The 15th International Conference on Hypernuclear and Strange Particle Physics (HYP2025)

Core-excitation three-cluster model description of $^{10}_{\Lambda\Lambda}$ Be

Hiroyuki Kamada^{1*}, Michio Kohno¹ and Htun Htun Oo²

¹Research Center for Nuclear Physics, Osaka University, Ibaraki 567-00, Japan,

²Panglong University, Southern Shan State, Myanmar

Content

Core-excitation three-cluster model is applied to neutron (n) rich nuclei ${}^8{\rm He}$ and ${}^{10}{\rm He}$ [1]. These three-cluster systems ${}^8{\rm He}$ and ${}^{10}{\rm He}$ consist of ${}^6{\rm He}$ -n-n and ${}^8{\rm He}$ -n-n, respectively. By replacing n (${}^8{\rm He}$) into the Λ particle (${}^8{\rm Be}$) we regard ${}^{10}_{\Lambda\Lambda}{\rm Be}$ as ${}^8{\rm Be}$ - Λ - Λ system. The core nucleus ${}^8{\rm Be}$ is decomposed into 2α particles and the ${}^8{\rm Be}$ - Λ interaction is introduced from α - α - Λ three-body model [2] calculated by Faddeev formalism. In addition, the Λ - Λ potential is introduced phenomenologically out of the scattering length and the effective range obtained from chiral effective field theory [3]. The binding energies of ${}^{10}_{\Lambda\Lambda}{\rm Be}$ (ground and excited states) are also calculated using the core-excitation three-cluster model in the Faddeev formalism. Figure 1 shows preliminary results of the energy spectrum of ${}^{10}_{\Lambda\Lambda}{\rm Be}$ (ground and excited states) calculated using several Λ - Λ potentials (Juelich[3], ESC16, ESC08c, Ehime-2, Ehime-A, Ehime-B).

Fig.1 Energy spectrum of $^{10}_{\Lambda\Lambda}$ Be. Unit is in MeV.

Reference

[1] H. Kamada, M. Yamaguchi, E. Uzu, "Core-excitation three-cluster model description of ⁸He and ¹⁰He", Phys. Rev. C **88**, 014005 (2013).

[2] S. Oryu, H. Kamada, H. Sekine, H. Yamashita, M. Nakazawa, "Calculation of $^9_\Lambda Be$ in an $\alpha - \alpha - \Lambda$ Three-Body Model Using the Faddeev Equations", Few-Body Syst. **28**, 103 (2000).

[3] J. Haidenbauer, "Coupled-channel effects in hadron–hadron correlation functions", Nucl. Phys. **A981**, 1 (2019).

Field of Research: Interactions of mesons and baryons with strangeness

Experiment / Theory: Theory

Contribution Type: Contribution talk