Dear Htun Htun, 2024.8.10 There are particles α , β and γ . The intrinsic spin σ_{α} , σ_{β} and σ_{γ} belong to the particle α , β and γ , respectively. \vec{p}_{α} is a relative momentum between particle β and γ . The second Jacobi momentum \vec{q}_{α} is the one between particle α and the center mass of the subsystem (β and γ). The angular momenta l and λ are corresponding to \vec{p}_{α} and \vec{q}_{α} , respectively. The total spin is J which is constructed by λ and S. The quantum number S consists of \bar{j} and σ_{α} . The total subsystem spin is given Σ which is made from l and Σ . The spin Σ is given by σ_{β} and σ_{γ} . $$\frac{\lambda + S \to J,}{\bar{j} + \sigma_{\alpha} \to S,} l + \Sigma \to \bar{j}, \sigma_{\beta} + \sigma_{\gamma} \to \Sigma. |\alpha\rangle = |(\sigma_{\beta}\sigma_{\gamma})\Sigma, (l\Sigma)\bar{j}, (\bar{j}\sigma_{\alpha})S, (\lambda S)J\rangle$$ (1) We prepare the partial wave quantum numbers set in Table 1 and Table 2 for 0^+ state and 2^+ state, respectively. Figure 1: Particle channels α . Best regards, Hiroyuki Table 1: Channels of $^{10}_{\Lambda\Lambda}{\rm Be}(0^+)$. | | | M | | | | | | | | | | |-----------|----------|---|---|---|-----------|---|--------|-------------------|----------------|-------------------|--| | State nr. | α | J | λ | S | \bar{j} | l | \sum | σ_{α} | σ_{eta} | σ_{γ} | | | 1 | 1 | 0 | 0 | 0 | 1/2 | 0 | 1/2 | 1/2 | 1/2 | 0 | | | 2 | 1 | 0 | 2 | 2 | 3/2 | 0 | 3/2 | 1/2 | 1/2 | 2 | | | 3 | 1 | 0 | 2 | 2 | 5/2 | 0 | 5/2 | 1/2 | 1/2 | 2 | | | 4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1/2 | 1/2 | | | 5 | 2 | 0 | 2 | 2 | 0 | 0 | 0 | 2 | 1/2 | 1/2 | | Table 2: Channels of $^{10}_{\Lambda\Lambda} \mathrm{Be}(2^+)$. | | TITE () | | | | | | | | | | |-----------|----------|---|---|---|-----------|---|--------|-------------------|----------------|-------------------| | State nr. | α | J | λ | S | \bar{j} | l | \sum | σ_{α} | σ_{eta} | σ_{γ} | | 1 | 1 | 2 | 2 | 0 | 1/2 | 0 | 1/2 | 1/2 | 1/2 | 0 | | 2 | 1 | 2 | 0 | 2 | 3/2 | 0 | 3/2 | 1/2 | 1/2 | 2 | | 3 | 1 | 2 | 0 | 2 | 5/2 | 0 | 5/2 | 1/2 | 1/2 | 2 | | 4 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 1/2 | 1/2 | | 5 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | 2 | 1/2 | 1/2 |