible for meson-meson interactions

LM(4)
2 =

1
12f2

Tr
(
(Φ∂µΦ− ∂µΦΦ)2

)− B0

6f2
Tr

(
mΦ4

)
,
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which are used in the calculation in chapters 5 and 8. Lagrangians for the next to leading
order are given by

LM
4 =L1

[
Tr(DµU

†DµU)
]2

+ L2Tr(DµU
†DνU)Tr(DµU †DνU)

+ L3Tr(DµU
†DµUDνU

†DνU) + L4Tr(DµU
†DµU)Tr(U †χ+ χ†U)

+ L5Tr
[
(DµU

†DµU)(U †χ+ χ†U)
]

+ L6

[
Tr(U †χ+ χ†U)

]2

+ L7

[
Tr(U †χ− χ†U)

]2
+ L8Tr(χ†Uχ†U + U †χU †χ)

− iL9Tr(RµνD
µUDνU † + LµνD

µU †DνU) + L10Tr(U †RµνULµν)

+H1Tr(RµνR
µν + LµνL

µν) +H2Tr(χ†χ)

with the low energy constants Li (i = 1-10) and Hi (i = 1, 2).

B.1.4 Meson-baryon system

The chiral Lagrangian for baryons in the lowest-order of the chiral expansion is given by [48]

LB
1 = Tr

(
B̄(i/D −M0)B −D(B̄γµγ5{Aµ, B})− F (B̄γµγ5[Aµ, B])

)
.

Here M0 is the common mass of the baryon octet in the chiral limit, D and F are coupling
constants, F = 0.51, D = 0.75.

Expanding the chiral fields in the vector current, the covariant derivative term provides
the Lagrangian with two mesons

LB(2)
1 = LWT = Tr

(
B̄iγµ 1

4f2

[
(Φ∂µΦ− ∂µΦΦ), B

])
,

which gives the Weinberg-Tomozawa interaction. Substituting photon field as in Eq. (B.1.9),
we obtain the baryon-photon coupling term

LB(0)
1 = −eTr

(
B̄γµ

[
Q,B

])
Aµ,

which was used in Eq. (6.2.9) in chapter 6. The meson-baryon Yukawa interaction can be
derived from the axial vector coupling terms

LB(1)
1 = LYukawa = − 1√

2f
Tr

(
D(B̄γµγ5{∂µΦ, B}) + F (B̄γµγ5[∂µΦ, B])

)
, (B.1.10)

and the same terms provides three meson-two baryon contact interaction as

LB(3)
1 =

1
12
√

2f3
Tr

(
D(B̄γµγ5{(∂µΦ(Φ2)− 2Φ∂µΦ(Φ) + Φ2∂µΦ), B})

+ F (B̄γµγ5[(∂µΦ(Φ2)− 2Φ∂µΦ(Φ) + Φ2∂µΦ), B])
)
.

These terms have been used in section 5.2.
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In the next to leading order, we have several terms. Following the convention in Ref. [44],
the SU(3) breaking terms are given by

LB
2(SB) = b0Tr(B̄B)Tr(σ) + bdTr

(
B̄{σ,B}) + bfTr

(
B̄[σ,B]

)
. (B.1.11)

The definition of the low energy constants are the same with that adopted in Ref. [514]. In
chapter 4, we denote these terms as

LB
2(SB) ≡ LSB =− Z0

2
Tr

(
dmB̄{ξmξ + ξ†mξ†, B}+ fmB̄[ξmξ + ξ†mξ†, B]

)

− Z1

2
Tr(B̄B)Tr(mU + U †m).

(B.1.12)

with dm + fm = 1. The constants Z0, Z1, dm, and fm are related with those in Eq. (B.1.11)
as

2B0b0 = −Z1

2
, 2B0bd = −Z0

2
dm, 2B0bf = −Z0

2
df .

In the expansion of the chiral fields in Eq. (B.1.12), we obtain the mass splitting contribution
to the baryons, which leads to the Gell-Mann–Okubo mass formula for the octet baryons.
The meson-baryon interaction Lagrangian with SU(3) breaking is obtained by picking up the
terms with two meson fields;

LB(2)
2 = L(2)

SB =
Z0

4f2
Tr

(
dmB̄

{
(2ΦmΦ + Φ2m + mΦ2), B

}

+ fmB̄
[
(2ΦmΦ + Φ2m + mΦ2), B

])
+
Z1

f2
Tr(B̄B)Tr(mΦ2).

These terms have been used in chapter 4.
Couplings to photons are derived from the terms

LB
(γ) =

bD6
8Mp

Tr
(
B̄σµν{F+

µν , B}
)

+
bF6

8Mp
Tr

(
B̄σµν [F+

µν , B]
)
, (B.1.13)

with

Fµν
+ = Fµν

L + Fµν
R , σµν =

i

2
[γµ, γν ].

In the heavy baryon chiral perturbation theory, these terms are expressed as

LB
(γ) = − i

4Mp
bD6 Tr

(
B̄[Sµ, Sν ]{F+

µν , B}
)− i

4Mp
bF6 Tr

(
B̄[Sµ, Sν ][F+

µν , B]
)
, (B.1.14)

with the replacement σµν → 2εµναβvαSβ = −2i[Sµ, Sν ] given in Ref. [45]. We have used this
form in chapter 6.

B.2 Other effective Lagrangians and interactions

In this section, we present effective interaction Lagrangians used in the calculation in this
thesis.
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B.2. Other effective Lagrangians and interactions

B.2.1 N(1535) production

Here we show the interaction Lagrangians used in section 3.2 to calculate the cross sections
of the γN → γηN and πN → γηN processes through the N∗ intermediate state. Here N∗

denotes the N(1535) resonance, which has the negative parity.
For the ηNN∗ vertex, we take the scalar coupling:

LηNN∗ = gηN̄N
∗η + h.c.,

where the coupling constant gη ' 2.0 is determined so as to reproduce the partial decay width
ΓN∗→ηN ' 75 MeV [144] at tree level.

The transition vertex of N to N∗ with one photon is given by

LγNN∗ =
e

4MN
µ

(T )
N N̄iγ5σ

µνFµνN + h.c.

Here we assume the isovector dominance on the transition magnetic moments µ(T )
N , and their

values are given by µ(T )
p = −µ(T )

n = 0.68 in units of nuclear magneton, which correspond to
κ∗V ≡ 2MNµ

(T )
N /(MN +M∗

N ) = 0.9 determined from analyses of eta photoproduction [636].
The γNN and γN∗N∗ vertices have two parts, which are so-called the Dirac term and the

Pauli term:

LγNN =− eQN̄γµA
µN +

e

4MN
κN N̄σ

µνFµνN,

LγN∗N∗ =− eQN̄∗γµA
µN∗ +

e

4MN
κN∗N̄∗σµνFµνN

∗.

The anomalous magnetic moments of the ground state nucleons κN are used the experimental
value κp = 1.79284739 and κn = −1.9130428 in units of nuclear magneton [144], while the
anomalous magnetic moments of N∗ are assumed to be ±3 to see sensitivity of their values
to the cross sections.

For the calculations of the pion-induced process, we use the following Lagrangians. The
πNN∗ vertex has the scalar type coupling, which given by

LπNN∗ = gπNN∗N̄~τ · ~πN∗ + h.c.

with the coupling constant gπNN∗ ' 0.7, which is determined so as to reproduce the partial
decay width ΓN∗→πN ' 75 MeV [144] at tree level. The diagonal vertices πNN and πN∗N∗

are assumed to be here the pseudo scalar couplings:

LπNN = gπNN N̄γ5~τ · ~πN, LπN∗N∗ = gπN∗N∗N̄∗γ5~τ · ~πN∗,

Here we use the empirical value of the πNN coupling gπNN ' 13. For the πN∗N∗ coupling,
we assume gπN∗N∗ ' +13, although the sign of this coupling is important for the properties of
N∗. The value of the πN∗N∗ coupling is absolutely insensitive to the final results, since this
coupling appears in the less dominant diagrams. In this formulation, we do not include the
Kroll-Ruderman type diagram, since we use the scalar type coupling for the πNN∗ vertex
and it already contains the partial contribution of the Kroll-Ruderman type vertex. The
pion-photon coupling is given by

Lγππ = ie(∂µπ
−)†π−Aµ − ieπ−†(∂µπ

−)Aµ.
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B.2.2 Λ∗K̄∗N coupling

Here we summarize the chiral Lagrangians which are used in the present analysis. The
coupling of vector meson and pseudoscalar mesons is given by

L1 = −i g√
2
Tr(V µ[∂µΦ,Φ]) , (B.2.1)

with g = −6.05 and the vector meson field is given by

Vµ =




1√
2
ρ0

µ + 1√
2
ωµ ρ+

µ K∗+
µ

ρ−µ − 1√
2
ρ0

µ + 1√
2
ωµ K∗0

µ

K∗−
µ K̄∗0

µ φµ


 ,

Yukawa coupling of the ground state baryon is given in Eq. (B.1.10) by

L2 = − 1√
2f

Tr
(
D(B̄γµγ5{∂µΦ, B}) + F (B̄γµγ5[∂µΦ, B])

)
,

with standard notations given in Refs. [513, 40, 514]. The coupling constants are such that
D + F = 1.26 and D − F = 0.33. With these Lagrangians, we obtain the amplitudes for the
t-channel meson exchange processes K̄∗(k) + π(q − k)→ K̄(q) and N → π(q − k) +N

−it1 =− iαg
2
(2q − k)µε

µ,

−it2 =
(
β
D + F

2f
+ γ

D − F
2f

)
σ · (q − k),

with suitable SU(3) coefficients α, β and γ. The Yukawa coupling of Σ∗ →Mi(q− k) +Bi is
similarly given by

−it3 = ci
12
5
g∗A
2f

S · (q − k) .

with g∗A = (D+ F )× 2.13. The numerical factor comes from the relation fπN∆ = 2.13fπNN .
SU(3) coefficients ci are tabulated in Refs. [576, 11].

B.3 Nonrelativistic reduction of amplitudes

In practical calculations, we have performed the nonrelativistic reduction for the amplitudes,
since we are interested in the phenomena in low energy regions, where the nonrelativistic
approximation works sufficiently well. We demonstrate the derivation of various amplitudes
used in this thesis. Typically, we only take into account the leading order term, but we
include the higher order correction for some specific cases.

B.3.1 Yukawa interaction

Let us consider the nonrelativistic reduction of the Yukawa interaction of the process B(p)→
B′(p′) +M(k)

L =
gA

2f
B̄′/∂Mγ5B,
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where p = k + p′ and gA/2f is the coupling constant. In this case, the amplitude can be
written by

−it = −gA

2f
ū(p′)/kγ5u(p),

with the positive energy spinor. Expanding this equation, we obtain

−it =− gA

2f

√
E′ +M ′

2M ′
(
χ†r −χ†r σ·p′

E′+M ′

)(
ω −σ · k

σ · k −ω
)(

0 1
1 0

) √
E +M

2M

(
χs

σ·p
E+Mχs

)

=− gA

2f
χ†r

[
−σ · k + ω

(
σ · p′

E′ +M ′ +
σ · p
E +M

)
− σ · p′
E′ +M ′σ · k

σ · p
E +M

]
χs

×
√
E′ +M ′

2M ′

√
E +M

2M
,

where E, E′, and ω are the on-shell energies of B, B′, and M , respectively. In the nonrela-
tivistic limit p ∼ p′ ∼ 0, we obtain

−it ∼ gA

2f
χ†r σ · k χs.

Taking into account that p = p′ + k, we can add a correction for the case p′ ∼ 0,

−it ∼ gA

2f
χ†r σ · k Fχs,

F = 1− ω

2M
,

where F is called as the recoil correction, which is used in Eq. (5.2.8) in chapter 5.

B.3.2 Weinberg-Tomozawa interaction

Next we consider the Weinberg-Tomozawa type interaction of the process B(p) + M(k) →
B′(p′) +M ′(k′). The interaction Lagrangian is given by

L = i
C

4f2
B
′
M ′←→/∂ MB, (B.3.1)

where p + k = p′ + k′ and C/4f2 is the coupling constant. Then Eq. (B.3.1) gives the
amplitude as

−it = i
C

4f2
u(p′)(/k + /k′)u(p).

Expanding this, we obtain

−it =i
C

4f2

√
E′ +M ′

2M ′
(
χ†r −χ†r σ·p′

E′+M ′

)(
ω + ω′ −σ · (k + k′)

σ · (k + k′) −ω − ω′
) √

E +M

2M

(
χs

σ·p
E+Mχs

)

=i
C

4f2

√
E′ +M ′

2M ′

√
E +M

2M
χ†r

(
(ω + ω′)− σ · (k + k′)

σ · p
E +M

− σ · p′
E′ +M ′σ · (k + k′) +

σ · p′
E′ +M ′ (ω + ω′)

σ · p
E +M

)
χs, (B.3.2)
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where E, E′, ω, and ω′ are the on-shell energies of B, B′, M , and M ′ respectively. In the
center of mass frame Pµ = pµ +kµ = (p′)µ +(k′)µ = (

√
s,0), k = −p, and k′ = −p′, we have

−it =i
C

4f2
χ†r

(
(2
√
s−M −M ′) + σ · k′σ · k 2

√
s+M +M ′

(E′ +M ′)(E +M)

)
χs

√
E′ +M ′

2M ′

√
E +M

2M
.

We find the leading order term as used in Eq. (4.2.2) in chapter 4, where t is written as V .
For the decay process of R(p)→ B′(p′)+M(k)+M ′(k′), we can use the above expressions

by replacing k → −k. In the resonance rest frame pµ = (p′)µ + kµ + (k′)µ = (M,0),
p′ = −k′ − k. Eq. (B.3.2) leads to

−it =i
C

4f2

√
E′ +M ′

2M ′ χ†r

(
−(ω − ω′)− σ · (k + k′)

E′ +M ′ σ · (k − k′)

)
χs.

The leading order term gives the amplitude in Eq. (5.2.11), while the second term provides
the relativistic corrections used in Eqs. (9.3.5) and (11.4.1).
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Loop integrals

Here we summarize the calculation of loop integrals which are used in this thesis. Since we
are interested in the low energy phenomena, we have performed the non-relativistic reduction
for baryons. In contrast, bosons in loop integrals are usually the pseudoscalar mesons, which
originate in the NG bosons of the spontaneous chiral symmetry breaking, and have small
masses. Therefore, we use the relativistic propagator for bosons. To perform the reduction,
we decompose the propagator of a baryon with mass M into positive and negative energy
components by using the identity

1
/q −M + iε

=
M

E(q)

(∑
s u(q, s)ū(q, s)
q0 − E(q) + iε

+
∑

s v(−q, s)v̄(−q, s)
q0 + E(q)− iε

)
,

where the normalization of spinor is given in Eq. (A.1.1) and E(q) =
√
M2 + q2. Taking

into account the positive energy part, we obtain
1

/q −M + iε
∼ M

E

1
q0 − E + iε

,

which gives the leading order contribution in the non-relativistic expansion and is consistent
with the treatment of the amplitude in Appendix B.3. This approximation becomes exact
in the heavy baryon limit, M →∞. In the following, we evaluate the integrations by three-
momentum cutoff scheme. For the meson-baryon one-loop integral, we show the relation of
the cutoff scheme with the analytic form obtained by dimensional regularization. Analytic
continuation to the complex energy plane is also explained. We then show the calculations
for one-loop integrals with two meson propagators and two-loop integrals.

C.1 One-loop functions

C.1.1 Meson-baryon loop function on the real axis

We calculate a one-loop function including a meson with mass m and a baryon with mass
M , which is diagrammatically depicted in Fig. C.1. In the center of mass frame, total four
momentum is P = (

√
s,0), and the loop integral is given by

G(
√
s) = i

∫
d4q

(2π)4
1

q2 −m2 + iε

M

E

1√
s− q0 −E + iε

.
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Figure C.1: Diagrammatic representation for the one-loop of a meson and a baryon. Dashed
and solid lines represent the meson and the baryon respectively.

Here we assume that the vertices at the both ends of the loop are essentially constant. When
it has a momentum dependence, we should perform d3q integration including the vertices.
We define on-shell energies of the meson and the baryon are given by ω(q) =

√
m2 + q2 and

E(q) =
√
M2 + q2. This integral diverges quadratically, therefore we regularize it by a cutoff

in three-momentum. We first integrate the zeroth component q0 analytically;

G(
√
s) =i

∫
d4q

(2π)4
1

q2 −m2 + iε

M

E

1√
s− q0 − E + iε

=i
∫

d3q

(2π)4
M

E

∫
dq0

1
(q0)2 − q2 −m2 + iε

−1
q0 − (

√
s−E)− iε

=i
∫

d3q

(2π)4
M

E

∫
dq0

1
(q0)2 − ω2 + iε

−1
q0 − (

√
s− E)− iε

=i
∫

d3q

(2π)4
M

E

∫
dq0

1
(q0)2 − (ω − iε)2

−1
q0 − (

√
s−E)− iε

=i
∫

d3q

(2π)4
M

E

∫
dq0

1
q0 − ω + iε

1
q0 + ω − iε

−1
q0 − (

√
s− E)− iε ,

where poles in the complex q0 plane locate at

z1 = ω − iε, z2 = −ω + iε, z3 =
√
s−E + iε.

We close the integration contour downward, picking up the residues of the poles in the lower
half-plane, in this case z1, and then

G(
√
s) =(−2πi)i

∫
d3q

(2π)4
M

E

1
2ω

−1
ω − (

√
s−E)− iε

=
∫

d3q

(2π)3
M

E

1
2ω

1√
s− ω − E + iε

=
M

(2π)3

∫
dΩ

∫ qmax

0
dqq2 1

E

1
2ω

1√
s− ω − E + iε

=
M

4π2

∫ qmax

0
dq

q2

E

1
ω

1√
s− ω − E + iε

,

where we denote dq ≡ d|q| for brevity.
It is instructive to divide G(

√
s) into real and imaginary parts. Using

lim
ε→+0

1
x− a± iε = P.V.

1
x− a ∓ iπδ(x− a),
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C.1. One-loop functions

where P.V. stands for the principle value of the integral, we obtain

Re[G(
√
s)] =

M

4π2
P.V.

∫ qmax

0
dq

q2

E

1
ω

1√
s− ω −E , (C.1.1)

and

Im[G(
√
s)] =− M

4π

∫ qmax

0
dq

q2

E

1
ω
δ(
√
s− ω − E)

=− M

4π

∫ qmax

0
d(ω + E)

q

E + ω
δ(
√
s− ω − E)

=




−M |q|

4π
√
s

= −ρ
2

for
√
s > ω + E ≥ √s+ (above threshold),

0 for
√
s ≤ ω + E ≤ √s+ (below threshold),

(C.1.2)

where ρ =
∫
dΠ is the two-body phase space of meson-baryon system and we define the

threshold energy √s+ = m+M . It is important that the imaginary part is determined only
by the value of

√
s and does not depend on the cutoff value.

Eq. (C.1.1) can be calculated numerically, but it is not adequate to perform the analytic
continuation to the complex energy plane. To do that, we utilize another loop function

G′(
√
s) = i

∫
d4q

(2π)4
1

q2 −m2 + iε

2M
(P − q)2 −M2 + iε

,

with P = (
√
s,0). This function provides exactly the same imaginary part as Eq. (C.1.2), as

can be seen by, for instance, the Cutkosky rule. The G′(
√
s) function also has an advantage

that it can be calculated analytically. Adopting the dimensional regularization scheme, finite
part of this integral is given by

G′(
√
s) =

2M
(4π)2

{
a(µ) + ln

M2

µ2
+
m2 −M2 + s

2s
ln
m2

M2

+
q̄√
s

[
ln(s− (M2 −m2) + 2

√
sq̄) + ln(s+ (M2 −m2) + 2

√
sq̄)

− ln(−s+ (M2 −m2) + 2
√
sq̄)− ln(−s− (M2 −m2) + 2

√
sq̄)

]}
,

where µ is the regularization scale, a(µ) is the subtraction constant. Notice that the result
depends on a single parameter µ, since the change of µ can be absorbed into the change of
a(µ) through the relation a(µ′) = a(µ) + 2 ln(µ′/µ). Here q̄ is defined by

q̄(
√
s) =

λ1/2(s,M2,m2)
2
√
s

,

with the Källen function λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx. Above the threshold,
q̄ corresponds to the magnitude of the three momentum |q| in the center of mass frame, but
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it is also defined below the threshold, where it becomes pure imaginary. In order to extract
the imaginary part of G′(

√
s), we rewrite the resulting function as

G′(
√
s) =

2M
16π2

{
a(µ) + ln

M2

µ2
+
m2 −M2 + s

2s
ln
m2

M2

+
λ1/2

2s
[ln(A) + ln(B)− ln(C)− ln(D)]

}
,

(C.1.3)

where we abbreviate λ1/2 ≡ λ1/2(s,M2,m2) and define

A = s− (M2 −m2) + λ1/2, B = s+ (M2 −m2) + λ1/2,

C = −s+ (M2 −m2) + λ1/2, D = −s− (M2 −m2) + λ1/2.

The terms in the first line of Eq. (C.1.3) are always real for real values of
√
s, and therefore

the imaginary part of the loop function comes from the second line. Below the threshold,
λ1/2 is pure imaginary, so that A, B, C, and D are all complex numbers. Then we see that
[ln(A)+ ln(B)− ln(C)− ln(D)] becomes pure imaginaryA), while λ1/2 is also pure imaginary.
Hence, no imaginary part appears in G′(

√
s) below the threshold;

Im[G′(
√
s)] = 0 for

√
s ≤ √s+ (C.1.4)

On the other hand, above the threshold, λ1/2 is real, so that A, B, C, and D are real numbers.
The real logarithmic function is defined in the region 0 ≤ x <∞, while log(x) = log(−x)+ iπ
if x is negative. When

√
s >
√
s+, we see that

A > 0, B > 0, C < 0, D < 0.

Then

G′(
√
s) =

2M
16π2

{
a(µ) + ln

M2

µ2
+
m2 −M2 + s

2s
ln
m2

M2

+
λ1/2

2s
[ln(A) + ln(B)− ln(−C)− ln(−D)− 2πi]

}
, for

√
s >
√
s+,

(C.1.5)

In this expression, λ1/2 and all logarithmic function are real, so we extract the imaginary
part of the G′ function as

Im[G′(
√
s)] = −Mλ1/2(s,M2,m2)

8sπ
= −ρ(

√
s)

2
for

√
s >
√
s+. (C.1.6)

Combining Eqs. (C.1.2), (C.1.4), and (C.1.6), we verify that

Im[G(
√
s)] = Im[G′(

√
s)].

The real part of the integrals G(
√
s) and G′(

√
s) depend on the scale parameter (cutoff

qmax and a(µ)). As done in Ref. [503], we compare the real part of the loop function in two
scheme numerically. In Fig. C.2, we plot the real and imaginary parts of the loop integral G

A)We define log(z) on the first Riemann sheet, namely, we restrict the argument of z within 0 ≤ θ < 2π
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Figure C.2: Comparison of the loop functions G(
√
s) and G′(

√
s) for K̄N channel. The

G(
√
s) is calculated by the three momentum cutoff with qmax = 630 MeV, while G′(

√
s) is

regularized by the dimensional regularization with a(630 MeV) = −1.84.

and G′ with qmax = 630 MeV and a(630 MeV) = −1.84 for K̄N channel. Qualitatively, two
functions agree with each other in this energy region. The parameter a(630 MeV) = −1.84
was obtained in Ref. [503] by fitting these two functions around the K̄N threshold. Similar
values around a = −2 are found for other channels of S = −1. This observation agrees with
the analytical comparison performed in Ref. [512], where they found that a(630 MeV) = −2
corresponds to qmax = 630 MeV.

In short summary, we evaluate the loop functionsG(
√
s) and G′(

√
s) with three momentum

cutoff scheme and dimensional regularization, respectively. It is shown that the two functions
provide the same imaginary partB), and the real parts can be matched by choosing the scale
parameters appropriately. On one hand, the three momentum cutoff scheme is useful to
consider the physical meaning of the cutoff value (the maximum of the three momentum
in the intermediate state), while the subtraction constant in the dimensional regularization
is not related to physics directly. On the other hand, the loop function can be calculated
analytically in the dimensional regularization, whereas the integration of the three momentum
cutoff scheme should be performed numerically. Therefore, we can utilize both the methods
complementary, depending on the situations.

C.1.2 Meson-baryon loop function in the complex plane

Here we compute the loop function numerically in the complex plane, showing how the
structure in the second Riemann sheet influences the scattering amplitude on the real axis.
In this subsection, we utilize G′(

√
s) in Eq. (C.1.3), and refer to it as G for convenience.

When we deal with multi-valued functions, several Riemann sheets appear. The definition
of the Riemann sheets and branches can be found in Appendix E.1. For the scattering we
are considering, q̄(

√
s) is the double-valued function of

√
s because of the square root of the

Källen function, and we need two Riemann sheets. According to the result of the chiral

B)Small deviation in Fig. C.2 is due to the numerical error.

277



Appendix C. Loop integrals

1000
1100

1200

100
0

-100

-10

0

10

20

-10

0

10

20

Re[z] Im[z]
1000

1100
1200

100
0

-100

-20

0

20

-20

0

20

Re[z] Im[z]

Figure C.3: Real and imaginary parts of the GI(z) function. Here we plot the loop function
of the πN channel. White line in the figure denotes the values on the scattering line (real
axis).

unitary model (4.2.7), the relation between the T-matrix and the G function is given by

T−1 = V −1 −G. (C.1.7)

Now V is a tree vertex, so that it is always real. Using the unitarity condition (4.2.3) and
Eq. (C.1.7), we find

2ImG(
√
s) = −ρ(√s) for

√
s >
√
s+. (C.1.8)

This relation is consistent with the result (C.1.2). Since the inverse of the T-matrix amplitude
has the same branch cut as G, we investigate G instead of the T-matrix. We perform analytic
continuation of G(

√
s) to the whole complex energy plane

√
s → z. In Fig. C.3, real and

imaginary parts of G(z) for the πN channel on the first Riemann sheet are shown, where we
see the discontinuity of the imaginary part.

As we mentioned, the origin of this discontinuity lies in the square root of the q̄ in ρ(
√
s).

In the complex z plane, ρ(z) is a double-valued function with the cut along the real axis
(
√
s+,+∞);

ρ(
√
s+ i0) = −ρ(√s− i0), for

√
s >
√
s+, (C.1.9)

Therefore the discontinuity of the loop function G and relation between branches of G on the
first and second Riemann sheets are given as

GI(
√
s+ i0) = GI(

√
s− i0)− iρ(√s+ i0)

GII(
√
s+ i0) = GI(

√
s− i0)

, for
√
s >
√
s+, (C.1.10)
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Figure C.4: Real and imaginary parts of the GII(z) function. Here we plot the loop function
of the πN channel. White line in the figure denotes the values on the scattering line (real
axis).

whereGI(z) andGII(z) represent the first and second branches, respectively. Using Eq. (C.1.10),
we obtain the expression of the second branch

GII(z) = GI(z) + iρ(z). (C.1.11)

In Fig. C.4, the real and imaginary parts of the GII function for the πN channel, where
we again see the discontinuity of the imaginary part. From Eqs. (C.1.5) and (C.1.11), the
explicit form of the function GII(z) is given as

GII(z) =
2M
16π2

{
a(µ) + ln

M2

µ2
+
m2 −M2 + z2

2z2
ln
m2

M2

+
λ1/2(z)

2z2
[ln(A) + ln(B)− ln(−C)− ln(−D) + 2πi]

}
,

for Re[z] > √s+.
In practical calculations to find poles, we use the most relevant branches for amplitude on

the real axis. The white lines in Figs. C.3 and C.4 indicates the corresponding values. From
these lines, we see that

• below the threshold, the first branch contains the scattering line.

• above the threshold and Imz > 0, the first branch is connected with the scattering line.

• above the threshold and Imz < 0, the second branch is connected with the scattering
line.
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Figure C.5: Diagrammatic expression of the definition of Gpole.

1000
1100

1200

100
0

-100

-10

0

10

20

-10

0

10

20

Re[z] Im[z]
1000

1100
1200

100
0

-100

-20

0

20

-20

0

20

Re[z] Im[z]

Figure C.6: Real and imaginary parts of the Gpole(z) function. Here we plot the loop function
of the πN channel. White line in the figure denotes the values on the scattering line (real
axis).

For this purpose, we define the function Gpole(z) as

Gpole(z) =





GI(z) for Re[z] ≤
√
s+

GI(z) for Re[z] >
√
s+ and Im[z] > 0

GII(z) for Re[z] >
√
s+ and Im[z] < 0

.

The function Gpole is shown schematically in Fig. C.5 and is plotted in Fig. C.6, where we
see that the scattering line is included in the sheet. In this way we search poles in the branch
which is the closest to the scattering line, namely which includes the scattering line.

Finally we consider the third branch, which is defined as

GIII(
√
s+ i0) ≡ GII(

√
s− i0), for

√
s >
√
s+.
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Figure C.7: Diagrammatic representation fo the one-loop for two mesons M , M ′ and one
baryon B with one external current E. Dashed and solid lines represent the mesons and the
baryon respectively.

However, using Eqs. (C.1.9) and (C.1.10), if we go through the unitarity cut once again,

GIII(
√
s+ i0) = GI(

√
s− i0) + iρ(

√
s− i0)

= GI(
√
s+ i0) + iρ(

√
s+ i0) + iρ(

√
s− i0)

= GI(
√
s+ i0)− iρ(√s− i0) + iρ(

√
s− i0)

= GI(
√
s+ i0),

we back to the first branch. This means that there are only two Riemann sheets. Note that
this result is expected from the fact that λ1/2(

√
s) is double-valued function (C.1.9).

C.1.3 A one-loop function for two mesons and one baryon

Let us now consider the one-loop integral including two mesons with masses m and m′,
one baryon with mass M , and one external current with momentum kµ. Using kinematical
variables shown in Fig. C.7, in the frame with Pµ = (

√
s,0), the loop function is given by

G(
√
s, kµ) = i

∫
d4q

(2π)4
1

(q − k)2 − (m′)2 + iε

1
q2 −m2 + iε

M

E

1√
s− q0 −E + iε

,

with on-shell energies of particles are written as

ω =
√
m2 + q2, ω′ =

√
(m′)2 + q2 + k2 − 2|q||k| cos θ, E =

√
M2 + q2,

where θ is the angle between k and q. With these values, the integrand can be written as

G(
√
s, kµ) =i

∫
d4q

(2π)4
1

(q0 − k0)2 − (ω′)2 + iε

1
(q0)2 − ω2 + iε

M

E

1√
s− q0 − E + iε

=i
∫

d4q

(2π)4
1

q0 − k0 − ω′ + iε

1
q0 − k0 + ω′ − iε

× 1
q0 − ω + iε

1
q0 + ω − iε

M

E

1√
s− q0 − E + iε

.

In the lower half plane, we find two poles at q0 = k0 + ω′ − iε and q0 = ω − iε. In this case,
when we take the residue of each one of the poles, we will have a “fallacious pole”, which
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contains +iε− iε, and hence, not well defined. In this case,

G(
√
s, kµ)

=− 2πii
∫

d3q

(2π)4
M

E

×
[ 1
k0 + ω′ − k0 + ω′ − iε

1
k0 + ω′ − ω ± iε

1
k0 + ω′ + ω − iε

1
P 0 − k0 − ω′ − E + iε

+
1

ω − k0 − ω′ ± iε
1

ω − k0 + ω′ − iε
1

ω + ω − iε
1

P 0 − ω −E + iε

]

we have the fallacious pole at k0 +ω′−ω± iε, where we conventionally denote the imaginary
part as ±iε. Since the initial integral is well-defined, the appearance of this pole is only
superficial one, and we will have the same factor in the numerator. Indeed, we obtain

G(
√
s, kµ)

=
∫

d3q

(2π)3
M

E

[ 1
2ω′

1
k0 + ω′ − ω ± iε

1
k0 + ω′ + ω

1
P 0 − k0 − ω′ −E + iε

+
1

ω − k0 − ω′ ± iε
1

ω − k0 + ω′ − iε
1
2ω

1
P 0 − ω −E + iε

]

=
∫

d3q

(2π)3
M

E

[ 1
2ω′

1
k0 + ω′ − ω ± iε

1
k0 + ω′ + ω

1
P 0 − k0 − ω′ −E + iε

+
1

k0 − ω + ω′ ± iε
1

k0 − ω − ω′ + iε

1
2ω

1
P 0 − ω −E + iε

]

=
∫

d3q

(2π)3
M

E

1
2

1
k0 + ω′ − ω ± iε

[ 1
ω′

1
k0 + ω′ + ω

1
P 0 − k0 − ω′ −E + iε

+
1

k0 − ω − ω′ + iε

1
ω

1
P 0 − ω − E + iε

]

=
∫

d3q

(2π)3
M

E

1
2

1
k0 + ω′ − ω ± iε

[ 1
ω′

1
k0 + ω′ + ω

1
P 0 − k0 − ω′ −E + iε

× 1
k0 − ω − ω′ + iε

1
ω

1
P 0 − ω − E + iε

]

× [ω(k0 − ω − ω′)(P 0 − ω −E) + ω′(k0 + ω′ + ω)(P 0 − k0 − ω′ − E)]

=−
∫

d3q

(2π)3
M

E

× 1
2

[ 1
ω′

1
k0 + ω′ + ω

1
P 0 − k0 − ω′ − E + iε

1
k0 − ω − ω′ + iε

1
ω

1
P 0 − ω − E + iε

]

× [(ω + ω′)2 + (E − P 0)(ω + ω′) + ω′k0]

=−
∫

d3q

(2π)3
1
ω′

1
ω

1
2

1
k0 + ω′ + ω

1
k0 − ω′ − ω + iε

× M

E

1
P 0 − ω − E + iε

1
P 0 − k0 − ω′ − E + iε

[
(ω + ω′)2 + (ω + ω′)(E − P 0) + ω′k0

]

=− 1
4π2

∫ 1

−1
d cos θ

∫ qmax

0
dqq2

1
ω′

1
ω

1
2

1
k0 + ω′ + ω

1
k0 − ω′ − ω + iε

× M

E

1
P 0 − ω − E + iε

1
P 0 − k0 − ω′ − E + iε

[
(ω + ω′)2 + (ω + ω′)(E − P 0) + ω′k0

]
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Figure C.8: Diagrammatic representation fo the two-loop for two mesons and one baryon.
Dashed and solid lines represent the mesons and the baryon respectively.

This result was used to calculate the integrals in chapter 7, with appropriate factors in the
numerator.

C.2 Two-loop functions

C.2.1 A two-loop function for two mesons and one baryon

Let us now consider a two-loop function with two meson propagators and one baryon prop-
agator. The masses of the mesons and the baryon are given by m1, m2, and M . We assign
momentum variables as shown in Fig. C.8. In the center of mass frame P = (

√
s,0), the loop

function is given by

G(
√
s) = −

∫
d4q

(2π)4

∫
d4k

(2π)4
1

k2 −m2
1 + iε

1
q2 −m2

2 + iε

M

E

1√
s− k0 − q0 −E + iε

with on-shell energies of particles are written as

ω1 =
√
m2

1 + k2, ω2 =
√
m2

2 + q2, E =
√
M2 + k2 + q2 + 2|k||q| cos θ,

where θ is the angle between k and q. With these values, we calculate the function:

G(
√
s) =−

∫
d4q

(2π)4

∫
d4k

(2π)4
1

k2 −m2
1 + iε

1
q2 −m2

2 + iε

M

E

1√
s− k0 − q0 −E + iε

=− i
∫

d4q

(2π)4

∫
d3k

(2π)3
M

E

1
2ω1

1
q2 −m2

2 + iε

1√
s− ω1 − q0 − E + iε

=
∫

d3q

(2π)3

∫
d3k

(2π)3
M

E

1
2ω1

1
2ω2

1√
s− ω1 − ω2 − E + iε

.

This form corresponds to Eq. (9.3.6) in chapter 9. In practical calculation, we can perform
angular integrals

G(
√
s) =

M

4(2π)6

∫
dΩ1

∫ qmax

0
dqq2

∫
dΩ2

∫ kmax

0
dkk2 1

E

1
ω1

1
ω2

1√
s− ω1 − ω2 −E + iε

=
M

4(2π)6

∫
dΩ1

∫ qmax

0
dqq2

∫
dΩ2

∫ kmax

0
dkk2 1

E

1
ω1

1
ω2

1√
s− ω1 − ω2 −E + iε

=
M

2(2π)4

∫ 1

−1
d cos θ

∫ qmax

0
dq

∫ kmax

0
dk

q2k2

E

1
ω1

1
ω2

1√
s− ω1 − ω2 − E + iε

,

where we left the integration of the cos θ since E depends on it.
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Figure C.9: Diagrammatic representation fo the two-loop for two mesons and one baryon
with an extra propagator of vector meson. Dashed and solid lines represent the mesons and
the baryon respectively.

C.2.2 A two-loop function for two mesons and one baryon with extra prop-
agators

Next we consider the two-loop function studied in the previous subsection with one extra
propagator of vector meson, which is shown in Fig. C.9. The masses of the mesons, the
baryon, and the vector meson are given by m1, m2, M , and mv. We assign momentum
variables as shown in Fig. C.9. As explained in subsection 9.3.2, the imaginary part can be
obtained by multiplying a factor in the loop function (9.3.6). For the real part, in the center
of mass frame P = (

√
s,0), we evaluate the loop function

G(
√
s) =−

∫
d4q

(2π)4

∫
d4k

(2π)4
1

k2 −m2
1 + iε

1
q2 −m2 + iε

× m2
v

(k + q)2 −m2
v + iε

M

E

1√
s− k0 − q0 − E + iε

(C.2.1)

with on-shell energies of particles are written as

ω1 =
√
m2

1 + k2, ω2 =
√
m2

2 + q2,

E =
√
M2 + k2 + q2 + 2|k||q| cos θ, ωv =

√
m2

v + k2 + q2 + 2|k||q| cos θ,

where θ is the angle between k and q. In order to have two extra propagators as in subsec-
tion 9.3.2, we differentiate the factor 1/((k + q)2 −m2

v + iε) in Eq. (C.2.1) with respect to
m2

v.
For later convenience, we transform the variable q0 as

k0 + q0 = Q0, dq0 = dQ0

then calculate the integration

G(
√
s) =−

∫
d3qdQ0

(2π)4

∫
d3k

(2π)4

∫
dk0

1
k2

0 − ω2
1 + iε

1
(Q0 − k0)2 − ω2

2 + iε

× m2
v

Q2
0 − ω2

v + iε

M

E

1√
s−Q0 − E + iε

=−
∫
d3qdQ0

(2π)4

∫
d3k

(2π)4

∫
dk0

1
k2

0 − (ω1 − iε)2
1

(k0 −Q0)2 − (ω2 − iε)2

× m2
v

Q2
0 − ω2

v + iε

M

E

1√
s−Q0 − E + iε

284



C.2. Two-loop functions

=−
∫
d3qdQ0

(2π)4

∫
d3k

(2π)4
m2

v

Q2
0 − ω2

v + iε

M

E

1√
s−Q0 − E + iε

×
∫
dk0

1
k0 − ω1 + iε

1
k0 + ω1 − iε

1
k0 −Q0 − ω2 + iε

1
k0 −Q0 + ω2 − iε .

In the lower half of the k0 plane, we find poles at

k0 = ω1 − iε, Q0 + ω2 − iε

In this case, we again have the fallacious pole. Cancelling the fallacious pole at Q0−ω1 +ω2,
we next search for the poles in Q0 plane;

=−
∫
d3qdQ0

(2π)4

∫
d3k

(2π)4
m2

v

Q2
0 − ω2

v + iε

M

E

1√
s−Q0 − E + iε

× (−2πi)
{

1
ω1 + ω1 − iε

1
ω1 −Q0 − ω2 ± iε

1
ω1 −Q0 + ω2 − iε

+
1

Q0 + ω2 − ω1 ± iε
1

Q0 + ω2 + ω1 − iε
1

Q0 + ω2 −Q0 + ω2 − iε
}

=i
∫
d3qdQ0

(2π)4

∫
d3k

(2π)3
m2

v

Q2
0 − ω2

v + iε

M

E

1√
s−Q0 −E + iε

×
{

1
ω1 + ω1 − iε

1
ω1 −Q0 − ω2 ± iε

1
ω1 −Q0 + ω2 − iε

+
1

Q0 + ω2 − ω1 ± iε
1

Q0 + ω2 + ω1 − iε
1

Q0 + ω2 −Q0 + ω2 − iε
}

=i
∫
d3qdQ0

(2π)4

∫
d3k

(2π)3
m2

v

Q2
0 − ω2

v + iε

M

E

1√
s−Q0 −E + iε

×
{

1
2ω1

1
ω1 −Q0 − ω2 ± iε

1
ω1 −Q0 + ω2 − iε +

1
Q0 + ω2 − ω1 ± iε

1
Q0 + ω2 + ω1 − iε

1
2ω2

}

=i
∫
d3qdQ0

(2π)4

∫
d3k

(2π)3
m2

v

Q2
0 − ω2

v + iε

M

E

1√
s−Q0 −E + iε

×
{

1
2

1
Q0 − ω1 + ω2 ± iε

1
ω1

1
Q0 − ω1 − ω2 + iε

+
1
2

1
Q0 − ω1 + ω2 ± iε

1
Q0 + ω2 + ω1 − iε

1
ω2

}

=i
∫
d3qdQ0

(2π)4

∫
d3k

(2π)3
m2

v

Q2
0 − ω2

v + iε

M

E

1√
s−Q0 −E + iε

× 1
2

1
Q0 − ω1 + ω2 ± iε

{
1
ω1

1
Q0 − ω1 − ω2 + iε

+
1

Q0 + ω2 + ω1 − iε
1
ω2

}

=i
∫
d3qdQ0

(2π)4

∫
d3k

(2π)3
m2

v

Q2
0 − ω2

v + iε

M

E

1√
s−Q0 −E + iε

× 1
2

1
Q0 − ω1 + ω2 ± iε

1
ω1

1
ω2

1
Q0 − ω1 − ω2 + iε

1
Q0 + ω2 + ω1 − iε

× {ω1(Q0 − ω1 − ω2 + iε) + ω2(Q0 + ω2 + ω1 − iε)}
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=i
∫
d3qdQ0

(2π)4

∫
d3k

(2π)3
m2

v

Q2
0 − ω2

v + iε

M

E

1√
s−Q0 − E + iε

× 1
2

1
ω1

1
ω2

1
Q0 − ω1 + ω2 ± iε

1
Q0 − ω1 − ω2 + iε

1
Q0 + ω2 + ω1 − iε

× {ω1Q0 − ω2
1 − ω1ω2 + ω2Q0 + ω2

2 + ω2ω1 ± iε}

=i
∫
d3qdQ0

(2π)4

∫
d3k

(2π)3
m2

v

Q2
0 − ω2

v + iε

M

E

1√
s−Q0 − E + iε

× 1
2

1
ω1

1
ω2

1
Q0 − ω1 + ω2 ± iε

1
Q0 − ω1 − ω2 + iε

1
Q0 + ω2 + ω1 − iε

× {(ω1 + ω2)Q0 + (ω2 − ω1)(ω2 + ω1)± iε}

=i
∫
d3qdQ0

(2π)4

∫
d3k

(2π)3
m2

v

Q2
0 − ω2

v + iε

M

E

1√
s−Q0 − E + iε

× 1
2

1
ω1

1
ω2

1
Q0 − ω1 + ω2 ± iε

1
Q0 − ω1 − ω2 + iε

1
Q0 + ω2 + ω1 − iε

× (ω2 − ω1 +Q0 ± iε)(ω2 + ω1)

=i
∫
d3qdQ0

(2π)4

∫
d3k

(2π)3
m2

v

Q2
0 − ω2

v + iε

M

E

1√
s−Q0 − E + iε

× 1
2
ω1 + ω2

ω1ω2

1
Q0 − ω1 − ω2 + iε

1
Q0 + ω2 + ω1 − iε

=i
∫

d3q

(2π)4

∫
d3k

(2π)3
1
2
ω1 + ω2

ω1ω2

Mm2
v

E

×
∫
dQ0

1
Q0 − ωv + iε

1
Q0 + ωv − iε

−1
Q0 −

√
s+E − iε

1
Q0 − ω1 − ω2 + iε

1
Q0 + ω2 + ω1 − iε

=i
∫

d3q

(2π)4

∫
d3k

(2π)3
1
2
ω1 + ω2

ω1ω2

Mm2
v

E

×
∫
dQ0

1
Q0 − ωv + iε

1
Q0 + ωv − iε

−1
Q0 −

√
s+E − iε

1
Q0 − ω1 − ω2 + iε

1
Q0 + ω2 + ω1 − iε ,

and found at

Q0 = ωv − iε, ω1 + ω2 − iε

Picking up these poles, and cancelling another fallacious pole at ωv−ω1−ω2, we finally arrive
at

=− i
∫

d3q

(2π)4

∫
d3k

(2π)3
1
2
ω1 + ω2

ω1ω2

Mm2
v

E

× (−2πi)
{

1
ωv + ωv − iε

1
ωv −

√
s+E − iε

1
ωv − ω1 − ω2 ± iε

1
ωv + ω2 + ω1 − iε

+
1

ω1 + ω2 − ωv ± iε
1

ω1 + ω2 + ωv − iε
1

ω1 + ω2 −
√
s+E − iε

1
ω1 + ω2 + ω2 + ω1 − iε

}
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=−
∫

d3q

(2π)3

∫
d3k

(2π)3
1
2
ω1 + ω2

ω1ω2

Mm2
v

E

×
{

1
2

1
ωv − ω1 − ω2 ± iε

1
ωv + ω1 + ω2 − iε

1
ωv

1
ωv −

√
s+ E − iε

−1
2

1
ωv − ω1 − ω2 ± iε

1
ωv + ω1 + ω2 − iε

1
ω1 + ω2 −

√
s+E − iε

1
ω1 + ω2

}

=−
∫

d3q

(2π)3

∫
d3k

(2π)3
1
2
ω1 + ω2

ω1ω2

Mm2
v

E

1
2

1
ωv − ω1 − ω2 ± iε

1
ωv + ω1 + ω2 − iε

×
{

1
ωv

1
ωv −

√
s+ E − iε −

1
ω1 + ω2 −

√
s+E − iε

1
ω1 + ω2

}

=−
∫

d3q

(2π)3

∫
d3k

(2π)3
1
2
ω1 + ω2

ω1ω2

Mm2
v

E

1
2

1
ωv − ω1 − ω2 ± iε

1
ωv + ω1 + ω2 − iε

× (ω1 + ω2)(ω1 + ω2 −
√
s+E − iε)− ωv(ωv −

√
s+ E − iε)

ωv(ωv −
√
s+ E − iε)(ω1 + ω2 −

√
s+ E − iε)(ω1 + ω2)

=−
∫

d3q

(2π)3

∫
d3k

(2π)3
1
2
ω1 + ω2

ω1ω2

Mm2
v

E

1
2

1
ωv − ω1 − ω2 ± iε

1
ωv + ω1 + ω2 − iε

× (ω1 + ω2)2 + (ω1 + ω2)(−
√
s+ E)− ω2

v − ωv(−
√
s+ E)± iε

ωv(ωv −
√
s+ E − iε)(ω1 + ω2 −

√
s+ E − iε)(ω1 + ω2)

=−
∫

d3q

(2π)3

∫
d3k

(2π)3
1
2
ω1 + ω2

ω1ω2

Mm2
v

E

1
2

1
ωv − ω1 − ω2 ± iε

1
ωv + ω1 + ω2 − iε

× (ω1 + ω2 + ωv)(ω1 + ω2 − ωv) + (ω1 + ω2 − ωv)(−
√
s+E)± iε

ωv(ωv −
√
s+E − iε)(ω1 + ω2 −

√
s+ E − iε)(ω1 + ω2)

=−
∫

d3q

(2π)3

∫
d3k

(2π)3
1
2
ω1 + ω2

ω1ω2

Mm2
v

E

1
2

1
ωv − ω1 − ω2 ± iε

1
ωv + ω1 + ω2 − iε

× (ω1 + ω2 + ωv −
√
s+E)(ω1 + ω2 − ωv ± iε)

ωv(ωv −
√
s+E − iε)(ω1 + ω2 −

√
s+ E − iε)(ω1 + ω2)

=
1
4

∫
d3q

(2π)3

∫
d3k

(2π)3
1

ω1ω2ωv

1
ωv + ω1 + ω2

Mm2
v

E

× (ω1 + ω2 + ωv −
√
s+E)

(
√
s− ωv − E + iε)(

√
s− ω1 − ω2 − E + iε)

,

which corresponds to Eq. (9.3.10) by differentiating in terms of m2
v and taking the principle

value.
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Appendix D

Flavor SU(3) coefficients

In this chapter we summarize the flavor SU(3) coefficients used in this thesis. First we classify
the meson-baryon channels in particle and isospin bases, and then show the explicit forms of
the flavor coefficients. Coefficients for the interaction including antidecuplet is then displayed.

D.1 Classification of meson-baryon channels

Here we classify meson-baryon channels in terms of the conserved quantum numbers. There
are 64 meson-baryon channels when we consider scatterings of octet mesons and octet baryons.
They are coupled within the sectors in which the channels have the same flavor quantum
number.

D.1.1 Conservation of quantum numbers

Since we are considering the strong interaction, there are conserved quantum numbers. The
channels of the meson-baryon scatterings are specified by two quantum numbers, the hyper-
charge Y and the third component of isospin I3, or equivalently the strangeness S and the
electric charge Q, through the Gell-Mann–Nakano–Nishijima relation [655, 656]

Q = T3 +
Y

2
, S = Y −B,

where the baryon number B = 1 for the meson-baryon scatterings. In Table D.1, all channels
of octet mesons and octet baryons are classified in terms of quantum numbers. The channels
with the same quantum numbers can couple each other.

D.1.2 Basis transformation

In Table D.1, we show the meson-baryon channels in particle basis. It is also useful to express
them in isospin basis using the SU(2) Clebsch-Gordan coefficients. We define particle basis
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Appendix D. Flavor SU(3) coefficients

Table D.1: Channels of meson-baryon scatterings in particle basis.

Y S I3 Q channels
−2 −3 1 0 K̄0Ξ0

0 −1 K−Ξ0, K̄0Ξ−

−1 −2 K−Ξ−

−1 −2 3
2 1 π+Ξ0, K̄0Σ+

1
2 0 π0Ξ0, π+Ξ−, ηΞ0, K̄0Λ, K̄0Σ0, K−Σ+

−1
2 −1 π0Ξ−, π−Ξ0, ηΞ−, K−Λ, K−Σ0, K̄0Σ−

−3
2 −2 π−Ξ−, K−Σ−

0 −1 2 2 π+Σ+

1 1 K̄0p, π0Σ+, π+Σ0, π+Λ, ηΣ+, K+Ξ0

0 0 K−p, K̄0n, π0Λ, π0Σ0, ηΛ, ηΣ0, π+Σ−, π−Σ+, K+Ξ−, K0Ξ0

−1 −1 K−n, π0Σ−, π−Σ0, π−Λ, ηΣ−, K0Ξ−

−2 −2 π−Σ−

1 0 3
2 2 π+p, K+Σ+

1
2 1 π0p, π+n, ηp, K+Λ, K+Σ0, K0Σ+

−1
2 0 π0n, π−p, ηn, K0Λ, K0Σ0, K+Σ−

−3
2 −1 π−n, K0Σ−

2 1 1 2 K+p
0 1 K+n, K0p
−1 0 K0n

(P ) and isospin basis (I) as

(P ) ≡




channel 1 in particle basis
channel 2 in particle basis

·
·
·
·
·




, (I) ≡




channel 1 with I1 in isospin basis
channel 2 with I1 in isospin basis

·
channel 1 with I2 in isospin basis
channel 2 with I2 in isospin basis

·
·




.

where Ii means each values of total isospin I. The numbers of the channels in (P ) and (I)
are the same. In Table D.2 the channels in isospin basis are shown.

Now we define the transformation matrix (Ω) between the particle basis and the isospin
basis as

(I) ≡ (Ω) · (P ), (P ) = (Ω)−1 · (I).

The components of Ω is determined by the SU(2) Clebsch-Gordan coefficients and suitable
phase conventions of the fields. Mathematically, this is a transformation between bases of
finite dimension complex vector space, therefore, it is expressed by a unitary matrix in order
to conserve the norm of basis;

Ω−1 = Ω†.
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Table D.2: Channels of meson-baryon scatterings in isospin basis. The number in the bracket
denotes the total isospin I.

Y S channels
−2 −3 K̄Ξ(1)

K̄Ξ(0), K̄Ξ(1)
K̄Ξ(1)

−1 −2 πΞ(3/2), K̄Σ(3/2)
πΞ(1/2), ηΞ(1/2), K̄Λ(1/2), K̄Σ(1/2), πΞ(3/2), K̄Σ(3/2)
πΞ(1/2), ηΞ(1/2), K̄Λ(1/2), K̄Σ(1/2), πΞ(3/2), K̄Σ(3/2)
πΞ(3/2), K̄Σ(3/2)

0 −1 πΣ(2)
K̄N(1), πΣ(1), πΛ(1), ηΣ(1), KΞ(1), πΣ(2)
K̄N(0), πΣ(0), ηΛ(0), KΞ(0), K̄N(1), πΣ(1), πΛ(1), ηΣ(1), KΞ(1), πΣ(2)
K̄N(1), πΣ(1), πΛ(1), ηΣ(1), KΞ(1), πΣ(2)
πΣ(2)

1 0 πN(3/2), KΣ(3/2)
πN(1/2), ηN(1/2), KΛ(1/2), KΣ(1/2), πN(3/2), KΣ(3/2)
πN(1/2), ηN(1/2), KΛ(1/2), KΣ(1/2), πN(3/2), KΣ(3/2)
πN(3/2), KΣ(3/2)

2 1 KN(1)
KN(0), KN(1)
KN(1)

In practice, since the all elements of Ω are Clebsch-Gordan coefficients and hence the real
numbers, so that it becomes an orthogonal matrix Ω−1 = Ωt, where the superscript t denotes
transpose of matrices.

Relation between a matrix M (for example, Cij coefficients or the T-matrix) in (P ) basis
and (I) basis is

(I)t ·M I · (I) = (P )t ·MP · (P ) = (I)t · (Ω) ·MP · (Ω)−1 · (I).

So we have relations

M I = (Ω) ·MP · (Ω)−1 MP = (Ω)−1 ·M I · (Ω).

In this way we can change basis for any matrices. The form of these basis and Ω are given
explicitly as follows. For instance, for S = −1, T3 = 0 channel,

(P )t ≡ (
K−p K̄0n π0Λ π0Σ0 ηΛ ηΣ0 π+Σ− π−Σ+ K+Ξ− K0Ξ0

)

(I)t ≡ (
K̄N(0) πΣ(0) ηΛ(0) KΞ(0) K̄N(1) πΣ(1) πΛ(1) ηΣ(1) KΞ(1) πΣ(2)

)
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(Ω) =




√
1
2

√
1
2 0 0 0 0 0 0 0 0

0 0 0 −
√

1
3 0 0 −

√
1
3 −

√
1
3 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 −
√

1
2 −

√
1
2

−
√

1
2

√
1
2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −
√

1
2

√
1
2 0 0

0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 −
√

1
2

√
1
2

0 0 0 2√
6

0 0 −
√

1
6 −

√
1
6 0 0




and for the S = 0, T3 = −1/2 channel,

(P )t ≡ (
π0n π−p ηn K0Λ K0Σ0 K+Σ−

)

(I)t ≡ (
πN(1/2) ηN(1/2) KΛ(1/2) KΣ(1/2) πN(3/2) KΣ(3/2)

)

(Ω) =




√
1
3 −

√
2
3 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 0
√

1
3 −

√
2
3√

3
2

√
1
3 0 0 0 0

0 0 0 0
√

3
2

√
1
3




As in the same way, the transformation to the SU(3) basis can be obtained, using the SU(3)
Clebsch-Gordan coefficients [649].

D.2 Coefficients for meson-baryon interactions

We summarize the coefficients of meson-baryon vertex obtained from the Lagrangian of the
chiral perturbation theory. Here we show the coefficients of the Weinberg-Tomozawa (WT)
terms, flavor SU(3) breaking terms and the photon coupling terms. Tables of specific channels
which we have used in this thesis are presented.

D.2.1 Lagrangians and amplitudes

The interaction Lagrangians corresponding to the meson-baryon scattering are given by

LWT =
1

4f2
Tr

(
B̄iγµ [(Φ∂µΦ− ∂µΦΦ), B]

)
,

L(2)
SB =

Z0

4f2
Tr

(
dmB̄

{
(2ΦmΦ + Φ2m + mΦ2), B

}
+ fmB̄

[
(2ΦmΦ + Φ2m + mΦ2), B

])

+
Z1

f2
Tr(B̄B)Tr(mΦ2) ,
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Table D.3: DZ1
i coefficients.

meson π K, K̄ η

DZ1
i 2m̂ m̂+ms

2
3(m̂+ 2ms)

LMB
(γ) =− i

4MP
bF6 Tr

(
B̄[Sµ, Sν ][F+

µν , B]
)− i

4MP
bD6 Tr

(
B̄[Sµ, Sν ]{F+

µν , B}
)
.

From these terms, the amplitude at tree level are given by

V
(WT )
ij =− Cij

4f2
(2
√
s−Mi −Mj)

√
Ei +Mi

2Mi

√
Ej +Mj

2Mj
,

V
(SB)
ij =− 1

f2

[
Z0

(
(Ad

ijdm +Af
ijfm)m̂+ (Bd

ijdm +Bf
ijfm)ms

)
+ Z1δijD

Z1
i

]

×
√
Ei +Mi

2Mi

√
Ej +Mj

2Mj
, (D.2.1)

VMMBBγ
ij =ie

σ × q
2Mp

· ε 1
2f2

[Xijb
D
6 + Yijb

F
6 ].

where we have applied the nonrelativistic reduction to the amplitudes. The coefficients C,
A, B, D, X and Y are the numbers in matrix form and the indices (i, j) denote the channels
of the meson-baryon scatterings as shown in Table D.1.

The coefficient DZ1
i is specified only by the meson in channel i independently of baryons,

because Tr(B̄B) in the last term of Eq. (D.2.1) gives a common contribution to all baryons.
Also, there is no off-diagonal component when the isospin symmetry is assumed. The explicit
form of DZ1

i is shown in Table D.3.
The values of the coefficients C (WT interactions) are shown in the following tables;

• Table D.4 (S = 0 Isospin basis)

• Table D.5 (S = 0, Q = 0)

• Table D.6 (S = 0, Q = 1)

• Table D.7 (S = −1 Isospin basis)

• Table D.8 (S = 0, Q = 0).

The values of the coefficients A and B (flavor SU(3) breaking interactions) are shown in
the following tables;

• Tables D.9 and D.10 (S = 0, Q = 0)

• Tables D.11,D.12, D.13 and D.14 (S = −1, Q = 0).

The values of the coefficients X and Y (photon coupling interactions) are shown in the
following tables;
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Appendix D. Flavor SU(3) coefficients

Table D.4: Cij(S = 0) in isospin basis.

S = 0 I = 1
2 I = 3

2
πN ηN KΛ KΣ πN KΣ

I = 1
2 πN 2 0 3

2
1
2

ηN 0 −3
2

3
2

KΛ 0 0
KΣ 2

I = 3
2 πN −1 −1

KΣ −1

Table D.5: Cij(S = 0, Q = 0) in particle basis.

π0n π−p ηn K0Λ K0Σ0 K+Σ−

π0n 0 −√2 0
√

3
2 −1

2 − 1√
2

π−p 1 0 −
√

3
2 − 1√

2
0

ηn 0 −3
2

√
3

2 −
√

3
2

K0Λ 0 0 0
K0Σ0 0 −√2
K+Σ− 1

Table D.6: Cij(S = 0, Q = 1) in particle basis.

π0p π+n ηp K+Λ K+Σ0 K0Σ+

π0p 0
√

2 0 −
√

3
2 −1

2
1√
2

π+n 1 0 −
√

3
2

1√
2

0

ηp 0 −3
2 −

√
3

2 −
√

3
2

K+Λ 0 0 0
K+Σ0 0

√
2

K0Σ+ 1

• Table D.15 (S = 0, Q = 0)

• Table D.16 (S = 0, Q = 1)

• Tables D.17 and D.18 (S = −1, Q = 0).

D.2.2 Relations among coefficients

There are two symmetry relations among coefficients. Using these relations, we can derive
the coefficients which are not shown explicitly in the tables.

First, the channels, which have the same strangeness S and different charge Q, are related
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D.2. Coefficients for meson-baryon interactions

Table D.7: Cij(S = −1) in Isospin basis.

S = −1 I = 0 I = 1 I = 2
K̄N πΣ ηΛ KΞ K̄N πΣ πΛ ηΣ KΞ πΣ

I = 0 K̄N 3 −
√

3
2

3√
2

0

πΣ 4 0
√

3
2

ηΛ 0 − 3√
2

KΞ 3

I = 1 K̄N 1 −1 −
√

3
2 −

√
3
2 0

πΣ 2 0 0 1

πΛ 0 0 −
√

3
2

ηΣ 0 −
√

3
2

KΞ 1
I = 2 πΣ −2

Table D.8: Cij(S = −1, Q = 0) in particle basis.

K−p K̄0n π0Λ π0Σ0 ηΛ ηΣ0 π+Σ− π−Σ+ K+Ξ− K0Ξ0

K−p 2 1
√

3
2

1
2

3
2

√
3

2 0 1 0 0
K̄0n 2 −

√
3

2
1
2

3
2 −

√
3

2 1 0 0 0
π0Λ 0 0 0 0 0 0

√
3

2 −
√

3
2

π0Σ0 0 0 0 2 2 1
2

1
2

ηΛ 0 0 0 0 3
2

3
2

ηΣ0 0 0 0
√

3
2 −

√
3

2
π+Σ− 2 0 1 0
π−Σ+ 2 0 1
K+Ξ− 2 1
K0Ξ0 2

through the SU(2) Clebsch-Gordan coefficients due to the isospin symmetry. This relation
is valid for the WT interactions and the SU(3) breaking interactions because they do not
break the isospin symmetry. This is the relation among the channels in the block separated
by the horizontal lines in Table D.1.

Second, the coefficients of the sector (Y, I3) are related with those of (−Y,−I3). Let us
consider the channels (i, j) and (i′, j′) in the sectors (Y, I3) and (−Y,−I3), respectively, as
shown in Table D.19. Then the coefficients of the sector (−Y,−I3) are given by

Ci′j′(−Y,−I3) = Cij(Y, I3),

Ad
i′j′(−Y,−I3) = Ad

ij(Y, I3), Af
i′j′(−Y,−I3) = −Af

ij(Y, I3),

Bd
i′j′(−Y,−I3) = Bd

ij(Y, I3), Bf
i′j′(−Y,−I3) = −Bf

ij(Y, I3),

Xi′j′(−Y,−I3) = Xij(Y, I3), Yi′j′(−Y,−I3) = −Yij(Y, I3).

(D.2.2)
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Appendix D. Flavor SU(3) coefficients

Table D.9: Ad
ij and Af

ij(S = 0, Q = 0).

Ad
ij Af

ij

π0n π−p ηn K0Λ K0Σ0 K+Σ− π0n π−p ηn K0Λ K0Σ0 K+Σ−

π0n 1 0 − 1√
3

√
3

8
3
8

3
4
√

2
1 0 − 1√

3
3
√

3
8 −3

8 − 3
4
√

2

π−p 1
√

2
3 −

√
6

8
3

4
√

2
0 1

√
2
3 −3

√
6

8 − 3
4
√

2
0

ηn 1
3 − 1

24 − 1
8
√

3
1

4
√

6
1
3 −1

8
1

8
√

3
− 1

4
√

6

K0Λ 5
6 − 1

2
√

3
1√
6

0 0 0
K0Σ0 1

2 0 0 1√
2

K+Σ− 1
2 −1

2

Table D.10: Bd
ij and Bf

ij(S = 0, Q = 0).

Bd
ij Bf

ij

π0n π−p ηn K0Λ K0Σ0 K+Σ− π0n π−p ηn K0Λ K0Σ0 K+Σ−

π0n 0 0 0 1
8
√

3
1
8

1
4
√

2
0 0 0

√
3

8 −1
8 − 1

4
√

2

π−p 0 0 − 1
4
√

6
1

4
√

2
0 0 0 −

√
6

8 − 1
4
√

2
0

ηn 4
3

5
24

5
8
√

3
− 5

4
√

6
−4

3
5
8 − 5

8
√

3
5

4
√

6

K0Λ 5
6 − 1

2
√

3
1√
6

0 0 0
K0Σ0 1

2 0 0 1√
2

K+Σ− 1
2 −1

2

Table D.11: Ad
ij(S = −1, Q = 0).

K−p K̄0n π0Λ π0Σ0 ηΛ ηΣ0 π+Σ− π−Σ+ K+Ξ− K0Ξ0

K−p 1 1
2 −

√
3

8
3
8 − 1

24
1

8
√

3
0 3

4 0 0

K̄0n 1
√

3
8

3
8 − 1

24 − 1
8
√

3
3
4 0 0 0

π0Λ 2
3 0 0 2

3 0 0 −
√

3
8

√
3

8
π0Σ0 2 2

3 0 0 0 3
8

3
8

ηΛ 2
9 0 2

3
2
3 − 1

24 − 1
24

ηΣ0 2
3 0 0 1

8
√

3
− 1

8
√

3

π+Σ− 2 0 3
4 0

π−Σ+ 2 0 3
4

K+Ξ− 1 1
2

K0Ξ0 1
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D.2. Coefficients for meson-baryon interactions

Table D.12: Af
ij(S = −1, Q = 0).

K−p K̄0n π0Λ π0Σ0 ηΛ ηΣ0 π+Σ− π−Σ+ K+Ξ− K0Ξ0

K−p 0 1
2 −3

√
3

8 −3
8 −1

8 − 1
8
√

3
0 −3

4 0 0

K̄0n 0 3
√

3
8 −3

8 −1
8

1
8
√

3
−3

4 0 0 0

π0Λ 0 0 0 0 0 0 3
√

3
8 −3

√
3

8
π0Σ0 0 0 0 0 0 3

8
3
8

ηΛ 0 0 0 0 1
8

1
8

ηΣ0 0 2√
3

− 2√
3

1
8
√

3
− 1

8
√

3

π+Σ− 0 0 3
4 0

π−Σ+ 0 0 3
4

K+Ξ− 0 −1
2

K0Ξ0 0

Table D.13: Bd
ij(S = −1, Q = 0).

K−p K̄0n π0Λ π0Σ0 ηΛ ηΣ0 π+Σ− π−Σ+ K+Ξ− K0Ξ0

K−p 1 1
2 − 1

8
√

3
1
8

5
24 − 5

8
√

3
0 1

4 0 0
K̄0n 1 1

8
√

3
1
8

5
24

5
8
√

3
1
4 0 0 0

π0Λ 0 0 0 0 0 0 − 1
8
√

3
1

8
√

3

π0Σ0 0 0 0 0 0 1
8

1
8

ηΛ 16
9 0 0 0 5

24
5
24

ηΣ0 0 0 0 − 5
8
√

3
5

8
√

3

π+Σ− 0 0 1
4 0

π−Σ+ 0 0 1
4

K+Ξ− 1 1
2

K0Ξ0 1

Table D.14: Bf
ij(S = −1, Q = 0).

K−p K̄0n π0Λ π0Σ0 ηΛ ηΣ0 π+Σ− π−Σ+ K+Ξ− K0Ξ0

K−p 0 1
2 −

√
3

8 −1
8

5
8

5
8
√

3
0 −1

4 0 0

K̄0n 0
√

3
8 −1

8
5
8 − 5

8
√

3
−1

4 0 0 0

π0Λ 0 0 0 0 0 0
√

3
8 −

√
3

8
π0Σ0 0 0 0 0 0 1

8
1
8

ηΛ 0 0 0 0 −5
8 −5

8
ηΣ0 0 0 0 − 5

8
√

3
5

8
√

3

π+Σ− 0 0 1
4 0

π−Σ+ 0 0 1
4

K+Ξ− 0 −1
2

K0Ξ0 0
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Appendix D. Flavor SU(3) coefficients

Table D.15: Xij , Yij(S = 0, Q = 0).

Xij Yij

π0n π−p ηn K0Λ K0Σ0 K+Σ− π0n π−p ηn K0Λ K0Σ0 K+Σ−

π0n 0 1√
2

0 0 0 1
2
√

2
0 1√

2
0 0 0 − 1

2
√

2

π−p −1 0 1
2
√

6
− 1

2
√

2
0 −1 0

√
6

4
1

2
√

2
0

ηn 0 0 0
√

6
4 0 0 0 −

√
6

4
K0Λ 0 0 − 1√

6
0 0 0

K0Σ0 0 0 0 − 1√
2

K+Σ− −1 1

Table D.16: Xij , Yij(S = 0, Q = 1).

Xij Yij

π0p π+n ηp K+Λ K+Σ0 K0Σ+ π0p π+n ηp K+Λ K+Σ0 K0Σ+

π0p 0 1√
2

0 − 1
4
√

3
1
4 0 0 1√

2
0 −

√
3

4 −1
4 0

π+n 1 0 − 1√
6

− 1√
2

0 1 0 −
√

3
2

1√
2

0

ηp 0 −1
4

√
3

4 0 0 −3
4 −

√
3

4 0
K+Λ 1 − 1√

3
− 1√

6
0 0 0

K+Σ0 −1 0 0 1√
2

K0Σ+ 0 0

Table D.17: Xij(S = −1, Q = 0).

K−p K̄0n π0Λ π0Σ0 ηΛ ηΣ0 π+Σ− π−Σ+ K+Ξ− K0Ξ0

K−p 0 −1
2 − 1

4
√

3
1
4 −1

4
3

4
√

3
0 1 0 0

K̄0n 0 0 0 0 0 −1
2 0 0 0

π0Λ 0 0 0 0 1√
3

1√
3

− 1
4
√

3
0

π0Σ0 0 0 0 0 0 1
4 0

ηΛ 0 0 0 0 −1
4 0

ηΣ0 0 0 0 3
4
√

3
0

π+Σ− 0 0 1 0
π−Σ+ 0 0 −1

2
K+Ξ− 0 −1

2
K0Ξ0 0
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D.3. Coefficients for interactions including antidecuplet

Table D.18: Yij(S = −1, Q = 0).

K−p K̄0n π0Λ π0Σ0 ηΛ ηΣ0 π+Σ− π−Σ+ K+Ξ− K0Ξ0

K−p −2 −1
2 − 3

4
√

3
−1

4 −3
4 − 3

4
√

3
0 −1 0 0

K̄0n 0 0 0 0 0 1
2 0 0 0

π0Λ 0 0 0 0 0 0 3
4
√

3
0

π0Σ0 0 0 0 1 −1 1
4 0

ηΛ 0 0 0 0 3
4 0

ηΣ0 0 0 0 3
4
√

3
0

π+Σ− 2 0 1 0
π−Σ+ −2 0 −1

2
K+Ξ− 2 1

2
K0Ξ0 0

Table D.19: Quantum numbers of channels i, j, i′ and j′

channel hypercharge third component of isospin
meson baryon total meson baryon total

i yi Y − yi Y i3i I3 − i3i I3
j yj Y − yj Y i3j I3 − i3j I3
i′ −yi −Y + yi −Y −i3i −I3 + i3i −I3
j′ −yj −Y + yj −Y −i3j −I3 + i3j −I3

Also, using the relation (D.2.2), the coefficients of the sector (S = −2, Q = 0) are obtained
from the tables of the sector (S = 0, Q = 0). For example, if we specify (i, j) to be (π0n,K0Λ),
the corresponding (i′, j′) is (π0Ξ0, K̄0Λ). The coefficients for (i′, j′) are obtained by Ad

i′j′ =√
3/8, Af

i′j′ = −3
√

3/8, Bd
i′j′ = 1/(8

√
3) and Bf

i′j′ = −√3/8.

D.3 Coefficients for interactions including antidecuplet

Now we consider the system including antidecuplet baryons used in chapter 9. First we
present the flavor coefficients in the particle basis, and then show the weight factors used in
the self-energy calculations.

D.3.1 Flavor coefficients for PBMM vertices

This appendix contains the flavor coefficients for the tree-level vertices in the four interaction
Lagrangians, which are given by

L8s =
g8s

2f
P̄ijkε

lmkφl
aφa

iBm
j + h.c.,

L8a =i
g8a

4f2
P̄ijkε

lmkγµ(∂µφl
aφa

i − φl
a∂µφa

i)Bm
j + h.c.,
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Appendix D. Flavor SU(3) coefficients

Table D.20: The C(j)
B,m1,m2

flavor coefficients for the vertex with Θ+
10

, octet baryons, and two
octet mesons.

P BMM 8s 8a 27 M

Θ+
10

pK+π− −√6 −√6 4
√

6
5 −√6m2

K+m2
π

2f2

pK0π0
√

3
√

3 −4
√

3
5

√
3m2

K+m2
π

2f2

pK0η 1 −3 36
5

5m2
K−3m2

π

2f2

nK+π0
√

3
√

3 −4
√

3
5

√
3m2

K+m2
π

2f2

nK+η −1 3 −36
5 −5m2

K−3m2
π

2f2

nK0π+
√

6
√

6 −4
√

6
5

√
6m2

K+m2
π

2f2

Σ+K0K0 - - −4
√

6 -
Σ0K0K+ - - −8

√
3 -

Σ−K+K+ - - 4
√

6 -

L27 =
g27

2f

[
4P̄ijkε

lbkφl
iφa

jBb
a − 4

5
P̄ijkε

lbkφl
aφa

jBb
i
]

+ h.c.,

LM =
gM

2f
P̄ijkε

lmk

[
− 1

2f2
(2φMφ+ φφM +Mφφ)

]

l

iBm
j + h.c..

These Lagrangians provide the tree-level amplitude
(
F (j)C

(j)
P,B,m1,m2

)
|t(j)|2

(
F (j)C

(j)
P,B,m1,m2

)
,

with

|t(j)|2 =1 for j = 8s, 27,M,

|tχ|2 =
(ω1ω2 − k · q)2

4f4
,

|t8a|2 =
1

2M

{
(E +M)(ω1 − ω2)2 + 2(|k|2 − |q|2)(ω1 − ω2) + (E −M)(k − q)2

}
,

and factors are given by

F 8s =
g8s

2f
, F 8a =

g8a

4f2
, F 27 =

g27

2f
, Fχ =

gχ

2f
, FM =

gM

2f
.

Note that the coefficients for Lχ is the same as those for L8s. The coefficients C(j)
P,B,m1,m2

for
Θ10, N10, Σ10, and Ξ10 are shown in Tables D.20, D.21, D.22,and D.23, respectively.

D.3.2 Self-energy formulae

Below are the formulae for calculating the self-energies as described in Eq. (9.3.1). In the
isospin symmetric limit,

Σ(j)
P =

(
F (j)

)2 ∑
α

I(j)(α)D(j)
P,α,
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D.3. Coefficients for interactions including antidecuplet

Table D.21: The C(j)
B,m1,m2

flavor coefficients for the vertex with N+
10

, octet baryons, and two
octet mesons. Coefficients for N0

10
are obtained by using isospin symmetry.

P BMM 8s 8a 27 M

N+
10

pK+K− −√2 −√2 4
√

2
5 −√2m2

K
f2

pK0K̄0 - −2
√

2 4
√

2 -
pπ0π0 1√

2
- −2

√
2

5
1√
2

m2
π

f2

pπ+π−
√

2
√

2 −4
√

2
5

√
2m2

π
f2

pηη − 1√
2

- −18
√

2
5 − 1√

2

8m2
K−5m2

π

3f2

pηπ0 −
√

2
3 - 8

√
6

5 −
√

2
3

m2
π

f2

nK̄0K+ −√2 −√2 −16
√

2
5 −√2m2

K
f2

nπ+η − 2√
3

- 16
√

3
5 − 2√

3

m2
π

f2

nπ+π0 - −2 - -

ΛK+π0 −
√

3
2 −

√
3
2

2
√

6
5 −

√
3
2

m2
K+m2

π

2f2

ΛK+η 1√
2

− 3√
2

18
√

2
5

1√
2

5m2
K−3m2

π

2f2

ΛK0π+ −√3 −√3 4
√

3
5 −√3m2

K+m2
π

2f2

Σ+K+π−
√

2
√

2 −4
√

2
5

√
2m2

K+m2
π

2f2

Σ+K0η − 1√
3

√
3 28

√
3

5 − 1√
3

5m2
K−3m2

π

2f2

Σ+K0π0 −1 −1 −36
5 −m2

K+m2
π

2f2

Σ0K+π0 1√
2

1√
2

−22
√

2
5

1√
2

m2
K+m2

π

2f2

Σ0K0π+ 1 1 36
5

m2
K+m2

π

2f2

Σ0K+η − 1√
6

√
3
2

14
√

6
5 − 1√

6

5m2
K−3m2

π

2f2

Σ−K+π+ - - −8
√

2 -
Ξ−K+K+ - - 4

√
2 -

Ξ0K+K0 - - 4
√

2 -

with α being the BMM channel in the isospin basis, such as NKπ, NKη, etc., and D(j) are
expressed as the sum of the (C(j))2. In Table D.24-D.27, we show the D(j) coefficients. For
the 27 and M cases, following the procedure in Sec. 9.4.4, we set g8s = g27 = gM = 1.88 and
take

aL8s + bL27, b = −5
4
(1− a)

and

aL8s + bLM , b =
f2

m2
π

(1− a),
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Appendix D. Flavor SU(3) coefficients

Table D.22: The C(j)
B,m1,m2

flavor coefficients for the vertex with Σ+
10

, octet baryons, and two
octet mesons. Coefficients for Σ0

10
and Σ−

10
are obtained by using isospin symmetry.

P BMM 8s 8a 27 M

Σ+
10

pπ+K− −√2 −√2 4
√

2
5 −√2m2

K+m2
π

2f2

pπ0K̄0 1 1 −24
5

m2
K+m2

π

2f2

pK̄0η 1√
3

√
3 32

√
3

5
1√
3

5m2
K−3m2

π

2f2

nK̄0π+ - - −4
√

2 -

ΛK̄0K+ −√3 −√3 −16
√

3
5 −√3m2

K
f2

Λπ+η −√2 - 24
√

2
5 −√2m2

π
f2

Λπ+π0 - −√6 - -

Σ+K+K− −√2 −√2 4
√

2
5 −√2m2

K
f2

Σ+π+π−
√

2
√

2 −4
√

2
5

√
2m2

π
f2

Σ+ηη − 1√
2

- 12
√

2
5 − 1√

2

8m2
K−5m2

π

3f2

Σ+ηπ0 −
√

2
3 - −12

√
6

5 −
√

2
3

m2
π

f2

Σ+π0π0 1√
2

- 8
√

2
5

1√
2

m2
π

f2

Σ+K0K̄0 - −2
√

2 −4
√

2 -

Σ0K̄0K+ 1 1 −24
5

m2
K

f2

Σ0ηπ+
√

2
3 - 12

√
6

5

√
2
3

m2
π

f2

Σ0π+π0 -
√

2 −4
√

2 -
Σ−π+π+ - - −4

√
2 -

Ξ0K+π0 1 1 −24
5

m2
K+m2

π

2f2

Ξ0K0π+
√

2
√

2 16
√

2
5

√
2m2

K+m2
π

2f2

Ξ0K+η − 1√
3

−√3 8
√

3
5 − 1√

3

5m2
K−3m2

π

2f2

Ξ−K+π+ - - 8
√

2 -

In these cases, Dj are defined as

Σ(j)
P =

(
F (8s)

)2 ∑
α

I(j)(α)D(j)
P,α,

for (j) = 8s + 27, 8s + M . One can easily check that when a = 1, b = 0, D(j)
P,α for (j) =

8s+ 27, 8s+M becomes D(8s)
P,α .
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D.3. Coefficients for interactions including antidecuplet

Table D.23: The C(j)
B,m1,m2

flavor coefficients for the vertex with Ξ+
10

, octet baryons, and two
octet mesons. Coefficients for Ξ0

10
, Ξ−

10
and Ξ−−

10
are obtained by using isospin symmetry.

P BMM 8s 8a 27 M

Ξ+
10

Σ+π+K− −√6 −√6 4
√

6
5 −√6m2

K+m2
π

2f2

Σ+π0K̄0
√

3
√

3 16
√

3
5

√
3m2

K+m2
π

2f2

Σ+K̄0η 1 3 −24
5

5m2
K−3m2

π

2f2

Σ0K̄0π+ - - −4
√

3 -
ΛK̄0π+ - - −12 -
pK̄0K̄0 - - −4

√
6 -

Ξ0K̄0K+
√

6
√

6 −4
√

6
5

√
6m2

K
f2

Ξ0ηπ+ 2 - 12
5 2m2

π
f2

Ξ0π+π0 - 2
√

3 −4
√

3 -
Ξ−π+π+ - - 4

√
6 -

Table D.24: The D(j)
α coefficients for the Θ10 self-energies.

P α 8s 8a 8s+ 27 8s+M

Θ10 NKπ 18 18 18 18(a+ m2
K+m2

π

2f2 b)2

NKη 2 18 2(a+ 36
5 b)

2 2(a+ 5m2
K−3m2

π

2f2 b)2

ΣKπ - - 576b2 -

Table D.25: The D(j)
α coefficients for the N10 self-energies.

P α 8s 8a 8s+ 27 8s+M

N10 NKK̄ 4 12 2 + 2(a+ 16
5 b)

2 − 32b2 4(a+ m2
K

f2 b)2

Nππ 3 6 3 3(a+ m2
π

f2 b)2

Nπη 2 - 2(−a+ 24
5 b)

2 2(a+ m2
π

f2 b)2

Nηη 1 - (a+ 36
5 )2 (a+ 8m2

K−5m2
π

3f2 b)2

ΛKπ 9
2

9
2

9
2

9
2(a+ m2

K+m2
π

2f2 b)2

ΛKη 1
2

9
2

1
2(a+ 36

5 )2 1
2(a+ 5m2

K−3m2
π

2f2 b)2

ΣKπ 9
2

9
2 2 + 2(a+ 36

5 b)
2 (a+ m2

K+m2
π

2f2 b)2

+1
2(a− 44

5 )2 + 128b2

ΣKη 1
2

9
2

1
2(−a+ 84

5 )2 1
2(a+ 5m2

K−3m2
π

2f2 b)2

ΞKK - - 96b2 -
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Appendix D. Flavor SU(3) coefficients

Table D.26: The D(j)
α coefficients for the Σ10 self-energies.

P α 8s 8a 8s+ 27 8s+M

Σ10 NK̄π 3 3 2 + (a− 24
5 b)

2 + 32b2 3(a+ m2
K+m2

π

2f2 b)2

NK̄η 1
3 3 1

3(a+ 96
5 b)

2 1
3(a+ 5m2

K−3m2
π

2f2 )2

ΛKK̄ 3 3 3(a+ 16
5 b)

2 3(a+ m2
K

f2 b)2

Λπη 2 - 2(a− 24
5 b)

2 2(a+ m2
π

f2 b)2

Λππ - 6 - -

ΣKK̄ 3 11 2 + (a− 24
5 b)

2 + 32b2 3(a+ m2
K

f2 b)2

Σππ 3 4 2 + (a+ 16
5 )2 + 96b2 (a+ m2

π
f2 b)2

Σπη 4
3 - 4

3(a+ 36
5 )2 4

3(a+ m2
π

f2 b)2

Σηη 1 - (a− 24
5 b)

2 (a+ 8m2
K−5m2

π

3f2 b)2

ΞKπ 3 3 2(a+ 16
5 )2 3(a+ m2

K+m2
π

2f2 b)2

+(a− 24
5 )2 + 128b2

ΞKη 1
3 3 1

3(a− 24
5 b)

2 1
3(a+ 5m2

K−3m2
π

2f2 b)2

Table D.27: The D(j)
α coefficients for the Ξ10 self-energies.

P α 8s 8a 8s+ 27 8s+M

Ξ10 ΣK̄π 9 9 6 + 3(a+ 16
5 b)

2 + 48b2 9(a+ m2
K+m2

π

2f2 b)2

ΣK̄η 1 9 (a− 24
3 b)

2 (a+ 5m2
K−3m2

π

2f2 b)2

ΞKK̄ 6 6 6 6(a+ m2
K

f2 b)2

Ξπη 4 - 4(a+ 6
5b)

2 4(a+ m2
π

f2 b)2

Ξππ - 12 240b2 -
ΛK̄π - - 144b2 -
NK̄K̄ - - 192b2 -
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Appendix E

Miscellaneous notes

E.1 Riemann sheets and branches

Let us recall the definition of the “Riemann sheets” and “branches”, when we consider a
multi-valued function w = f(z). In order to avoid multi-valueness, we put a branch cut on
the z plane. Then we connect usual z plane, which is defined in the region 0 ≤ θ < 2π, to
another “Riemann sheet”, which is defined in the region 2π ≤ θ < 4π. The former region is
called as the first Riemann sheet, while the latter as the second Riemann sheet. The higher
Riemann sheets are also defined in the same way. Although we usually do not distinguish
the difference between z1 and z2 = z1e

2πi, the points z1 on the first Riemann sheet and
z2 = z1e

2πi on the second Riemann sheet are mapped to the different points w1 = f(z1) and
w2 = f(z2 = z1e

2πi), respectively. We call these w1 and w2 planes as “branches”. We show
this schematically in Fig. E.1. In this way we extend z plane into several Riemann sheets,
and the function w = f(z) is uniquely defined on each Riemann sheet.

E.2 Mixing angle

By looking at the mass formulae given in subsection 10.3.1, the masses of mixed states can
be written, in general, by

M1(θ) = A cos2 θ +B sin2 θ − (B −A)
2

tan 2θ sin 2θ,

M2(θ) = A sin2 θ +B cos2 θ +
(B −A)

2
tan 2θ sin 2θ.

These functions obey the following relations

Mi(θ) =Mi(θ + π), for i = 1, 2 (E.2.1)

Mi(θ) =Mi(π − θ), for i = 1, 2 (E.2.2)

M1(θ) =M2(π/2− θ), M2(θ) = M1(π/2− θ). (E.2.3)

Equation (E.2.1) shows that M1(θ) and M2(θ) are periodic functions with period π, while
Eq. (E.2.2) shows that there is a reflection symmetry of 0 ≤ θ ≤ π/2 and π/2 ≤ θ ≤ π. In
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Riemann sheet II

Riemann sheet I

Branch II

Branch I

Figure E.1: Riemann sheets and branches. The points z1 and z2 = z1e
2πi are mapped to the

different points w1 = f(z1) and w2 = f(z2)

order to make a one to one correspondence between θ and the masses, the domain of θ should
be 0 ≤ θ < π/2. In addition, there is a discrete symmetry under the interchange θ ↔ π/2− θ
and M1 ↔ M2, due to Eq. (E.2.3). Fixing the assignment of M1 and M2 to the physical
states, the mixing angle can be determined without duplication.

E.3 Experimental information

Let us tabulate the masses of the particles, which will be useful to estimate the threshold
of meson-baryon channels. In the followings, all the values are taken from PDG [144]. The
masses of the ground state octet baryons are given by

MN = 939 MeV, MΛ = 1116 MeV, MΣ = 1193 MeV, MΞ = 1318 MeV,

where we have averaged over the isospin states. The masses of the lowest lying decuplet
baryons are given by

M∆ = 1232 MeV, MΣ10 = 1385 MeV, MΞ10 = 1535 MeV, MΩ = 1672 MeV.
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E.3. Experimental information

The masses of the lowest lying pseudoscalar octet mesons are given by

Mπ = 138 MeV, MK = 496 MeV, Mη = 548 MeV.

The masses of the lowest lying vector nonet mesons are given by

Mρ = 776 MeV, Mω = 783 MeV, MK∗ = 894 MeV, Mφ = 1019 MeV.

In PDG [144], the masses and widths of Θ+ and Ξ−− are given as

MΘ+ = 1539.2± 1.6 MeV, ΓΘ+ = 0.9± 0.3 MeV.

MΞ−− = 1862± 2 MeV, ΓΞ−− < 18 MeV.

In Tables E.1, E.2, and E.3, we summarize the resonances with several spins and parities.
Note that the Σ(1385), the Ξ(1530), and the ∆(1232) are not listed because they are assigned
in the decuplet.
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Table E.1: Strangeness S = 0 resonances listed in PDG [144]. The ∆(1232) is not shown
because it is assigned in the lowest lying decuplet. We denote stars following the definition
in PDG, except for three- or four-star resonances which are well established.

R JP (L2I,2J) States
N∗ 1/2−(S11) N(1535), N(1650), N(2090)∗

1/2+(P11) N(1440), N(1710), N(2100)∗

3/2+(P13) N(1720), N(1900)∗∗

3/2−(D13) N(1520), N(1700), N(2080)∗∗

5/2−(D15) N(1675), N(2200)∗∗

5/2+(F15) N(1680), N(2000)∗∗

7/2+(F17) N(1990)∗∗

7/2−(G17) N(2190)
9/2−(G19) N(2250)
9/2+(H19) N(2220)
11/2−(I1,11) N(2600)
13/2+(K1,13) N(2700)∗∗

∆∗ 1/2−(S31) ∆(1620), ∆(1900)∗∗, ∆(2150)∗

1/2+(P31) ∆(1750)∗, ∆(1910)
3/2+(P33) ∆(1600), ∆(1920)
3/2−(D33) ∆(1700), ∆(1940)∗

5/2−(D35) ∆(1930), ∆(2350)∗

5/2+(F35) ∆(1905), ∆(2000)∗∗

7/2+(F37) ∆(1950), ∆(2390)∗

7/2−(G37) ∆(2200)∗

9/2−(G39) ∆(2400)∗∗

9/2+(H39) ∆(2300)∗∗

11/2+(H3,11) ∆(2420)
13/2−(I3,13) ∆(2750)∗∗

15/2+(K3,15) ∆(2950)∗∗
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E.3. Experimental information

Table E.2: Strangeness S = −1 resonances listed in PDG [144]. The Σ(1385) is not shown
because it is assigned in the decuplet with the ∆(1232). We denote stars following the
definition in PDG, except for three- or four-star resonances which are well established.

R JP (LI,2J) States
Λ∗ 1/2−(S01) Λ(1405), Λ(1670), Λ(1800)

1/2+(P01) Λ(1600), Λ(1810)
3/2+(P03) Λ(1890)
3/2−(D03) Λ(1520), Λ(1690), Λ(2325)∗

5/2−(D05) Λ(1830)
5/2+(F05) Λ(1820), Λ(2110)
7/2+(F07) Λ(2020)∗

7/2−(G07) Λ(2100)
9/2+(H09) Λ(2350)
unknown Λ(2000)∗, Λ(2585)∗∗

Σ∗ 1/2−(S11) Σ(1620)∗∗, Σ(1750), Σ(2000)∗

1/2+(P11) Σ(1660), Σ(1770)∗, Σ(1880)∗∗

3/2+(P13) Σ(1840)∗, Σ(2080)∗∗

3/2−(D13) Σ(1580)∗∗, Σ(1670), Σ(1940)
5/2−(D15) Σ(1775)
5/2+(F15) Σ(1915), Σ(2070)∗

7/2+(F17) Σ(2030)
7/2−(G17) Σ(2100)∗

unknown Σ(1480)∗, Σ(1560)∗∗, Σ(1690)∗∗, Σ(2250),
Σ(2455)∗∗, Σ(2620)∗∗, Σ(3000)∗∗, Σ(3170)∗∗

Table E.3: Strangeness S ≥ −2 resonances listed in PDG [144]. The Ξ(1530) and Ω(1672)
are not shown because they are assigned in the decuplet with the ∆(1232). We denote stars
following the definition in PDG, except for three- or four-star resonances which are well
established.

R JP (L2I,2J) States
Ξ∗ 3/2−(D13) Ξ(1820)

unknown Ξ(1620)∗, Ξ(1690), Ξ(1950), Ξ(2030),
Ξ(2120)∗, Ξ(2250)∗∗, Ξ(2370)∗∗, Ξ(2500)∗

Ω∗ unknown Ω(2250), Ω(2380)∗∗, Ω(2470)∗∗
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