Ann系における3体Faddeev理論による 共鳴状態の研究(II)

日本物理学会 第74回年次大会 於 北海道大学 R6.9.17

Outline

- Faddeev eq. for YNN system
- Hypertriton (J=1/2,T=0)
- Effective Field Theoretical Chiral NN Potential
- $\Lambda NN Resonance (J=1/2,T=1)$
- Complex Energy Method
- Summary

Faddeev Equations for the Hypertriton bound state (no 3-body force)

[K. Miyagawa, H. Kamada, W. Glöckle, and V. Stoks, Phys. Rev. C 51, 2905 (1995)] • Λ NNSchrödinger Eq. ; • 2body force V_{ij} , Kinetic term H_0 $(H_0 + V_{12} + V_{23} + V_{31})\Psi = E\Psi \stackrel{\text{L-S eq.}}{\longrightarrow} \Psi = \frac{1}{E - H_0}(V_{12} + V_{23} + V_{31})\Psi \equiv \psi_{12} + \psi_{23} + \psi_{31}$ • $G_0 \equiv \frac{1}{E-H}$, t-matrix $t_{ij} = V_{ij} + V_{ij}G_0t_{ij}$ $P_{23}\psi_{12} = -\psi_{31}$ $\psi_{12} = G_0 t_{12} (\psi_{23} - P_{23} \psi_{12})$ and $\psi_{23} = G_0 t_{23} (1 - P_{23}) \psi_{12}$ $\psi_{ij} \text{ consists of } \Lambda \text{ channel and } \Sigma \text{ channel}$ $\begin{pmatrix} \psi_{\Lambda}^{(12)} \\ \psi_{\Lambda}^{(12)} \end{pmatrix} = \begin{pmatrix} \{E - H_0(NN\Lambda)\}^{-1} & 0 \\ 0 & \{E - H_0(NN\Sigma)\}^{-1} \end{pmatrix} \begin{pmatrix} t_{12}^{\Lambda} & 0 \\ 0 & t_{12}^{\Sigma} \end{pmatrix} \begin{bmatrix} \begin{pmatrix} \psi_{\Lambda}^{(23)} \\ \psi_{\Lambda}^{(23)} \end{pmatrix} - \begin{pmatrix} P_{23}\psi_{\Lambda}^{(12)} \\ P_{23}\psi_{\Sigma}^{(12)} \end{pmatrix} \end{bmatrix}$ • ψ_{ij} consists of Λ channel and Σ channel $\begin{pmatrix} \psi_{\Lambda}^{(23)} \\ \psi_{-}^{(23)} \end{pmatrix} = \begin{pmatrix} \{E - H_0(NN\Lambda)\}^{-1} & 0 \\ 0 & \{E - H_0(NN\Sigma)\}^{-1} \end{pmatrix} \begin{pmatrix} t_{23}^{\Lambda} & 0 \\ 0 & t_{22}^{\Sigma} \end{pmatrix} \begin{pmatrix} (1 - P_{23})\psi_{\Lambda}^{(12)} \\ (1 - P_{23})\psi_{\Lambda}^{(12)} \end{pmatrix}$ Λ, Σ

Faddeev Equations including with 3body force

• ANNSchrödinger Eq. ; • 2body force V_{ij} , Kinetic term H_0 , 3-body force W $(H_0+V_{12}+V_{23}+V_{31}+W)\Psi = E\Psi$

Green func. $G_0 \equiv \frac{1}{E-H_0}$ Lippmann-Schwinger eq. $\Psi = G_0(V_{12} + V_{23} + V_{31} + W)\Psi$ Faddeev Components : $\Psi = \psi_{12} + \psi_{23} + \psi_{31}$ i = 1 = Hyperon $\psi_{12} \equiv G_0 V_{12} \Psi, \quad \psi_{23} \equiv G_0(V_{23} + W)\Psi, \quad \psi_{31} \equiv G_0 V_{31} \Psi$

• t-matrix; $t_{ij} = V_{ij} + V_{ij}G_0t_{ij}$ Möller Oper.; $\Omega_{ij} \equiv (1 - G_0V_{ij})^{-1} = (1 + G_0t_{ij})$

$$\begin{pmatrix} \psi_{12} = G_0 t_{12}(\psi_{23} + \psi_{31}) \\ \psi_{23} = G_0 t_{23}(\psi_{12} + \psi_{31}) \\ \psi_{31} = G_0 t_{31}(\psi_{12} + \psi_{23}) \end{pmatrix} + \begin{pmatrix} G_0 + G_0 t_{23} G_0 \end{pmatrix} W(\psi_{12} + \psi_{23} + \psi_{31}) \\ \psi_{31} = -P_{12} \psi_{23} \end{bmatrix} : \psi_{ij} = \begin{pmatrix} \psi_{\Lambda}^{(ij)} \\ \psi_{\Sigma}^{(ij)} \end{pmatrix}$$

INPUT

- 2body force (NN) : Chiral forces N^4LO+ [Cut off scale; 400,450,500,550 MeV]
- · 2body force (YN): Chiral forces (Juelich) NLO13, NLO19 [Cut off 550, 600, 650 MeV]
- 3body force (YNN): 2pi exchange type

NN Potential N⁴LO+ P. Reinert, and H. Krebs, and E. Epelbaum, Semilocal momentum-space regularized chiral two-nucleon potentials up to fifth order, Eur. Phys. J. A 54, 86 (2018).

3 N System

3-body force (YNN): 2π exchange type

$$V_{TPE}^{\Lambda NN} = \frac{g_A^2}{3f_0^4} (\tau_2 \cdot \tau_3) \frac{(\sigma_3 \cdot q_{3d})(\sigma_2 \cdot q_{2d})}{(q_{3d}^2 + m_{\pi}^2)(q_{2d}^2 + m_{\pi}^2)} \{-Am_{\pi}^2 + Bq_{3d} \cdot q_{2d}\}$$

$$q_{2d} = k'_2 - k_2 = p'_1 - p_1 - \frac{1}{2}(q'_1 - q_1) \equiv p - \frac{1}{2}q$$

$$q_{3d} = k'_3 - k_3 = -(p'_1 - p_1) - \frac{1}{2}(q'_1 - q_1) \equiv -p - \frac{1}{2}q$$

$$k_2 \quad k_1 \quad k_3 \quad k_3 \quad k_4 \quad k_$$

The two parameters A and B should be determined by the NNLO LEC, but here they were estimated by the Isobar-saturation model.
 [Petschauer *et al.*, Phys. Rev. C 93, 014001 (2016)] A = 0, B = -3.0 GeV⁻¹
 NNLO fit [Haidenbauer et al., Eur. Phys. J. A (2024) 6:3] A=1.485, B=-3.01GeV⁻¹

Hypertriton $(np \Lambda)$

hypertriton ($^3_\Lambda H$)

TABLE II. Hypertriton separation energies without 3BFs. Entries are in keV. The numbers in parentheses for *NN* and *YN* chiral potentials indicate the cutoff scale Λ_c in MeV.

	YN potential (Λ_c)						
NN potential (Λ_c)	NLO13 (550)	NLO19 (550)	NLO19 (600)	NLO19 (650)	NSC89		
CDBonn [23]	82	90	90	88	153		
Nijmegen 93 [32]	58	69	70	70	141		
Nijmegen I [32]	63	75	75	74	145		
$N^{4}LO+(550)$	79	87	88	87	151		
$N^{4}LO+(500)$	87	94	95	94	154		
$N^{4}LO+(450)$	98	102	103	101	155		
$N^{4}LO+(400)$	108	109	109	107	153		
N ⁴ LO (550)	82	90	91	91	154		
N ⁴ LO (500)	90	96	97	97	156		
N ⁴ LO (450)	100	104	104	103	156		
N ⁴ LO (400)	109	110	110	108	154		
N ³ LO (550)	77	87	88	86	145		
N ³ LO (500)	87	93	94	93	153		
N ³ LO (450)	97	101	102	100	154		
N ³ LO (400)	106	107	107	105	151		
N ² LO (550)	61	71	76	77	143		
N ² LO (500)	82	90	94	93	156		
N ² LO (450)	99	104	106	104	159		
N^{2} LO (400)	112	113	113	110	158		

Table I: Hypertriton separation energies that include 2π exchange ANN 3BF with $3b_0 + b_D = 0$ and $2b_2 + 3b_4 = -3.0$ GeV⁻¹. Entries are in keV. The numbers in parentheses for NN and YN chiral potentials indicate the cutoff scale Λ_c in MeV.

	YN potential (Λ_c)						
NN potential	NLO13	NLO19	NLO19	NLO19	NSC89		
(Λ_c)	(550)	(550)	(600)	(650)			
CDBonn [9]	135	151	151	151	244		
Nijmegen 93 [10]	114	135	138	140	249		
Nijmegen I [10]	120	142	144	145	252		
$N^{4}LO+$ (550)	135	152	155	156	249		
$N^{4}LO+$ (500)	141	157	159	159	246		
$N^{4}LO+$ (450)	148	160	161	160	237		
$N^{4}LO+(400)$	151	159	160	158	222		
$N^{4}LO$ (550)	138	155	158	159	252		
$N^{4}LO$ (500)	143	158	161	161	247		
$N^{4}LO$ (450)	149	161	163	162	238		
$N^{4}LO$ (400)	152	160	161	159	223		
$N^{3}LO$ (550)	134	153	155	154	243		
$N^{3}LO$ (500)	141	156	158	158	245		
$N^{3}LO$ (450)	148	159	161	161	237		
$N^{3}LO$ (400)	151	159	159	158	223		
$N^{2}LO$ (550)	123	143	150	154	259		
$N^{2}LO$ (500)	141	158	163	165	258		
$N^{2}LO$ (450)	150	163	166	165	244		
$N^{2}LO$ (400)	152	160	161	159	223		

[Kamada, Kohno, Miyagawa: PHYSICAL REVIEW C 108, 024004 (2023)]

[Kamada, Kohno, Miyagawa: PHYSICAL REVIEW C 108, 024004 (2023)]

[Kohno, Kamada, Miyagawa: PHYSICAL REVIEW C 109, 024003 (2024)]

 $+ 2\pi + 1 \pi + \text{cont.}$

	$+2\pi$	$+1\pi$				+	$2\pi +$	$1 \pi +$	cont.		
		YN 1	ootential	(Λ_c)				YN I	potential	(Λ_c)	
NN potential	NLO13	NLO19	NLO19	NLO19	NSC89	NN potential	NLO13	NLO19	NLO19	NLO19	NSC89
(Λ_c)	(550)	(550)	(600)	(650)		(Λ_c)	(550)	(550)	(600)	(650)	
CDBonn [23]	172	194	196	196	317	CDBonn [23]	163	185	187	187	300
Nijmegen 93 [32]	114	183	187	191	313	Nijmegen 93 [32	148	176	180	183	296
Nijmegen I [32]	120	191	194	196	315	Nijmegen I [32]	154	183	186	187	298
$N^{4}LO+$ (550)	175	200	204	205	307	$N^{4}LO+$ (550)	166	191	195	196	289
$N^{4}LO+$ (500)	180	202	205	206	299	$N^{4}LO+$ (500)	170	192	196	196	280
$N^{4}LO+$ (450)	183	201	204	203	283	$N^{4}LO+$ (450)	173	191	194	193	263
$N^{4}LO+$ (400)	182	196	197	196	259	$N^{4}LO+(400)$	171	185	187	184	238
$N^{4}LO$ (550)	178	201	206	208	309	$N^{4}LO$ (550)	169	192	197	206	290
$N^{4}LO$ (500)	182	203	207	208	300	$N^{4}LO$ (500)	172	193	197	198	280
$N^{4}LO$ (450)	184	202	205	205	283	$N^{4}LO$ (450)	174	192	195	194	263
$N^{4}LO$ (400)	183	196	198	197	259	$N^{4}LO$ (400)	172	185	187	185	239
$N^{3}LO$ (550)	175	200	204	204	300	$N^{3}LO$ (550)	166	191	195	195	281
$N^{3}LO$ (500)	180	201	205	206	298	$N^{3}LO$ (500)	171	192	195	196	279
$N^{3}LO$ (450)	184	202	205	205	284	$N^{3}LO$ (450)	173	191	194	194	264
$N^{3}LO$ (400)	182	196	198	197	261	$N^{3}LO$ (400)	172	186	187	185	241
$N^{2}LO$ (550)	167	195	205	210	330	$N^{2}LO$ (550)	188	188	198	203	314
$N^{2}LO$ (500)	183	207	214	216	318	$N^{2}LO$ (500)	198	198	207	207	300
$N^{2}LO$ (450)	187	206	210	210	292	$N^{2}LO$ (450)	195	195	200	199	271
$N^{2}LO$ (400)	182	195	197	194	257	$N^{2}LO$ (400)	184	184	186	182	236

[Kohno, Kamada, Miyagawa: PHYSICAL REVIEW C 109, 024003 (2024)]

Regular Article – Theoretical Physics

Semilocal momentum-space regularized chiral two-nucleon potentials up to fifth order

P. Reinert^a, H. Krebs^b, and E. Epelbaum^c

Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany

$$V(\vec{p}',\vec{p}) \longrightarrow V_A(\vec{p}',\vec{p}) = V(\vec{p}',\vec{p}) \exp\left[-(p'/A)^{2n} - (p/A)^{2n}\right]$$

$$V_{\pi}(\vec{r}) \longrightarrow V_{\pi,R}(\vec{r}) = V_{\pi}(\vec{r}) \left[1 - \exp(-r^2/R^2)\right]^n$$

Semilocal **M**omentum-**S**pace regularized (*from Evgeny's note*)

2014: The SFR removes the unphysical short-range components but one also distorts some good long-range physics... Can one do better?

⇒ local regularization in r-space EE, Krebs, Meißner, EPJA 51 (15) 53 PRL 115 (15) 122301

2018: The r-space regulator turned out to be inconvenient for 3N forces and currents

⇒ local regularization in momentum space Reinert, Krebs, EE, EPJA (18) 85

$$V_{1\pi}(q) = \frac{\alpha}{\vec{q}^{\,2} + M_{\pi}^{2}} e^{-\frac{\vec{q}^{\,2} + M_{\pi}^{2}}{\Lambda^{2}}} + \text{subtraction}, \qquad V_{2\pi}(q) = \frac{2}{\pi} \int_{2M_{\pi}}^{\infty} d\mu \mu \frac{\rho(\mu)}{\vec{q}^{\,2} + \mu^{2}} e^{-\frac{\vec{q}^{\,2} + \mu^{2}}{2\Lambda^{2}}} + \text{subtractions}$$

Semilocal **M**omentum-**S**pace regularized (*from Evgeny's note*)

$^{3}_{\Lambda}n$ (nn Λ)

PHYSICAL REVIEW C 88, 041001(R) (2013)

Search for evidence of ${}^{3}_{\Lambda}n$ by observing $d + \pi^{-}$ and $t + \pi^{-}$ final states in the reaction of ${}^{6}\text{Li} + {}^{12}\text{C}$ at 2A GeV

C. Rappold,^{1,2,*} E. Kim,^{1,3} T. R. Saito,^{1,4,5,†} O. Bertini,^{1,4} S. Bianchin,¹ V. Bozkurt,^{1,6} M. Kavatsyuk,⁷ Y. Ma,^{1,4} F. Maas,^{1,4,5} S. Minami,¹ D. Nakajima,^{1,8} B. Özel-Tashenov,¹ K. Yoshida,^{1,5,9} P. Achenbach,⁴ S. Ajimura,¹⁰ T. Aumann,^{1,11}
C. Ayerbe Gayoso,⁴ H. C. Bhang,³ C. Caesar,^{1,11} S. Erturk,⁶ T. Fukuda,¹² B. Göküzüm,^{1,6} E. Guliev,⁷ J. Hoffmann,¹ G. Ickert,¹ Z. S. Ketenci,⁶ D. Khaneft,^{1,4} M. Kim,³ S. Kim,³ K. Koch,¹ N. Kurz,¹ A. Le Fèvre,^{1,13} Y. Mizoi,¹² L. Nungesser,⁴ W. Ott,¹ J. Pochodzalla,⁴ A. Sakaguchi,⁹ C. J. Schmidt,¹ M. Sekimoto,¹⁴ H. Simon,¹ T. Takahashi,¹⁴ G. J. Tambave,⁷ H. Tamura,¹⁵ W. Trautmann,¹ S. Voltz,¹ and C. J. Yoon³ (HypHI Collaboration)

¹GSI Helmholtz Centre for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt, Germany

$${}^{3}_{A}n \rightarrow p+n+n+\pi^{-}$$
 and ${}^{3}_{A}n \rightarrow t+\pi^{-}$

$$\underline{\psi}^{(12)} = \frac{1}{E - \underline{H}_0} \ \underline{T}_{12} (1 - P_{12}) \underline{\psi}^{(13)} ,$$

$$\underline{\psi}^{(13)} = \frac{1}{E - \underline{H}_0} \ \underline{T}_{13} (\underline{\psi}^{(12)} - P_{12} \underline{\psi}^{(13)}) .$$

$$\eta(E) \underline{\psi} = \underline{K}(E) \underline{\psi}$$
,

Search for E with η (E)=1.

K. Miyagawa, H. Kamada, W. Glöckle, and V. Stoks, Phys. Rev. C 51, 2905 (1995).

PHYSICAL REVIEW C 92, 054608 (2015)

Resonances in the Λnn system

〒研究.

先往

Iraj R. Afnan^{*}

School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide 5001, Australia

Benjamin F. Gibson[†]

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA (Received 3 September 2015; published 11 November 2015)

Complex Energy Method

H. Kamada, Y. Koike, W. Glöckle, Progress of Theoretical Physics 109, No.5, pp.869-874 (2003) Lippmann-Se (() r equation: ε=infinitesimal $t = v + vG_0t$ $t(p,p';E) = v(p,p') + \int v(p,p'') \frac{1}{E - p'^2/m + i\epsilon} t(p'',p';E) dp''$ $\int_{a}^{b} \frac{f(x)}{x_{0} - x + i\epsilon} dx = \int_{a}^{b} \frac{f(x) - f(x_{0})}{x_{0} - x} + f(x_{0}) \int_{a}^{b} \frac{dx}{x_{0} - x + i\epsilon}$ $=A + f(x_0) \left| \log \left| \frac{|a - x_0|}{|b - x_0|} \right| - i\pi \right|.$

the coefficients a_l may be determined recursively from the formula

$$a_{l}(x_{l} - x_{l+1}) = 1 + \frac{a_{l-1}(x_{l+1} - x_{l-1})}{1 + \frac{a_{l-2}(x_{l+1} - x_{l-2})}{1 + \cdots \frac{a_{1}(x_{l+1} - x_{1})}{1 - [f(x_{1})/f(x_{l+1})]}}$$

and

$$a_1 = \{[f(x_1)/f(x_2)] - 1\}/(x_2 - x_1)$$

• Complex Energy Method

Application to 4N scattering Problem

- E. Uzu, H. Kamada, and Y. Koike, Phys. Rev. C 68, 061001 (2003), arXiv:nucl-th/0310001.
- A. Deltuva and A. C. Fonseca, Phys. Rev. C 86, 011001 (2012), arXiv:1206.4574 [nucl-th].
- A. Deltuva and A. C. Fonseca, Phys. Rev. C 87, 014002 (2013), arXiv:1301.1905 [nucl-th].
- A. Deltuva and A. C. Fonseca, Phys. Rev. C 87, 054002 (2013), arXiv:1304.5410 [nucl-th].
- A. Deltuva and A. C. Fonseca, Phys. Rev. C 90, 044002 (2014), arXiv:1409.7318 [nucl-th].

Results from EPJ Web Conf. 113, 07004 (2016)

Jmax=4

factor	Resonance energy $E_r - i\Gamma/2$ [MeV]	Hiyama et al. [1]
1.00	0.25 - 0.40i	-
1.05	0.15 - 0.20i	-
1.10	0.08 - 0.15i	-
1.20	-0.243 (bound)	-0.054 (bound)

• NNpot. : Nijm93

V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, and J.J. de Swart, Phys. Rev. C 49, 2950 (1994).

• NYpot. : Nijmegen YN (89)

P.M.M. Maessen, Th.A. Rijken, and J.J. de Swart, Phys. Rev. C 40, 2226 (1989).

$J=1/2, T=1, V_{NN}(nn)$

Cut off R	NNNNLO	NNNLO	NNLO	NLO
0.8	-0.0219-i0.539	0.144-i0.347	0.149-i0.346	0.152-i0.345
0.9	-0.0155-i0.477	0.0823-i0.398	0.148-i0.353	0.147-i0.353
1.0	0.0105-i0.449	0.0275-i0.435	0.140-i0.363	0.140-i0.366
1.1	0.0219-i0.439	0.0188-i0.441	0.134-i0.374	0.130-i0.375
1.2	0.0233-i0.438	0.0158-i0.444	0.126-i0.382	0.122-i0.383

CDBonn: 0.466-i0.567

New Chiral YN potential

INPUT

- 2body force (NN) : Chiral forces N^4LO+ [Cut off scale; 400,450,500,550 MeV]
- · 2body force (YN): Chiral forces (Juelich) NLO13, NLO19 [Cut off 550, 600, 650 MeV]
- 3body force (YNN): 2pi exchange type

NN Potential N⁴LO+ P. Reinert, and H. Krebs, and E. Epelbaum, Semilocal momentum-space regularized chiral two-nucleon potentials up to fifth order, Eur. Phys. J. A 54, 86 (2018).

K. Miyagawa, H. Kamada, W. Glöckle, and V. Stoks, Phys. Rev. C 51, 2905 (1995).

New Chiral YN potential

Thank You for your attention.

t = 3/2 is omitted. s = 1.40 Unit is in MeV.

Channel numbers (J=1/2, T=1)

2 body j_max	Λ	Σ	Ν	Sum
1	4	10	10 *2	34
2	10	18	18 *2	64
3	12	26	26 *2	90
4	18	34	34 *2	120
5	20	42	42 *2	146

 $|pq\alpha r\rangle \equiv |pq(ls)j(\lambda \frac{1}{2})I(jI)J(tt_r)T\rangle$

 \mathbf{or}

N Σ : t=3/2 is also involved !

$$|pq\beta r\rangle \equiv |pq(ls)j(\lambda \frac{1}{2})I(jI)J[(t_r \frac{1}{2})t \frac{1}{2}]T\rangle$$
.

(Possibility of Bound state)

Juelich YN model

A.G. Reuber, K. Holinde, and J. Speth, Czech. J. Phys.
42, 1115 (1992).
J. Haidenbauer et al, PRC72, 044005 (2005)

Chiral Effective Field Theory version
 YN interaction

J. Haidenbauer, S. Petschauer, N. Kaiser, U-G. Meissner,

A. Nogga, W. Weise, Nucl. Phys. A915, 24 (2013).

(Possibility of Bound state)

• 3-body force with ⊿ particle

Next pages are for discussion after presentation.

63 Page 6 of 26

Λ [MeV]	SMS N	LO		SMS N	² LO		NLO13	NLO19
	500	550	600	500	550	600	600	600
$a_s^{\Lambda N}$	-2.80	-2.79	-2.79	-2.80	-2.79	-2.80	-2.91	-2.91
$r_s^{\Lambda N}$	2.87	2.72	2.63	2.82	2.89	2.68	2.78	2.78
$a_t^{\Lambda N}$	-1.59	-1.57	-1.56	-1.56	-1.58	-1.56	-1.54	-1.41
$r_t^{\Lambda N}$	3.10	2.99	3.00	3.16	3.09	3.17	2.72	2.53
$\operatorname{Re} a_s^{\Sigma N \ (I=1/2)}$	1.14	1.15	1.10	1.03	1.12	1.06	0.90	0.90
$\operatorname{Im} a_s^{\Sigma N}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\operatorname{Re} a_t^{\Sigma N \ (I=1/2)}$	2.58	2.42	2.31	2.60	2.38	2.53	2.27	2.29
$\operatorname{Im} a_t^{\Sigma N}$	-2.60	-2.95	-3.09	-2.56	-3.26	-2.64	-3.29	-3.39
$a_s^{\Sigma N (I=3/2)}$	-4.21	-4.05	-4.11	-4.37	-4.19	-4.03	-4.45	-4.55
$r_s^{\Sigma N}$	3.93	3.89	3.75	3.73	3.89	3.74	3.68	3.65
$a_t^{\Sigma N \ (I=3/2)}$	0.46	0.47	0.47	0.38	0.44	0.41	0.44	0.43
$r_t^{\Sigma N}$	-5.08	-4.74	-4.82	-5.70	-4.96	-5.72	-4.59	-5.27
$a_s^{\Sigma^+ p}$	-3.41	-3.30	-3.44	-3.47	-3.39	-3.25	-3.56	-3.62
$r_s^{\Sigma^+ p}$	3.75	3.73	3.59	3.61	3.73	3.65	3.54	3.50
$a_t^{\Sigma^+ p}$	0.51	0.52	0.52	0.41	0.48	0.45	0.49	0.47
$r_t^{\Sigma^+ p}$	-5.46	-5.12	-5.19	-6.74	-5.50	-6.41	-5.08	-5.77

Table 4 Scattering lengths (*a*) and effective ranges (*r*) for singlet (s) and triplet (t) *S*-waves (in fm), for ΛN , ΣN with isospin I = 1/2, 3/2, and for $\Sigma^+ p$ with inclusion of the Coulomb interaction

$$P_d \equiv \int_0^\infty dr r^2 \rho_d(r) \ , \qquad (13)$$

FIG. 11. Comparison of the deuteron overlap functions $\rho_d(r)$ for the triton and the hypertriton.

we find $P_d = 0.448$ for the triton and $P_d = 0.987$ for the hypertriton

[K. Miyagawa, H. Kamada, W. Glöckle, and V. Stoks, Phys. Rev. C 51, 2905 (1995)]

Expectation values of the Kinetic energies in Hypertriton (Unit in MeV)

	Nijm93 NSC89	N^4LO+ NLO19	N^4LO+ NLO19 2pi 3BF	N^4LO+ NLO19 2pi+1pi 3BF	N^4LO+ NLO19 2pi+1pi+cnt. 3BF
N-N	20.27	16.46	16.85	17.13	17.07
relative	(0.23)	(0.12)	(0.17)	(0.20)	(0.19)
(NN)-Y	2.20	1.87	2.50	2.87	2.80
relative	(0.80)	(0.40)	(0.72)	(0.65)	(0.63)
Total	23.51	18.85	20.07	20.83	20.70

Faddeev Components

$$\Psi_{NN\Lambda} = \psi_{\Lambda}^{(12)} + (1 - P_{12}) \psi_{\Lambda}^{(13)} ,$$

$$\Psi_{NN\Sigma} = \psi_{\Sigma}^{(12)} + (1 - P_{12}) \psi_{\Sigma}^{(13)} .$$

Conclusion and Outlook

- For the first time, we performed Faddeev calculations of Hypertriton including three-body forces.
- The YNN 3 body force had a **non-negligible** effect on the binding energy.
- Since the YN potential of **SMS** is NNLO, it is now possible to include 2π -type three-body forces **consistently**.
- (It is now possible to include three-body forces in the NCSM of medium-mass hypernuclei.)

This work is supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grants No. JP19K03849 and No. JP22K03597.