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Preeminent features of vij :

• short-range repulsion (common to many systems)

• intermediate- to long-range tensor character (unique to nuclei)
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Tensor force (and spin-orbit)
couple spin to space

diagonal elements of
force in different spatial
directions (Forest, PRC, 1996)

Intrinsic shape of the deuteron (Jlab);
low density in interior (repulsion) and 
exterior. Intermediate behavior is strongly
space-dependent

Qd = 0.286 fm2



• In deuteron ρMS

T=0,S=1(r)|d ∝ ρM
d (r′ = r/2), where ρM

d (r′) is the

matter density, i.e. the charge density in T=0 states

• Fourier transforms of ρM
d (r′) “measured”in elastic e-scattering:

A(q) " |FM=0(q)|2 + 2 |FM=1(q)|2

T20(q) " −
√
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JLab measurement of  T20
in elastic electron scattering

Roy Holt Bonner Prize



Tensor correlations in A>2

Much more difficult to `see’ in larger nuclei.
Typical matrix elements (eg. energy) involve Sij2

Light nuclei spectra, though, require a `realistic’ force

amount of overlap of the repulsive potential cores in the
wave function. Thus the ground state for 8Be is a 3P[211]
state, which has degenerate spin of J! ! 0"; 1"; 2".
The spectra are also very compressed compared to
experiment.

The AVX0 and AV40 overcome many of the limitations
of the simplest models by preserving the difference be-
tween attractive even- and repulsive odd-partial waves.
Both provide significant saturation, particularly the fea-
ture that A ! 5 nuclei are unstable. However, the A ! 8
mass gap is a more subtle effect, since both these models
predict 8Be to have slightly more than twice the binding
of 4He. The lowest states are the spatially most symmet-
ric, so 8Be now has a 1S[4] J! ! 0" ground state. The
spectrum is also less compressed. Because the AVX0 does
not differentiate between 1S and 3S interactions, it shares
the failing of AV10 in having 6He more bound than 6Li,
but due to the correct ordering of spatial symmetries, 8Be
is much more bound than 8He.

The tensor forces in AV60 provide significant addi-
tional saturation compared to the simpler potentials.

This is due to (i) a less attractive vc
10 because much of

the binding of the deuteron is now provided through
tensor coupling to the 3D channel, and (ii) the ability of
the tensor interaction with third particles to change an
attractive 1S pair into a repulsive 3P pair [20]. This
saturation is sufficiently strong to underbind all the nuclei
with respect to experiment, and it opens the A ! 8 mass
gap by making 8Be less than twice as bound as 4He.
However, it leaves the A ! 6; 7 nuclei with only marginal
stability. The tensor forces begin to mix the 2S"1L#n$
states so they are no longer eigenstates, but several sets
of states, like the 2" and 3" states in 6Li, remain nearly
degenerate.

The spin-orbit terms in AV80 provide much more mix-
ing and clearly break the J! degeneracy, producing a
spectrum that is properly ordered in the A % 8 nuclei,
although the splittings of most spin-orbit partners are
smaller than observed. The binding energies shift slightly
compared to AV60, some up and some down, with the A !
6; 7 nuclei becoming more stable while the A ! 5; 8 mass
gaps are preserved. Going to the full AV18 interaction

-70

-60

-50

-40

-30

-20

E
ne

rg
y 

(M
eV

)

 α+d

 α+t

α+α

 α+n  α+2n  6He+2n

 6Li+α

AV6′ AV8′
AV18

IL2 Exp

0+

4He
3/2−
1/2−

5He
0+
2+

6He 1+

3+
2+

6Li
3/2−
1/2−

7/2−
5/2−

7Li

0+
2+

8He

0+
2+

4+

1+
3+

8Be
3+
1+
2+
4+

10B

3+

1+

 α+d

 α+t

α+α

 α+n  α+2n  6He+2n

 6Li+α

FIG. 2 (color). Nuclear energy levels for the more realistic potential models; shading denotes Monte Carlo statistical errors.
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FIG. 1 (color). Nuclear energy levels for the simpler potential models; dashed lines show breakup thresholds.
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QMC Calculations of Low Energy n-α Scattering

Nollett et al., PRL99, 022502 (2007)

Phase Shifts Cross Sections (AV18/IL2)
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alpha-n phase shifts

Nuclear Interactions

• NN interactions alone fail to predict:

1. spectra of light nuclei

2. Nd scattering

3. nuclear matter E0(ρ)
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• 2π-NNN interactions:

R
UIX  = jk

22

ijT(r  ) T(r  )
cyc

2" A + #2"
pw

3

3-nucleon 
interaction: UIX

Beyond 2π-exchange (IL2 model, with important T = 3/2 terms)

very weak

sw+
2!

A3! + + A2!UIX

parameters (∼ 3) fixed by a best fit to the energies of low-lying

states (∼ 17) of nuclei with A ≤ 8

AV18/IL2 Hamiltonian reproduces well:

• spectra of A=6–10 nuclei (attraction provided by IL2 in

T = 3/2 triplets crucial for p-shell nuclei)

• low-lying p-wave resonances with Jπ=3/2− and 1/2−

respectively, as well as low-energy s-wave (1/2+) scattering

but some discrepancies persist in A=3 and 4 scattering observables

5

IL7:

Nollett, et al., PRL 2007



The	
  ADLB	
  (Asynchronous	
  Dynamic	
  Load-­‐Balancing)	
  
library	
  &	
  GFMC.	
  GFMC	
  energy	
  93.5(6)	
  MeV;	
  expt.	
  92.16	
  MeV.	
  	
  
GFMC	
  pp	
  radius	
  2.35	
  fm;	
  expt.	
  2.33	
  fm.	
  

Long-­‐range	
  correlaLons
(clustering)	
  in	
  Carbon-­‐12

Epelbaum	
  et	
  al.,	
  Phys.	
  Rev.	
  LeR.	
  106,	
  192501	
  (2011)

GFMC	
  (Pieper	
  et	
  al.)

LaTce	
  EFT	
  (Lee,	
  Epelbaum,	
  Meissner,…)

0+(1)	
  fpp 0+(2)	
  fpp



Shorter-range correlations
Tensor Force:  higher momentum transfer :

Two-Nucleon Distribution Functions

Preeminent features of vij :

• short-range repulsion (common to many systems)

• intermediate- to long-range tensor character (unique to nuclei)
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T=0 S=1 
`deuteron’ 

pairs



• At small separation, np relative w.f. in a nucleus ∝ deuteron

w.f., but scaling factor RA > number of T, S=0,1 pairs

• 〈O〉A $ RA 〈O〉d, where O is any short-range operator effective

in the T = 0, S = 1 channela

Scaling

RA 〈vπ〉A/〈vπ〉d σπ
A/σπ

d σγ
A/σγ

d

3He 2.0 2.1 2.4(1) $ 2

4He 4.7 5.1 4.3(6) $ 4

6Li 6.3 6.3

7Li 7.2 7.8 $ 6.5(5)

a
e.g., m.e. of axial two-body currents in pp weak capture and 3H β-decay are ∝ to each other →

model independent prediction of pp cross section [Schiavilla et al., PRC58, 1263 (1998)]
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Expectation of short-range operator in T=0, 
S=1 pairs: scaling with nucleus



Two-nucleon momentum distributions:
Total P=0;   p1 ~ - p2

NN momentum distributions at Q=0 (back-to-back)

• Scaling is (again!) seen between deuteron ρd(q) and nucleus

ρnp(q, Q = 0)
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Schiavilla, PRL 2007

Tensor Correlations and Two-Nucleon Momentum Distributions

ρNN (q,Q) =
1

2J + 1

∑

MJ

〈ψJMJ
|
∑

i<j

P NN
ij (q,Q) | ψJMJ

〉

where q and Q are respectively the relative and total momenta of

the NN pair, and

P NN
ij (q,Q) ≡ δ(kij − q)δ(Kij − Q) PNN(ij)

• np (pp) pairs predominantly in T=0 deuteron-like (T=1 1S0)

state→ large differences between ρnp and ρpp

• Pair-momentum distributions can be used to estimate

NN -knockout x-sections

• ρNN can be calculated exactly with QMC

17

Dominated by T=0,S=1 (np) and T=1,S=0 (pp) pairs



Experimental Evidence for the Effects of Tensor Correlations

• JLab measurements on 12C(e, e′pp)a and (e, e′np)b

• Analysis of 12C(p, pp) and (p, ppn) BNL datac

• Possibly also seen in π-absorption: σ(π−, np)/σ(π+, pp) ! 1d
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12C(e,e’pp)/12C(e,e’p) extrapolated = (9.5+/!2)%

12C(e,e’np)/12C(e,e’p) extrapolated = (107+/!23)%

Analysis of BNL data:

pn pXP  / P  = 92   %+8
−18

a
Shneor et al., PRL99, 072501 (2007); b

Subedi et al., Science 320, 1476 (2008); c
Piasetzky et al.,

PRL97, 162504 (2006); d
Ashery et al., PRL47, 895 (1981)
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np correlations correlations
in back-to-back nucleon 
knockout:
observed at BNL, Jlab



Typical method to study correlations, 
inclusive scattering

Liquid Helium, ... neutron scattering 

pair distribution function
Lennard-Jones model fluid



Electron and Neutrino Scattering

S(q,ω) =
�

f

�0|O†(q)|f >< f |O(q)|0� δ(ω − (Ef − E0))

Longitudinal (Charge) scattering

O(q) =
�

i

Pp(i) exp[iq · r]

Transverse (Current Scattering) 

O(q) =
�

i

µ(i) exp[iq · ri] + Pp(i)pi exp[iq · ri p(i) +
�

i<j

jij(q)



Two-Nucleon Density Profiles in T, S !=0,1 States

• Scaling persists in T, S=1,0 channel (1S0 state) for r ≤ 2 fm

• But no scaling occurs in remaining channels (interaction either

repulsive or weakly attractive)
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Inclusive Electron Scattering
and spin 0, T=1 pairs (pp, nn)



2H Longitudinal and Transverse Response Functions
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Inclusive electron scattering on the deuteron

Approaches to (e, e′) Inclusive Scattering (IS)

Two response functions characterize (e, e′) IS

Rα(q, ω) =
∑

f "=0

δ(ω + E0 − Ef ) | 〈f | Oα(q) |0〉 |2 α = L, T

require knowledge of continuum states: hard to calculate for A ≥ 3

Sum rules: integral properties of response functions

Integral transform techniques

E(q, τ) =

∫ ∞

0
dω K(τ, ω) R(q, ω)

and suitable choice of kernels (i.e., Laplace or Lorentz) allows

use of closure over | f〉, thus avoiding need of explicitly

calculating nuclear excitation spectrum

While in principle exact, both these approaches have drawbacks

15



Inclusive Electron Scattering
(e, e′) Inclusive Response: Scaling Analysis

Donnelly and Sick (1999)

3He 4He

Scaling variables: ψ′ ! y/kF and fL,T = kF RL,T /GL,T

Data at variance with PWIA expectation that fL ! fT

Excess strength, especially for 4He, in transverse response

14

Sick and Donnelly, 1999
Carlson, Schiavilla, Sick, 2002

Longitudinal sensitive to pp correlations
Transverse sensitive to np correlations



The 4He Coulomb Sum Rule

RC/MEC (small) contributions to SL(q) tend to cancel out

Theory and experiment in agreement when using free GEp
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Measuring charge-charge (‘pp’) correlations



Excess Transverse Strength
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How much of the excess transverse strength ∆ST = ST − S1b
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in the quasi-elastic peak region?

Can we understand the A-dependence of ∆ST ?
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Transverse Channel:  1 + 2-nucleon currents



A-Scaling Property
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Euclidean Response Functions

Carlson and Schiavilla (1992,1994)

Ẽα(q, τ) =

∫ ∞

ω+
th

dω e−τ(ω−E0) Rα(q, ω)

G2
Ep(q, ω)

= 〈0 | O†
α(q)e−τ(H−E0)Oα(q) |0〉 − (elastic term)

e−τ(H−E0) evaluated stochastically with QMC

No approximations made, exact

At τ = 0, Ẽα(q; 0) ∝ Sα(q); as τ increases, Ẽα(q; τ) is more and

more sensitive to strength in quasi-elastic region

Inversion of Ẽα(q; τ) is a numerically ill-posed problem;

Laplace-transform data instead

24



3He and 4He Longitudinal Euclidean Response Functions

Eα(q, τ) = exp
[
τ q2/(2 m)

]
Ẽα(q, τ)

and EL(q, τ) → Z for a collection of protons initially at rest

25



3He and 4He Transverse Euclidean Response Functions

Excess strength in quasielastic region (τ > 0.01 MeV−1)

Larger in A = 4 than in A = 3, as already inferred from ST

26



ν-Deuteron Scattering up to GeV Energy

Shen et al. (2012)
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[
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= i εazb jµ

b

jµ
CC reproduces well known weak transitions in A ≤ 7 nuclei and

µ-capture rates in d and 3He [Schiavilla and Wiringa (2002); Marcucci et al. (2012)]
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What happens in ~GeV neutrino scattering?

Potentially important in Mini-Boone, LBNE,...



2

I. NEUTRINO EMISSIVITY AND THE SPIN STRUCTURE FUNCTION

From the point of view of many-body theory, neutrino interaction rates in the medium can be factored into a

product of two terms: (i) the correlation functions of the dense medium, and (ii) kinematical factors and coupling

constants associated with neutrino currents. The latter are well-known and relatively simple functions of the neutrino

energy and momentum. In contrast, the spin, density and current correlation functions are complex functions of

temperature, density, and the energy and momentum transfer because multi-particle dynamics and correlations in the

ground state of the strongly interacting system play a critical role.

The dynamic spin structure factor Sσ(ω,q) of neutron matter encodes the linear response of neutron matter to spin

fluctuations and is defined as [2]

Sσ(ω,q) =
4

3n

1

2π

� ∞

−∞
dteiωt

�
s(t,q) · s(0,−q)

�

=
4

3n

�

f

�0|s(q)|f� · �f |s(−q)|0�δ(ω − (Ef − E0)) (1.1)

where s(t, q) = V −1
�N

i=1 e
−iq·ri(t)σi and σi is the spin operator acting on the ith nucleon at time t. The second line

expresses the same response as a sum over final states |f� coupled to the ground state through the time-independent

spin operator.

Alternatively in terms of the field operators, s(t, q) is Fourier transform of the spin density operator s(x) =
1
2ψ

+
(x) τ ψ(x) with τ being the usual Pauli matrix and ψ(x) is the non-relativistic field operator. The normal-

ization factor 4/3n where n is the neutron number density ensures that the dynamic form factor is canonically

normalized such that Sσ(q → ∞) = 1 for the non-interacting Fermi systems and conforms to the standard definitions

of the sum-rules discussed below in §II.
The rate of neutrino pair production can be expanded in powers of the nucleon velocity and the momentum of the

neutrino pair [1]. The neutrino emissivity of neutron matter denoted by Q, and defined as the rate of energy loss due

to neutrino pair production per unit volume and per unit time, to leading order in the neutron velocity and neutrino

momentum is given by[8]

Q =
C2

AG
2
Fn

20π3

� ∞

0
dω ω6 e−ω/TSσ(ω) , (1.2)

where GF = 1.166 × 10
−11

MeV
−2

is the Fermi constant of the weak interaction, CA = −1.26/2 is the neutron

neutral-current axial coupling constant. At low temperature, when T � EFn, where EFn is the neutron Fermi energy,

the neutrino pair momentum q is small compared to the both the Fermi momentum kFn and the intrinsic momentum

scales associated with the strong interaction, and may be neglected and Sσ(ω) = Sσ(ω,q = 0). Hence in Eq. (1.2)

only Sσ(ω) appears and it is both a function of density and temperature as implied by the ensemble average denoted

on the RHS of the equation (1.1).

II. SUM-RULES

The spin response describes the coupling to the ensemble of final states obtained by flipping all the ground-state

spins in neutron matter. If spin and space are uncoupled, spin is a good quantum number and there would be no

response at zero momentum transfer. However, the spin-orbit and tensor interactions (acting only in relative p−waves

and higher in neutron matter) induce a finite expectation value of �S2� even at T=0 and a finite response results.

The spin-orbit and tensor interactions are of pion range or less, so they predominantly affect neutrons coupled to spin

1 at a pair separation typical for nearest neighbors at that density. Although there is zero total momentum transfer,

the two interacting particles can nevertheless have significant relative momenta in the relevant final states.

The overall strength and energy distribution of the response can be characterized through the relevant sum-rules.

We employ Quantum Monte Carlo to compute the low order sum-rules that relate moments of Sσ(ω,q) to its ground

state properties. We then combine these sum-rule constraints with asymptotic high-energy behavior expected in the

two-particle system to obtain constraints on the distribution of strength of Sσ(ω) as a function of ω at q = 0. For

the same reason, the response in Eq. (1.1) is solely due to the excitation of multi-particle states as single particle

excitations vanish for these kinematics.

Though we ultimately desire information about the spectrum and coupling to the excited states of the system, the
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I. NEUTRINO EMISSIVITY AND THE SPIN STRUCTURE FUNCTION

From the point of view of many-body theory, neutrino interaction rates in the medium can be factored into a

product of two terms: (i) the correlation functions of the dense medium, and (ii) kinematical factors and coupling

constants associated with neutrino currents. The latter are well-known and relatively simple functions of the neutrino

energy and momentum. In contrast, the spin, density and current correlation functions are complex functions of

temperature, density, and the energy and momentum transfer because multi-particle dynamics and correlations in the

ground state of the strongly interacting system play a critical role.

The dynamic spin structure factor Sσ(ω,q) of neutron matter encodes the linear response of neutron matter to spin

fluctuations and is defined as [2]

Sσ(ω,q) =
4

3n

1

2π

� ∞

−∞
dteiωt

�
s(t,q) · s(0,−q)

�

=
4

3n

�

f

�0|s(q)|f� · �f |s(−q)|0�δ(ω − (Ef − E0)) (1.1)

where s(t, q) = V −1
�N

i=1 e
−iq·ri(t)σi and σi is the spin operator acting on the ith nucleon at time t. The second line

expresses the same response as a sum over final states |f� coupled to the ground state through the time-independent

spin operator.

Alternatively in terms of the field operators, s(t, q) is Fourier transform of the spin density operator s(x) =
1
2ψ

+
(x) τ ψ(x) with τ being the usual Pauli matrix and ψ(x) is the non-relativistic field operator. The normal-

ization factor 4/3n where n is the neutron number density ensures that the dynamic form factor is canonically

normalized such that Sσ(q → ∞) = 1 for the non-interacting Fermi systems and conforms to the standard definitions

of the sum-rules discussed below in §II.
The rate of neutrino pair production can be expanded in powers of the nucleon velocity and the momentum of the

neutrino pair [1]. The neutrino emissivity of neutron matter denoted by Q, and defined as the rate of energy loss due

to neutrino pair production per unit volume and per unit time, to leading order in the neutron velocity and neutrino

momentum is given by[8]

Q =
C2

AG
2
Fn

20π3

� ∞

0
dω ω6 e−ω/TSσ(ω) , (1.2)

where GF = 1.166 × 10
−11

MeV
−2

is the Fermi constant of the weak interaction, CA = −1.26/2 is the neutron

neutral-current axial coupling constant. At low temperature, when T � EFn, where EFn is the neutron Fermi energy,

the neutrino pair momentum q is small compared to the both the Fermi momentum kFn and the intrinsic momentum

scales associated with the strong interaction, and may be neglected and Sσ(ω) = Sσ(ω,q = 0). Hence in Eq. (1.2)

only Sσ(ω) appears and it is both a function of density and temperature as implied by the ensemble average denoted

on the RHS of the equation (1.1).

II. SUM-RULES

The spin response describes the coupling to the ensemble of final states obtained by flipping all the ground-state

spins in neutron matter. If spin and space are uncoupled, spin is a good quantum number and there would be no

response at zero momentum transfer. However, the spin-orbit and tensor interactions (acting only in relative p−waves

and higher in neutron matter) induce a finite expectation value of �S2� even at T=0 and a finite response results.

The spin-orbit and tensor interactions are of pion range or less, so they predominantly affect neutrons coupled to spin

1 at a pair separation typical for nearest neighbors at that density. Although there is zero total momentum transfer,

the two interacting particles can nevertheless have significant relative momenta in the relevant final states.

The overall strength and energy distribution of the response can be characterized through the relevant sum-rules.

We employ Quantum Monte Carlo to compute the low order sum-rules that relate moments of Sσ(ω,q) to its ground

state properties. We then combine these sum-rule constraints with asymptotic high-energy behavior expected in the

two-particle system to obtain constraints on the distribution of strength of Sσ(ω) as a function of ω at q = 0. For

the same reason, the response in Eq. (1.1) is solely due to the excitation of multi-particle states as single particle

excitations vanish for these kinematics.

Though we ultimately desire information about the spectrum and coupling to the excited states of the system, the
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where ψ is the ground state of the system. The AFDMC method is useful to compute the expectation values of mixed

operators like �ΨT |O|ψ�. We use Variational Monte Carlo (VMC) to extrapolate the value of operators that are given

by �O� = 2�O�mix − �O�vmc as described in Ref. [14, 17]. The resulting gσ(r) is used to obtain the structure function

S0
σ(q). We show gσ(r) and S0

σ(q) in Fig. 1. We finally evaluate S0
σ sum-rule by taking the q → 0 limit as indicated in

Eq. (2.3).

The energy weighted-sum-rule can be calculated by the expectation value of the tensor and spin-orbit interactions

when q = 0. For the Hamiltonian of Eq. (2.5) we have

S
+1
σ = − 4

3N

�

i<j

(3�v3(rij)Sij�+ �v4(rij)L · S�) . (2.9)

Because the variational wave function ΨT used as input for AFDMC contains neither tensor nor spin-orbit corre-

lations, the most accurate way to obtain these expectation values is by calculating the energy as a function of the

spin-orbit and tensor interaction strengths and using the slope of the energy with respect to these couplings to produce

the true ground-state expectation values.

These initial calculations are performed with the AV8’ NN interaction without any three-nucleon interaction. Based

upon simple estimates of the strength of the three-nucleon force, we would expect of order 10 − 20% corrections to

the sum-rules from the three-nucleon interaction. We are exploring this dependence and will report these results

separately.
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Figure 1: (Color online) The static structure function S0
σ(q) computed at saturation density. In the inset we show the

corresponding spin pair correlation function gσ(r). Free particle results are given as dashed lines.

In computing the ground state properties in AFDMC we neglect the role of pairing and superfluidity. This will

restrict our study to the calculation of the neutrino emissivity at temperatures that are large compared to the neutron

pairing gaps in neutron matter but still small compared to the Fermi energy. Thus, our results will be applicable to

ambient conditions in the supernova but will not apply to old neutron stars where neutron matter is likely to be below
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the superfluid critical temperature. For T � ∆ where ∆ ≈ 1 MeV is the superfluid gap, the number of quasi-particles

is exponentially suppressed and response is vanishingly small. In vicinity of the critical temperature, Cooper pair

breaking and formation, as well as collective modes can enhance spin-fluctuations at a frequency ω ≈ (1 − 2)∆ [18].

It may be possible in the future to examine this regime more critically using techniques similar to those developed

here.

The AFDMC results for the sum-rules are shown in Table I where the individual sum-rules and average excitation

energies defined by ω̄0 = S0
σ/S

−1
σ and ω̄1 = S1

σ/S
0
σ are listed. The density dependence of the S0

σ sum-rule is quite

modest over the range of densities considered.

Table I: AFDMC results for the sum-rules
Density (fm−3) S−1

σ (MeV−1) S0
σ S+1

σ (MeV) ω̄0 (MeV) ω̄1 (MeV)
n = 0.12 0.0057(9) 0.20(1) 8(1) 35(9) 40(8)
n = 0.16 0.0044(7) 0.20(1) 11(1) 46(11) 55(8)
n = 0.20 0.0038(6) 0.18(1) 14(1) 47(12) 78(10)

The spin susceptibilities shown in table I correspond to χ/χF = 0.37, 0.34, and 0.34 for n = 0.12, 0.16, and 0.20

fm
−3

. At the lowest density this is very similar to results obtained in [16], at the highest density our result is

approximately 20 per cent lower for the susceptibility. The difference may lie in the fact that the three-nucleon force

used in [16] is repulsive in unpolarized neutron matter, and less so in spin-polarized matter.

The average energies ω̄0 and ω̄1 are extracted from the sum-rules as estimates for the energy of the peak of the

response, and their difference is a measure of the width of the distribution. The fact that the calculated ω̄0 and ω̄1

are fairly similar indicates a moderately narrow peak in the response. A positive definite response requires ω̄1 ≥ ω̄0.

The peaks shift to higher energy with increasing density, as expected. The tables also indicate that the strength

distribution gets more diffuse with increasing density with strength being pushed out to higher energy.

III. ASYMPTOTIC FORM AT HIGH ENERGY

In order to constrain the low-energy response relevant for astrophysical applications using sum-rules we need some

knowledge of the behavior of Sσ(ω) at large ω. In this regime the response probes the short time behavior of the

many-body correlation function and on general grounds we can expect this to be dominated by two-particle dynamics.

This intuitive expectation can be cast in more formal terms using the operator product expansion originally developed

by Wilson as a standard technique in quantum field theory. The operator product expansion has been used to analyze

short-time behavior of the density-density correlation function in a strongly interacting non-relativistic fermi gas

[19, 20]. Adapting this to the spin-density operator, the relevant expansion in this case organizes Sσ(ω) in terms of

local operators in inverse powers ω, and is given by

�
dt e

iωt

�
d
3
x ψ†σψ(t,R+ x) ψ†σψ(0,R− x) = iW1(ω) O

(1)
(R) + iW2(ω) O

(2)
(R) + · · · (3.1)

where the expectation value of the local operators O(n)
(R) depends on the many-body ground state but the Wilson

coefficients Wi(ω) depend only on few-body physics with i incoming and outgoing asymptotic states. For q = 0 the

Wilson coefficient W1(ω) vanishes identically in spin saturated system and the leading contribution is due to W2(ω).
The functional form of W2(ω) is determined by the matrix elements of the spin operator between two-body scattering

states. This implies that up to an overall constant which depends only on the ground state, Sσ(ω) at high frequency

is determined by the the two-body matrix elements. In general, this will depend sensitively on the short-distance

behavior of the two-nucleon interaction and will be model dependent. However, to extract the response at low energy

in a model independent fashion it suffices to use in the two-body calculation, the same Hamiltonian employed in the

calculation of the sum-rules in many-body calculation.

The spin response function Sσ(ω, q) for two neutrons are evaluated as follows,

Sσ(ω, q) = | < ψF |ÔA|ψI > |
2δ(ω + EI − EF ). (3.2)

For spin response at q=0, the operator is the sum of spins, ÔA = �σ1 + �σ2. ψI and ψF are the eigenstates of two

neutrons in spin-triplet states and take ψI to be the ground state.

We have calculated these matrix elements using the same nuclear Hamiltonian employed in the AFDMC by solving

the Schrödinger equation for two-neutrons with simple box boundary condition. These results indicate that the high

Sum Rules (inc. spin susceptibility) give
measure of overall stength, position and width of peak

8

50 100 150 20010-5

10-4

10-3

10-2

0 50 100 150 200
! [MeV]

0

0.0005

0.001

0.0015

0.002

S "
 (!

) [
M

eV
-1

]

OPE
#PT
OPE: Eq. (4.6)
sum-rule
ind. fit

Figure 2: (Color online) The spin response function Sσ(q = 0,ω) of neutron matter at saturation density obtained by fitting

to AFDMC sum-rules using two different ansatz are shown as the black solid and dashed curves. The inset compares the fits

and the two-particle response at high energy obtained by confining two neutrons in a spherical cavity of radius 7 fm (red) or 8

fm (green). The linear, low-frequency forms predicted in Ref. [22], labeled as OPE and χPT are shown for comparison. The

dot-dot-dashed curve is obtained using the two-body approach in Eq. (4.6) with OPE.

the structure function obtained in Ref. [22] are shown for the two choices of C̃σ corresponding to the OPE and χPT
potentials discussed earlier. The form of the low-frequency response in Eq. (4.1) is valid only at ω � EF . In the

figure we also show the results from the two-body approach (described in Eq. (4.6)) in the Born approximation with

OPE. At low frequency ω ≤ EF /2, it gives similar results to the quasi-particle picture, then becomes larger at higher

frequency since it includes the exact phase space integrals. The inset compares the fits and the two-particle response

at high energy obtained by confining two neutrons in a spherical cavity of radius 7 fm (red) or 8 fm (green). The

asymptotic forms and sum-rules force significantly more strength at lower energy than obtained previously.

The simple phenomenological fit (dashed line - Eq. (5.2) and the fit to the quasi-particle form (solid line - Eqs.

(4.5) and (5.1)) produce very similar response functions. In addition to the sum-rule constraints, we are forcing the

response to go to zero at low frequency, have a single peak structure, and to fall off fairly rapidly at high-energy as

obtained from the two-neutron response. Combined, these considerations place fairly tight constraints on the spin

response of neutron matter.

In Figure 3 we compare the response functions obtained over a range of densities n = 0.12, 0.16 and 0.20 fm−3. As

expected from the sum-rules, the peak of the response functions shifts to larger energy with increasing density. The

tensor and spin-orbit correlations are naturally of shorter range at the higher densities where the mean inter-particle

spacing is shorter, and hence the peak shifts to higher energy. The total strength in the response is fairly flat over

the regime of densities we consider as obtained in the sum-rule calculations for S0.

Finally, at higher density the distribution is somewhat broader as ω1 increases more rapidly with density than

ω0. Both ω0 and ω1 increase rapidly, presumably associated with the increasing importance of the shorter-range

Shen, et al, 2012 (arXiv:
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Figure 3: (Color online) The spin response function Sσ(q = 0,ω) of neutron matter at ρ = 0.12, 0.16, and 0.20 fm−3 from fits
to AFDMC sum-rules results at zero temperature .

components of the nuclear force at and above saturation density. While we expect this trend to be qualitatively

correct contributions due to three-body forces and from two-body currents are able to play a role in modifying this

behavior.

VI. EXTENSION TO FINITE TEMPERATURE AND IMPACT ON NEUTRINO PRODUCTION

The AFDMC method we employ is restricted to zero temperature and we have not explicitly computed the tem-

perature corrections to the sum-rules. Hence there will be several caveats to consider when using our results in finite

temperature applications such as supernova where Sσ(ω) plays a role in neutrino production rates. To discuss these

we first note that there are three fundamental energy scales inherent to our present analysis of the structure function

and the neutrino emissivity. They are: (i) typical energy at which the structure function has significant strength and

is given by ω̄0 and ω̄1; (ii) the energy scale at which the structure function is sampled in the neutrino emissivity and

is denoted as ων – from the expression for Q in Eq. (1.2) we expect that ων � 5− 6 T ; and (iii) the high energy scale

ωc at which the asymptotic two-body behavior dominates.

At very low temperature where ων � ω̄0 and ων � ω̄1, the sum-rules do not provide useful constraints. Here the

low-frequency form of Sσ(ω) given in Eq. (4.5) can be used to calculate the neutrino emissivity with the requirement

that ων � EF and C̃σων � 1. In practice, at nuclear density, the condition that ων � EF is more restrictive and

limits the use of the low frequency form to region where T ≤ EF /6. At intermediate temperature when ων � ω0

or ω1 and T ≤ EF , the zero temperature sum-rule constraints on the form of S0
σ and S1

σ become relevant. Here

the temperature is intermediate and corrections to the T = 0 sum-rules are expected to be small due to the Pauli

principle.

At finite temperature, the dynamic structure factor obey detailed-balance

Sσ(−ω) = exp

�
−ω

T

�
Sσ(ω) , (6.1)
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and this is reflected in Eq. (1.2) for the neutrino emissivity where the exponential term accounts for the fact that neu-

trino emission corresponds thermal fluctuations in which ω is negative. There are residual temperature dependencies

in the function Sσ(ω). First, from the fluctuation-dissipation theorem we have

Sσ(ω) = −2 (1− exp

�
−ω

T

�
)
−1

Im ΠR
(ω) , (6.2)

where ΠR is the retarded polarization function which is an odd function of ω and vanishes at ω = 0. To extend to

finite temperature the zero-temperature ansatze in §V need to be multiplied the factor (1− exp (−ω/T ))−1. A second

source of temperature corrections arise from the fact that at low frequency the spin relaxation time τ−1
σ � CσT 2

is dominated by scattering between thermally excited quasi-particles as described in Eq. (5.1). We incorporate this

expected behavior by using the finite temperature expression for τσ given in Eq. (5.1) in the the low-frequency form

given for Sσ(ω) in Eq. (4.5). Other sources of temperature corrections exist such as those arising from transitions in

which the excited many-particle states does not decay to the ground state and should be investigated in the future. We

leave this for future work as it would require the development of finite temperature Quantum Monte Carlo techniques.

With the aforementioned finite temperature extensions we employ the Sσ(ω) obtained using the sum-rule constraints

to compute the neutrino emissivity. In Figure 4, the resulting energy loss rate Q are shown for various temperatures

T . The large strength required by the sum-rules at intermediate energy leads to a larger neutrino emissivity compared

to the simple extrapolation of results obtained in the quasi-particle approximation with only two-particle two-hole

excitations. Our results are almost a factor of 2 larger than those obtained using either χPT in Ref. [22] or those

obtained directly from nucleon-nucleon phase-shifts in Ref. [6] at T ≤ 5 MeV. We suspect that this enhancement is

due to correlations in the ground state that are not captured in the quasi-particle approximation.
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Figure 4: (Color online) The energy-loss rate Q at various temperature as defied in Eq. (1.2), for OPE, χPT and our results.

Energy loss rate Q



Conclusions:

Tensor (and other) correlations critical in nuclear physics

Obvious impacts in the deuteron (Q, T20,...),
but for larger nuclei, impact not often seen in 

low-energy observables (spectra, etc.)

Tensor correlations more important in spin observables

More obvious impact at higher momenta:
           np vs. pp back-to-back in electron scattering
           inclusive electron and neutrino scattering

Can impact astrophysically relevant behavior :
 neutrino propagation, 3P2 pairing,   ...


