Few-Nucleon Systems Interacting via Non-local Quark-Model Baryon-Baryon Interaction

Y. Fujiwara: Kyoto University, Japan K. Fukukawa: RIKEN Nishina center, Japan

- 1. Introduction
- 2. Quark-model baryon-baryon interaction fss2
- 3. Three-cluster Faddeev formalism using two-cluster RGM kernels
- 4. 3*N* and 4*N* bound-state problems
- 5. *nd* and *pd* elastic scattering
- 6. Breakup cross sections and analyzing powers \rightarrow skip
- 7. Summary

Motivation

Comprehensive understanding of few-baryon systems using quark-model baryon-baryon interaction fss2

Analysis of the off-shell effect related to the non-locality of the quarkmodel baryon-baryon interaction, based on the naive 3-quark structure of baryons

essential difference from the meson-exchange potentials in the description of the short-range repulsion:

... non-local kernel by the quark-exchange *vs.* local hard core (through the color-magnetic *quark-quark* interaction) (phenomenological) 2-body – 3-body – 4-body ...

from bound-states to scattering and breakup reactions

nd scattering and pd scattering ... effect of the Coulomb force

few-baryon systems including the strangeness: hyper-triton, $\Sigma^{-}d$ scattering

 ${}^{4}{}_{\Lambda}\mathrm{H}$, ${}^{4}{}_{\Lambda}\mathrm{He}$, ${}^{4}{}_{\Lambda\Lambda}\mathrm{H}$, ...

Renormalized RGM : elimination of energy-dependence in RGM kernels

H. Matsumura, M. Orabi, Y. Suzuki, Y. Fujiwara, D. Baye, P. Descouvemont, M. Theeten 3-cluster semi-microscopic calculations using 2-cluster non-local RGM kernels: Phys. Lett. B659 (2008) 160; Phys. Rev. C76, 054003 (2007)

Three-body systems for composite particles

Three-cluster equation using two-cluster RGM kernel: Y. Fujiwara, H. Nemura, Y. Suzuki, K. Miyagawa, and M. Kohno, Prog. Theor. Phys. 107, 745 (2002); Y. Fujiwara, Y. Suzuki, K. Miyagawa, M. Kohno, and H. Nemura, Prog. Theor. Phys. 107, 993 (2002).

3-types of singularities for scattering calculations

- 1. deuteron singularity of 2-body *T*-matrix \rightarrow Noyes-Kowalski method $t = \text{real at } 0 < E_{\text{inc}} < |\varepsilon_{\text{d}}|$ Prog. Theor. Phys. 124 (2010) 433 ; $t = \text{complex at } E_{\text{tot}} = E_{\text{inc}} + \varepsilon_{\text{d}} > 0$ 125 (2011)729; 125(2011)957, 979
- 2. moving singularity of 3-body free Green function → spline interpolation and subtraction method (by Bochum-Krakow group)
- 3. Coulomb singularity → extension of the Vincent-Phatak method for the screened Coulomb force

A practical method to solve cut-off Coulomb problems in the momentum space --- Application to the Lippmann-Schwinger Resonating-Group Method and the *pd* elastic scattering --- : Y. Fujiwara and K. Fukukawa, Prog. Theor. Phys. 128 (2012) 301

B₈**B**₈ interactions by fss2

Y. F., C. Nakamaoto, Y. Suzuki, M. Kohno PRC64 (2001) 054001 PRC65 (2002) 014001

A natural and accurate description of NN, YN, YY interactions in terms of (3q)-(3q) RGM Number

• Short-range repulsion and *LS* by quarks

Model Hamiltonian

• Medium-attraction and long-rang tensor by S, PS and V meson exchange potentials (fss2) (*Cf.* FSS without V) Number of parameters less than 20

isospin

Y. F., C. Nakamoto, Y. Suzuki, PRC54 (1996) 2180

Baryon Octet (B_8)

(udd) (uud) N S=0 I = 1/2 $H = \sum_{i=1}^{6} (m_i + p_i^2/2m_i)$ Λ, Σ (Y) Σ^0, Λ (uds) Σ_____ (dds) + $\sum_{i < j}^{6} (U_{ij}^{\text{Conf}} + U_{ij}^{\text{FB}} + \sum_{\beta} U_{ij}^{\text{S}\beta})$ (uus) I = 0.1Ξ _____ (dss) <u>=</u>0 $+\sum_{\beta} U_{ii}^{PS\beta} + \sum_{\beta} U_{ii}^{V\beta}$ (uss) I = 1/2Srangeness $\langle \phi(3q)\phi(3q)|E-H/\mathcal{A} \{\phi(3q)\phi(3q)\chi(r)\} \rangle = 0$ **QMPACK homepage http://qmpack.homelinux.com/~qmpack/php** 2012.12.11 rcnp workshop

Three-cluster Faddeev formalism using the two-cluster RGM kernels

Removal of the energy dependence by the renormalized RGM Matsumura, Orabi, Suzuki, Fujiwara, Baye, Descouvemont, Theeten 3-cluster semi-microscopic calculations using 2-cluster non-local RGM kernels: Phys. Lett. B659 (2008) 160; Phys. Rev. C76, 054003 (2007) N=1-K

$$W = \Lambda \left[\frac{1}{\sqrt{N}} \left(H_0 + V_{\rm D} + G\right) \frac{1}{\sqrt{N}} - \left(H_0 + V_{\rm D} + G\right)\right] \Lambda \left[\begin{array}{c} \text{non-local kernel} \\ \text{kernel} \end{array}\right]$$

1) non-locality 2) energy-dependence \rightarrow eliminated 3) Pauli-forbidden states in $\Lambda N - \Sigma N$ (I=1/2), $\Lambda \Lambda - \Xi N$ $-\Sigma \Sigma$ (I=0), $\Xi \Lambda - \Xi \Sigma$ (I=1/2) ${}^{1}S_{0}$: i.e. SU_{3} (11)_s \rightarrow RGM *T*-matrix

Coulomb problem for 3-body *pd* scattering

Step 1. 2-body *t*-matrix (sharp cut-off at quark level)

 $t^{\rho} = (v_{\rm RGM} + \omega^{\rho}) + (v_{\rm RGM} + \omega^{\rho})G_0 t^{\rho} \qquad \omega^{\rho}: \text{ error function Coulomb}$

isospin formalism \rightarrow only for *I*=1 pair with factor 2/3

Step 2. AGS (Alt-Grassberger-Sandhas) equation

$$U^{\rho} | \phi \rangle = G_0^{-1} P | \phi \rangle + P t^{\rho} G_0 U^{\rho} | \phi \rangle$$

with
$$|\phi\rangle = |q_{0}\psi_{d}\rangle$$
 and $P = P_{(123)} + P_{(123)}^{2}$

Step 3. 2-potential formula for AGS equations

$$U^{\rho} = T_{\omega}^{\rho} + (1 + T_{\omega}^{\rho}G_{0})\tilde{U}_{\omega}^{\rho}(1 + G_{0}T_{\omega}^{\rho})$$

$$\langle \phi | U^{\rho} | \phi \rangle = \langle \phi | T_{\omega}^{\rho} | \phi \rangle + \langle \psi^{\rho(-)} | \tilde{U}_{\omega}^{\rho} | \psi^{\rho(+)} \rangle$$

$$\rho \rightarrow \infty \quad \downarrow \text{ (Solutions of the Coulomb-modified AGS equation)}$$

$$\langle \phi | U | \phi \rangle \equiv \langle \phi | T_{C} | \phi \rangle + e^{i\zeta^{\rho}} [\langle \phi | U^{\rho} | \phi \rangle - \langle \phi | T_{\omega}^{\rho} | \phi \rangle] e^{i\zeta^{\rho}} \quad \text{phase factor}$$

$$\zeta^{\rho} \rightarrow \sigma_{\ell} - \delta_{\ell}^{\rho}$$
2012.12.11 rcnp workshop
$$\rho = 8 \text{ fm (elastic) , 16 - 20 fm (breakup)}$$

our method: C.M. Vincent and S.C. Phatak, Phys. Rev. C10, 391 (1974)

Connection condition for the *K*-matrix ($-k \cot \delta$) from Coulomb distorted total wave function (with finite ρ)

$$\begin{split} \tilde{K}_{\ell}^{\rho} \{ W[\tilde{F}_{\ell}^{\rho}, u_{\ell}]_{R_{out}} K_{\ell}^{\rho} - kW[\tilde{F}_{\ell}^{\rho}, \upsilon_{\ell}]_{R_{out}} \} & K_{\ell}^{\rho} \text{ by solving AGS euation for } \upsilon + \omega_{\ell}^{\rho} \\ = k \{ W[\tilde{G}_{\ell}^{\rho}, u_{\ell}]_{R_{out}} K_{\ell}^{\rho} - kW[\tilde{G}_{\ell}^{\rho}, \upsilon_{\ell}]_{R_{out}} \} & \lim_{\rho \to \infty} \tilde{K}_{\ell}^{\rho} = K_{\ell}^{N} = -k \cot \delta_{\ell}^{N} \end{split}$$

Step 4. elastic differential cross sections $\frac{d\sigma}{d\Omega} = |\langle \phi | U | \phi \rangle|^2$ Step 5. breakup cross sections $\frac{d\sigma}{d\Omega} = |\langle \phi | U | \phi \rangle|^2$ $\langle p,q | \Sigma_{\gamma}(v_{RGM} + \omega^{\rho})_{\gamma} | \Psi^{\rho(+)} \rangle = \langle p,q | (1+P)t^{\rho}G_{0}U^{\rho} | \phi \rangle = \langle p,q | U_{0}^{\rho} | \phi \rangle$ $\langle p,q | U_{0} | \phi \rangle = \lim_{\rho \to \infty} e^{iz_{\rho}(p)} \langle q, \psi_{p}^{\rho(-)} | \tilde{U}_{0}^{\rho} | \psi^{\rho(+)} \rangle e^{i\zeta_{\rho}(q_{0})} = \langle q, \psi_{p}^{(-)} | \tilde{U}_{0} | \psi^{(+)} \rangle$ $\frac{d^{5}\sigma}{d\Omega_{1}d\Omega_{2}dS} = w | \sum_{\alpha=1}^{3} \langle p_{\alpha}, q_{\alpha} | t^{\rho}G_{0}U^{\rho} | \phi \rangle |^{2}$ (ρ : should be large enough)
pp and np half off-shell t-matricesphase space factor $E = E_{inc} + \varepsilon_{d} = \frac{\hbar^{2}}{M}(p_{\alpha}^{-2} + \frac{3}{4}q_{\alpha}^{-2})$ with $E_{inc} = \frac{3\hbar^{2}}{4M}q_{0}^{-2}$

								loi iuciii	
Deutero	n nronertie				A	AV18	AV8'	SHO	A fss2
Deuteron properties			E d	(MeV)	2.	.2246	2.244	2.24	2 2.225
			P	, (%)	:	5.76	5.78	5.7	5.49
		q	rms (fm)		1	.967	1.961	1.96	1 1.960
for AV8' by	for AV8' by H. Kamada		Q_{d}	(fm2)	0	.270	0.269		0.270
et. al., Phy	s. Rev. C64,			η	0.	.0250	0.0252	1	0.0253
044001 (20	044001 (2001)		μ	$_{1}(\mu_{0})$	0	.847	0.847		0.849
no CIB, no Coulomb		KE	(MeV)	1	9.814	19.891	19.88	81	
³ H	AV8'		rms	(fm)		fssi	2	rm	s (fm)
³ H <i>I_{max}</i>	AV8' <i>E</i> (MeV)	3H	rms [<mark>(fm)</mark> ³ He		fss2 <i>E</i> (Mo	2 eV)	rms ³ H	s (fm) ³ He
³ H <i>I_{max}</i> <i>S+D</i>	AV8' <i>E</i> (MeV) -7.442	³ H 1.8	rms [4	(fm) ³ He 2.02		fss2 E (Mo -8.2	2 eV) 61	rms ³ H 1.76	s (fm) ³ He 1.92
³ H <i>I_{max}</i> <i>S+D</i> 2	AV8' E (MeV) -7.442 -7.610	³ H 1.8 1.8	rms [4 1	(fm) ³ He 2.02 2.01		fss2 E (M -8.2 -8.2	2 eV) 61 28	rms ³ H 1.76 1.75	s (fm) ³ He 1.92 1.93
³ H <i>I_{max}</i> <i>S+D</i> 2 4	AV8' <i>E</i> (MeV) -7.442 -7.610 -7.754	³ H 1.8 1.8 1.8	rms [4 1 0	(fm) ³ He 2.02 2.01 1.99		fss2 E (M -8.2 -8.2 -8.3	2 eV) 61 28 22	rms ³ H 1.76 1.75 1.75	s (fm) ³ He 1.92 1.93 1.92
³ H <i>I_{max}</i> <i>S+D</i> 2 4 5	AV8' <i>E</i> (MeV) -7.442 -7.610 -7.754 -7.763	³ H 1.8 1.8 1.8 1.8	rms [4 1 0 0	(fm) ³ He 2.02 2.01 1.99 1.99		fss2 <i>E</i> (M -8.2 -8.2 -8.3 -8.3	2 eV) 61 28 22 26	rms ³ H 1.76 1.75 1.75 1.75	s (fm) ³ He 1.92 1.93 1.92 1.92
³ H Imax S+D 2 4 5 6	AV8' <i>E</i> (MeV) -7.442 -7.610 -7.754 -7.763 -7.765	³ H 1.8 1.8 1.8 1.8 1.8 1.8	rms [4 1 0 0 0	(fm) ³ He 2.02 2.01 1.99 1.99 1.99		fss2 <i>E</i> (M -8.2 -8.2 -8.3 -8.3 -8.3	2 eV) 61 28 22 26 26	rms ³ H 1.76 1.75 1.75 1.75 1.75	s (fm) ³ He 1.92 1.93 1.92 1.92 1.92

SHOA: Suzuki-Horiuchi-Orabi-Arai

Faddeev-Yakubovsky equation for 4 identical Fermions

$$\psi = G_{0}tP[(1 - P_{(34)})\psi + \varphi]$$
(3 body case)

$$\varphi = G_{0}t\tilde{P}[(1 - P_{(34)})\psi + \varphi]$$
with $t = V^{RGM} + V^{RGM}G_{0}t$,

$$P = P_{(12)}P_{(23)} + P_{(13)}P_{(23)}, \quad \tilde{P} = P_{(13)}P_{(24)}$$
Total wave function

$$\Psi = (1 + P)\{[1 - P_{(34)}(1 + P)]\psi + (1 + \tilde{P})\varphi\}$$

$$\psi = G_{0}tP\psi$$
Total wave function

$$\Psi = (1 + P)\{[1 - P_{(34)}(1 + P)]\psi + (1 + \tilde{P})\varphi\}$$

$$\psi = G_{0}tP\psi$$
Total wave function

$$\Psi = (1 + P)\{\psi$$

$$\psi = (1 + P)\psi$$

$$\psi = (1 + P)\{[1 - P_{(34)}(1 + P)]\psi + (1 + \tilde{P})\varphi\}$$

$$\psi = G_{0}tP\psi$$
Total wave function

$$\Psi = (1 + P)\{\psi$$

$$\psi = (1 + P)\psi$$

$$\psi =$$

$\ell_{ m sum}^{ m max}$	n_1 -	$n_2 - n_3 = 6 - 6 - 3$	}	$n_1 - n_2 - n_3 = 10 - 10 - 5$		
A\7Q?	$-E_B(\alpha)$	K.E.	R_{lpha}	$E_B(\alpha)$	K.E.	R_{lpha}
AVO	(MeV)	(MeV)	(fm)	(MeV)	(MeV)	(fm)
2	-21.53	83.24	1.605	-21.46	83.10	1.607
4	-24.94	97.52	1.509	-24.88	97.32	1.512
6	-25.60	101.13	1.490			
8	-25.97	102.61	1.482			(1.485)
10	-25.99			(-25.93)		
SVM				-25.92	102.35	1.486

$\ell_{ m sum}^{ m max}$	n_1 -	$n_2 - n_3 = 6 - 6 - 3$	3	$n_1 - n_2 - n_3 = 10 - 10 - 5$			
fee?	$-E_B(\alpha)$	K.E.	R_{lpha}	$E_B(\alpha)$	K.E.	R_{lpha}	
1552	(MeV)	(MeV)	(fm)	(MeV)	(MeV)	(fm)	
2	-24.76	76.36	1.496	-24.73	76.29	1.498	
4	-27.35	85.67	1.439	-27.32	85.46	1.443	
6	-27.78	87.90	1.428	-27.76			
8	-27.95	88.44	1.425			(1.429)	
10	-27.96			(-27.93)			

Comparison of the 3*N* **and 4***N* **bound-state energies** with other calculations

 $P_{\rm d}$ (%) **Potential** ³H (MeV) ⁴He (MeV) fss2: neglects the charge 5.490 -8.326 -27.9 fss2 dependence and Coulomb -8.012-26.26CD-Bonn 4.833 AV18 5.760 -7.623-24.28Average -24.98Nijm I 5.678 -7.736-24.77 MeV -24.56Nijm II 5.652 -7.654**3.5 MeV missing** Exp. -8.482-28.30

A. Nogga, H. Kamada and W. Glöckle, Phys. Rev. Lett. 85, 944 (2000)

Effect of charge dependence of the NN force : ~ 190 × 2 ~ 400 keV

Ours: -27.5 MeV + 0.8 MeV (Coulomb) = -26.7 MeV 1.6 MeV missing → almost half of above

Characteristics of the *nd* and *pd* scattering systems

- Channel-spin formalism with S_c=(I_d=1)×(s_N=1/2)=3/2+1/2 is convenient for elastic scattering.
 S_c=3/2 "Pauli principle" → weak distortion effect
 S_c=1/2 strong distortion effect of the deuteron
- Breakup process is important (ε_d =2.224 MeV), since it influences the elastic scattering. *NN* singularity and the moving singularity should be properly treated at $E_n>3$ MeV.
- Enough partial waves $(I_{\text{max}} = 4)$ should be included even for $E_n < 10$ MeV, since the deuteron is widely spread. If Coulomb is added, $I_{\text{max}} = 4$ is still not sufficiently large.

Many challenging problems still remain

3-body force, spin-doublet scattering length ${}^{2}a$, A_{y} -puzzle, Coulomb effect, relativistic effect, breakup cross sections, ...

nd and *pd* eigenphase shifts at $E_N = 3$ MeV

		nd	pd (nuclear)			
model	fss2	AV18 (+UR3N)	fss2	AV18 (+UR3N)	PSA	
² S _{1/2}	149.2	144.7 (149.2)	152.8	147.8 (152.2)	155.15 ±0.23	
⁴ S _{3/2}	-69.6	-69.9 (-69.7)	-62.5	-63.1 (-63.1)	-63.80 ±0.11	

- The cutoff Coulomb radius is $\rho = 9$ fm. (in degree)
- AV18 (+UR3N), PSA : A. Kievsky, S. Rosati, W. Tornow and M. Viviani, Nucl. Phys. A607 (1996) 402

fss2 predictions are similar not to AV18, but to AV18+UR3N

nd scattering length: ²a and ⁴a

TM99: Tucson-Melbourne 3-body force

	<i>Е_В</i> (³ Н	l) (MeV)	² a "	⁴ <i>a</i> _{<i>nd</i>} (fm)	
model	NN	<i>NN</i> +TM99	NN	<i>NN</i> +TM99	<i>NN</i> (+TM99)
fss2	8.311	-	0.66	-	6.30
CD-Bonn 2000	8.005	8.482	0.925	0.569	6.347
AV18	7.628	8.482	1.248	0.587	6.346
Nijm I	7.742	8.485	1.158	0.594	6.342
exp.	8	.482	0.65	6.35 ± 0.02	

Other calculations by H. Witala et al., Phys. Rev. C68, 034002 (2003), with $I_{\text{max}} = 5$

The charge dependence of the *NN* force is neglected in fss2.

Non-local Gaussian potentials are practically used with $I_{max} = 4$ (up to G-wave).

Experimental data are almost reproduced without the three-body force.

Differential cross sections (1 – 16 MeV)

bars: *nd* dots or circles: *pd* dash: no Coul. red: with Coul.

Deviation of the diffraction minima from experiment measured by

 $RD_{\min} = \left[\left(\frac{d\sigma}{d\Omega} \right)_{\min}^{cal} - \left(\frac{d\sigma}{d\Omega} \right)_{\min}^{\exp} \right] / \left(\frac{d\sigma}{d\Omega} \right)_{\min}^{\exp}$

2012.12.11 rcnp workshop

Nucleon analyzing power $A_y(\theta)$

bars: *nd* dots or circles: *pd* dash: no Coul. red: with Coul.

The Energy dependence of the A_v puzzle

Theory to experimental ratio of $A_y(\theta)$ at the maximum point for $E_N \le 19$ MeV

2012.12.11 rcnp workshop

W. Tornow, J. Phys. G: Nucl. Part. Phys. 35 (2008), 125104

breakup differential cross sections

 $q_{\alpha}=0$

(Various breakup configurations)

- QFS (quasi-free scattering) $k_{\alpha}=0$
- FSI (final-state interaction) $p_{\alpha}=0$
- COLL (collinear)
- SS (standard space star) 120° perpendicular
- COP, CST (coplanar star) 120° coplanar
- SCRE (Symmetric constant relative energy)
- non-standard: other non-specific configurations

- QFS ($E_p \le 65$ MeV)
- SCRE $\overrightarrow{d} + p$ ($E_d = 19$ MeV)
- COLL $\vec{d} + p$ ($E_d = 16$ MeV)
- KVI data $\vec{d} + p (E_d = 130 \text{ MeV})$

Experimental data

S. Kimura et al., contributions to apfb2011 at Korea

- J. Ley et al., Phys. Rev. C73, 064001 (2006)
- F. D. Correll et al., Nucl. Phys. A475 (1987) 407

d beam p target

- S. T. Kistryn et. al., Phys. Rev. C72, 044006 (2005);
- Phys. Lett. B641 (2006) 23

E. Stephan et. al., Phys. Rev. C82, 014003 (2006)

also comparison with meson-exchange predictions

SCRE
$$\vec{d} + p$$
 ($E_d = 19$ MeV)

Symmetric constant relative Energy geometry

c.m.

 $\nabla \alpha$

vector analyzing powers of the deuteron in the corresponding geometry

Summary

Three-cluster Faddeev formalism using the quark-model NN interaction fss2 can reproduce overall characteristics of the nd and pd scattering below $E_N \leq 65$ MeV without the 3N force, as long as the energydependence of the RGM kernel is properly treated.

- charge rms radii and the binding energies of the triton and alpha
- scattering lengths: ${}^{2}a$ and ${}^{4}a$ for the *nd* elastic scattering
- improvement of the A_y puzzle, but still about 20% difference. A similar problem exists in the vector-type deuteron analyzing power i T_{11} .
- diffraction minima of the differential cross sections are well reproduced for $E_{\rm N} \leq 35$ MeV, but slightly underestimated for higher energies.
- many breakup differential cross sections and deuteron analyzing power, but severe discrepancy exists in 13 MeV symmetric space star configuration and some non-standard configurations
- a large Coulomb cut-off radius ρ such as 16 20 fm involves problems

It is important to deal with the energy dependence of the RGM kernel properly.

Many improvements of the low-energy elastic scattering is related to the sufficiently attractive nature of fss2 in the ${}^{2}S_{1/2}$ state, in which the deuteron distortion effect is very important.

The non-local off-shell effect of the quark-model NN interaction can replace a part (about half) of the 3-body force needed in the meson-exchange potentials.

Conclusion for the off-shell effect

Once the on-shell properties are correctly reproduced, the off-shell effect of the baryon-baryon interaction to the *Nd* scattering is relatively small. *Cf.* big difference from the situation in the 3α bound state.

Future problems

- application to (Σ⁻d) (Λ d) scattering problem
 "short-range repulsion by the quark Pauli principle"
- 0⁺ and 1⁺ states of ${}^{4}_{\Lambda}H$, ${}^{4}_{\Lambda}He$, and ${}^{4}_{\Lambda\Lambda}H$, ...