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Introduction to Ov[3[3 decay

* A 2v[(3B decay occurs when a neutron decay from Z to (Z+1) nuclei is not energetically
allowed but Z to (Z+2) is allowed. There are not many nuclei with this property. The
2V([3 decay has been observed before.

* If the neutrino is a Majorana type particle, then the neutrino and anti-neutrino are the
same particle and they can undergo pairwise annihilation. This process would be in
violation of lepton number conservation. The remaining B3 values are expected to be
observed with the full Q value.
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CANDLES Experiment

« CANDLES experiment is looking for the Ovf33 using 96 CaF, scintillating crystals that

act as source and detector. The crystals are scintillating and contain the Ov(3[3
candidate 48Ca isotope.

e 48Ca is chosen because it has the highest Q value among candidate nuclei. This
means detection is easier due to fewer number of low energy background.

e Detector is surrounded inside by 62 PMTs that detect the signal.
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Backgrounds at CANDLES

« The number of background events in the Qg value region is not very
many.

« Many of the backgrounds in the Qg value region comes from 212Bi
natural background.

Events/day at CANDLES High Energy backgrounds after ~130 days
4 h1 hi
%10 = Entries 46376 = Entries 29627
S C Mean 1308 | X 480 Mean 3714
© r StdDev  4645| < i StdDev 5385
b E 400
E1 3 — =
Q TE 3 350
w F © =
i 300—
0% 250 —
& 200 —
10 150 —
E 100~
E | L I I I I | ‘ I I I | | I I L | I | 555 1 55 W) 1 1 L L 0: 11 | | L1 11 | T | %—L_I L L L1
1000 2000 3000 4000 5000 6000 3000 3500 4000 4500 5000 5500 6000
Energy[MeV] Energy [MeV]



Thorium C Background

* Thorium C is a historic name given to 212Bi decay. It can decay to 208TI through o
decay or to 212Po though 3 decay.

* Because half-life of 212Po is very short, 212Bi — 212Po - 208Pb decay is recorded
as a single event by CANDLES

« 208Tl - 208Pb decay has a Q value of 5MeV. But, because the neutrino carries
away some energy, detected energy in CANDLES is very close to Qg 0f 48Ca.
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2087 Background

* 208T] is one of the major backgrounds in CANDLES.

* 208TlI rejection is based on the delayed coincidence of ?Bi a event
with a high energy event in the same crystal.

* My current research is focused on reduction of background 208T]
events from CANDLES data.
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Multi-Crystal 208TIl Event

* 208T] 3 and y decay could become a multi-crystal event. The current
detection method is applied on the same crystal and may not detect
multi-crystal events. We want to further reduce 2°°Tl through multi-
crystal event detection.

* Therefore, need to develop a method for detecting multi-crystal
events.

* Pattern Fitting Method
* Neural Networks

Liquid Scintillator
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Making Training Examples

* Detection of multi-crystal events is hard because we don’t have real
examples of such events. To study them, we have to make fake multi-
crystal events.

* Each PMT receives a different ratio of photons from each crystal. By
adding number of photons from on crystal to another crystal’s signal,
we can make multi-crystal events.
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Making Training Examples

* Multi-crystal events are made by adding 2.6MeV gamma events to
1.8MeV gamma events. The output energy spectrum is shown below.
* 2000 Multi-crystal and 2000 single-crystal events were made.
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Introduction to Neural Nets

* An attempt to mimic human brain. Human brain has ~10"10 neurons
* Each node is activated when enough input signal is accumulated
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Examples of Neural Nets

* Neural nets research is developing in an extremely fast rate. They are used in
many fields such as computer science, engineering, economics etc. They are
able to do things that humans can'’t do.
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Training Neural Nets

« In supervised training, input vector and desired output vector is known: (x, V),
where i = 1,..., N, are number of training samples

* An overall error function is defined on all the training examples:
N

B(W,z,y) NZunx@)—yzn

y(W,x) — output from the neural network
W — weights and bias matrix

* The neural net is trained by minimizing this function for all training examples with
respect to the weights. The weights are modified by gradient descent:

oE
Wir] = W; — X —
o Jw;
* Mathematically, neural nets are simple. The gradient of E can be written down
exactly. But minimizing analytically is hard because there are too many
simultaneous equations to solve, for each w; in each layer.



Applying Neural Nets

2000 single-hit and 2000 multi-hit events were made. Used 1750 events from each as
training sample and use remaining 250 as testing sample. 3500 training examples total and
500 testing examples total.

The samples have the form: (x;, y;), where Xx;is a 62 element vector representing signal for
each PMT. The y;vector is a 2 element vector that has only two possible values: y,= (1, 0) if
single-crystal and y;= (0, 1) if multi-crystal event.

Each weight is updated 1000 times per sample. 2.5 * 10"9 weight adjustments.

Trained this wav. the network has 100% accuracy to separate single and multi-hit events.
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Discussion on Neural Nets

Using traditional analysis techniques, the best accuracy | was able to achieve on the same
training examples was 92.5%. But Neural nets were able to achieve 100% accuracy. But
how? What about uncertainty?

Does neural nets discover hidden features that we missed in analysis? Or does it only focus
on features that are important and discard other features?

Analysis of data is hard:

— Collect data — Select features — Fit functions — Error analysis — X2minimization -
classify/reduce backgrounds

Neural Nets are easy:

— Collect data — Feed data to Neural Net — Obtain better classifier/background reducer ?

Issue #1: Neural nets does not concern itself with uncertainties. Any uncertainty in the input
data disappears when input into the neural network. The output of the neural net is given a
probabilistic interpretation even though there is no valid reason to do so. As a result,
uncertainties cannot be assigned to neural nets outputs.

Issue #2: Neural nets are trained on specific examples. There is no guarantee that the
trained neural nets can be applied to new data. Because we don’t know which features the
neural nets use from training data, there is no guarantee that it can be applied to data
collected in a similar but not exactly the same manner.
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Conclusion

CANDLES experiment is looking for the Ovp[3 decay using 48Ca isotope.

A major source of background comes from the decay of 212Bi. The
observed energy of the 212Bi is very close to the Qg value of 48Ca.

Therefore, significant effort is made to reduce this background.

An application of a simple neural network was presented to classify single-
crystal and multi-crystal 208T| events. Neural networks provide 100%
accuracy to classify while analysis techniques provide 92.5% accuracy on
the same data set.

Application of neural nets are easy but there are some drawbacks. For
example, uncertainties in data are not propagated through neural nets.
Also, underlying physics processes are not revealed through neural nets.
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Pattern Fitting Method

"L Red: Crystal #4 Pattern (88Y?

For a single-crystal event, signal is received from only o~ Blue: Event pattern (Cr.4)
1 crystal. In this example, beta decay in crystal #4.
The event pattern matches crystal #4 pattern,
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* Apply the hit patterns to fake events
- Separation of multi-hit and single-hit events is possible

[ Entries 4000
1) Mean x 1.464
fqﬁ 7 Mean y 3.619
%3\1 Std Dev x  0.4991
N 6 S:td Devy 0.8487
O :

@)

N

30

L4

20

10

1 2 3 4 5 6 7 8 0
Chi2 Best Fit 19

o -I—lllL-|-Jlll|IIJl|LJIIJ[‘IJ‘LJ_1ILIIILIIL{Il-lJ-



e Separation accuracy
- Apply a cut based on the Chi2 difference
— Accuracy is defined as (N yrect)! (Nigtar)

— Best Accuracy : 92.4%
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