Electroweak strength functions and tensor correlations in ⁴He

One day workshop on ab initio study of nuclear structure and reaction Icho Kaikan meeting room Suita Campus, Osaka University 2012.12.11

Wataru Horiuchi (Hokkaido Univ.)

Collaborators: Yasuyuki Suzuki (Niigata Univ., RIKEN Nishina Center) Koji Arai (Nagaoka Nat'l College of Tech.)

Tensor correlations in nuclear systems

- Tensor force : main component of the nuclear force
 - → Important role for nuclear structures and reactions
 - Need wave function including explicit tensor correlations
 - \rightarrow *Ab initio* method
 - Observable?
- Contents
 - Correlated basis approach+ Complex scaling method
 Unifying bound- and unbound states in a single scheme
 - Tensor correlations in ⁴He: Strength functions
 - Photoabsorption reaction: E1 strength function
 - Spin-dipole (SD) strength functions
 - Sum rules ⇔ ground state correlations
 - Summary

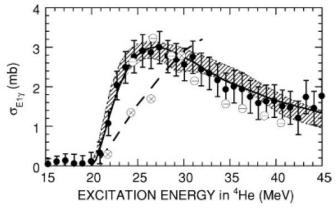
Electroweak excitations of ⁴He

- Strength (response) function in nuclei
 - Resonant and continuum structures
- Low-energy photoabsorption reaction of ⁴He
 - Electric dipole excitation
 - Recent measurements
 - Peak ~27MeV

S. Nakayama et al., PRC 76, 021305 (2007).

• Peak ~30 MeV

T. Shima et al., PRC 72, 044004 (2005).



Taken from S. Nakayama et al. PRC 76, 021305 (2007).

- Excitation of light nuclei induced by the weak interaction
 - Neutrino-nucleus reaction (Gamow-Teller, Spin-dipole, etc.)

Reliable model is needed $\rightarrow Ab$ initio study

Electroweak operators and spectrum

Electric dipole (E1) J^πT=0⁺0 -> 1⁻1

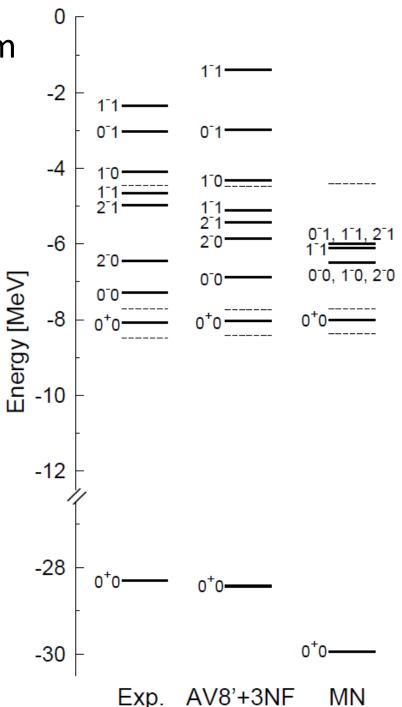
$$\mathcal{M}_{1\mu} = \sum_{i=1}^{4} \frac{e}{2} (1 - \tau_{3_i}) (\mathbf{r}_i - \mathbf{x}_4)_{\mu}$$

Spin-dipole (SD) $J^{\pi}T=0^+0 \rightarrow \lambda^-0, \lambda^-1$

$$\mathcal{O}_{\lambda\mu}^{p} = \sum_{i=1}^{4} \left[(\boldsymbol{r}_{i} - \boldsymbol{x}_{4}) \times \boldsymbol{\sigma}_{i} \right]_{\lambda\mu} T_{i}^{p}$$
$$T_{i}^{\text{IS}} = 1, \quad T_{i}^{\text{IV0}} = \tau_{z}(i), \quad T_{i}^{\text{IV\pm}} = t_{\pm}(i)$$

- ⁴He: seven negative parity states
 J^π T= 0⁻1, 1⁻1, 2⁻1, 0⁻0, 1⁻0, 2⁻0
- Degenerate levels only with central force

 \rightarrow Non-central force is necessary



Variational calculation for many-body system

Hamiltonian

$$H = \sum_{i=1}^{A} T_i - T_{cm} + \sum_{i < j}^{A} v_{ij} + \sum_{i < j < k}^{A} v_{ijk}$$
$$v_{12} = V_c(r) + V_{Coul.}(r) P_{1\pi} P_{2\pi} + V_t(r) S_{12} + V_b(r) L \cdot S$$

 Argonne v8 type interactions (AV8', G3RS); "bare" interaction central, tensor, spin-orbit

• Three-nucleon force (3NF) E. Hiyama et al. PRC70, 031001(R) (2002) \rightarrow reproduce inelastic form factor of the first excited state of ⁴He.

Basis function

$$\Psi_{(LS)JM_JTM_T} = \mathcal{A}\left\{ \left[\psi_L^{(\text{space})} \psi_S^{(\text{spin})} \right]_{JM_J} \psi_{TM_T}^{(\text{isospin})} \right\}$$
$$\psi_{SM_S}^{(\text{spin})} = \left| \left[\cdots \left[\left[\left[\frac{1}{2} \frac{1}{2} \right]_{S_{12}} \frac{1}{2} \right]_{S_{123}} \right] \cdots \right]_{SM_S} \right\rangle$$

 $\psi_{LM}^{(\mathrm{space})}$: correlated Gaussian combined with two global vectors

Y. Suzuki, W.H., M. Orabi, K. Arai, FBS42, 33-72 (2008)

$$F_{(L_1L_2)LM}(u_1, u_2, A, x) = \exp\left(-\frac{1}{2}\widetilde{x}Ax\right) \left[\mathcal{Y}_{L_1}(\widetilde{u_1}x)\mathcal{Y}_{L_2}(\widetilde{u_2}x)\right]_{LM}$$

Correlated basis approach: global vector representation

Correlated gaussian combined with two global vectors Y. Suzuki, W.H., M. Orabi, K. Arai, FBS42, 33-72 (2008)

$$\phi_{(L_1L_2)LM_L}^{\pi}(A, u_1, u_2) = \exp(-\tilde{\boldsymbol{x}}A\boldsymbol{x})[\mathcal{Y}_{L_1}(\tilde{u}_1\boldsymbol{x})\mathcal{Y}_{L_2}(\tilde{u}_2\boldsymbol{x})]_{LM_L}$$

x: any relative coordinates (cf. Jacobi)

 $\mathcal{Y}_{\ell}(\boldsymbol{r}) = r^{\ell} Y_{\ell}(\hat{\boldsymbol{r}})$

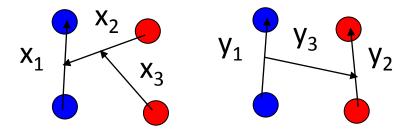
$$\tilde{x}Ax = \sum_{i,j=1}^{N-1} A_{ij}x_i \cdot x_j$$

$$\tilde{u}_i x = \sum_{k=1}^{N-1} (u_i)_k x_k$$

"bare" interaction can be used

Some advantages

Formulation for *N* particle system Analytical expression for matrix elements No change of the form under any coordinate transformations



 $oldsymbol{y} = Toldsymbol{x} \implies \widetilde{oldsymbol{y}}Boldsymbol{y} = \widetilde{oldsymbol{x}}\widetilde{T}BToldsymbol{x}$ $\widetilde{v}oldsymbol{y} = \widetilde{\widetilde{T}v}oldsymbol{x}$

Variational parameters A, $u \rightarrow$ Stochastic variational method

K. Varga and Y. Suzuki, PRC52, 2885 (1995).

The ground state energy of ⁴He reproduces the benchmark cal.

H. Kamada et al., PRC64, 044001 (2001)

Photoabsorption cross section by the complex scaling method (CSM)

Photoabsorption cross section

$$\sigma_{\gamma}(E_{\gamma}) = \frac{4\pi^2}{\hbar c} E_{\gamma} \frac{1}{3} S(E_{\gamma})$$

Strength function

$$\begin{split} S(E) &= \mathcal{S}_{\mu f} | \left\langle \Psi_{f} \right| \mathcal{M}_{1\mu} \left| \Psi_{0} \right\rangle |^{2} \delta(E_{f} - E_{0} - E) \\ &= -\frac{1}{\pi} \mathrm{Im} \sum_{\mu} \langle \Psi_{0} | \mathcal{M}_{1\mu}^{\dagger} \frac{1}{E - H + E_{0} + i\epsilon} \mathcal{M}_{1\mu} | \Psi_{0} \rangle, \end{split}$$

Expanded in L^2 basis

Complex rotation

 $U(heta): \quad r_j o r_j \mathrm{e}^{i heta}, \quad p_j o p_j \mathrm{e}^{-i heta} \quad \mathsf{Outgoing-wave B.C.}$

Strength function

$$\begin{split} \Psi_{\lambda}^{JM\pi}(\theta) &= \sum_{i} C_{i}^{\lambda}(\theta) \Phi_{i}(x) \\ H(\theta) \Psi_{\lambda}^{JM\pi}(\theta) &= E_{\lambda}(\theta) \Psi_{\lambda}^{JM\pi}(\theta) \\ S(E) &= -\frac{1}{\pi} \sum_{\mu\lambda} \operatorname{Im} \frac{\widetilde{\mathcal{D}}_{\mu}^{\lambda}(\theta) \mathcal{D}_{\mu}^{\lambda}(\theta)}{E - E_{\lambda}(\theta) + i\epsilon} \\ \mathcal{D}_{\mu}^{\lambda}(\theta) &= \left\langle (\Psi_{\lambda}^{JM\pi}(\theta))^{*} \right| \mathcal{M}_{1\mu}(\theta) \left| U(\theta) \Psi_{0} \right\rangle \\ \widetilde{\mathcal{D}}_{\mu}^{\lambda}(\theta) &= \left\langle (U(\theta) \Psi_{0})^{*} \right| \widetilde{\mathcal{M}}_{1\mu}(\theta) \left| \Psi_{\lambda}^{JM\pi}(\theta) \right\rangle \end{split}$$

Configuration for final state (i) Single-particle (ii) 3N+N two-body (iii) d+p+n three-body disintegration excitation disintegration

(i) $\Psi_f^{\text{sp}} = \mathcal{A} \left[\Phi_0^{(4)}(i) \mathcal{Y}_1(r_1 - x_4) \right]_{1M} \eta_{T_{12}T_{123}10}^{(4)}$

- •The ground state combined with $Y_1(r_1-x_4)$
- Complete set of isospin wave function(T=1)
- Basis and possible angular momentum couplings are included independently.

Note: The coherent E1 state $\sum_{\mu} \mathcal{M}_{1\mu} |0\rangle$ exhausts 100% of the non-energy-weighted sum rule.

(ii)	(iii)	
3N: three-body cal.	2N: two-body cal.	
3N-N: p-wave	2N-N: p-wave	
	3N*-N: s-wave	

Explicit correlation of 3+1 and 2+1+1

Non energy weighted Sum rule

99.6%

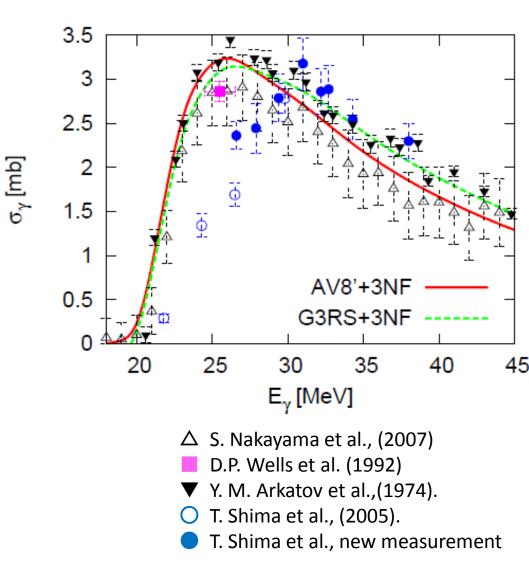
Total photoabsorption cross section

Photoabsorption cross section

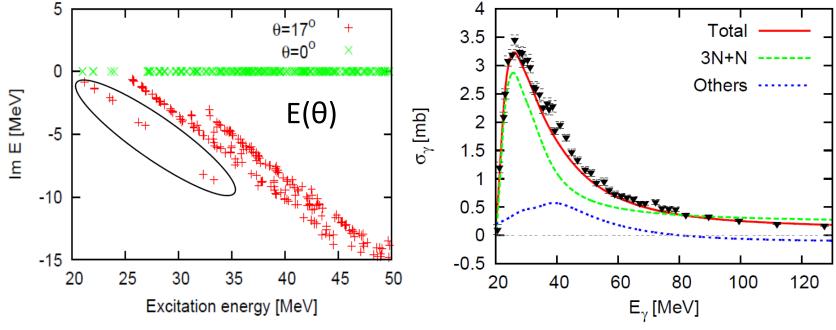
$$\sigma_{\gamma}(E_{\gamma}) = \frac{4\pi^2}{\hbar c} E_{\gamma} \frac{1}{3} S(E_{\gamma})$$

Interaction: AV8'+3NF, G3RS+3NF 3NF: E. Hiyama et al., PRC70, 031001(2004).

Comparison with the measurements \rightarrow good agreement above 30 MeV Disagree at the low energy with the data by Shima et al.



3N+N cluster structure in the total photoabsorption cross section with CSM



▼ Y. M. Arkatov et al., Yad. Fiz. 19, 1172 (1974).

$$S(E) = \sum_{\lambda} S_{\lambda} = \sum_{\lambda \in 3NN} S_{\lambda} + \sum_{\lambda \notin 3NN} S_{\lambda}$$

3N+N configurations are dominant in the lowenergy cross section

Photonuclear sum rule

$$m_{\kappa} = \int_{0}^{\infty} E_{\gamma}^{\kappa} \sigma_{\gamma}(E_{\gamma}) dE_{\gamma}$$

κ=-1; Bremstrahlungs (non-energy weighted) sum rule

$m_{-1} = \mathcal{G}\left(Z^2 \langle r_p^2 \rangle - \frac{Z(Z-1)}{2} \langle r_{pp}^2 \rangle\right)$	
$G = 4\pi^2 e^2 / 3\hbar c$ 99.6%	$\frac{q}{1}$
к=0; Thomas-Reiche-Kuhn (TRK) sum rule	2
$m_0 = \mathcal{G} \frac{3NZ\hbar^2}{2Am_N} (1+K)$ K: Enhancement factor	$\frac{3}{4}$
$K = \sum_{q=1}^{8} K_q$ $V_q = \sum_{q=1}^{8} v^{(q)}(r_{ij}) \mathcal{O}_{ij}^{(q)}$	$\frac{5}{6}$
$K_q = \frac{2Am_N}{3NZ\hbar^2 e^2} \frac{1}{2} \sum_{\mu} \langle \Psi_0 [\mathcal{M}_{1\mu}^{\dagger}, [V_q, \mathcal{M}_{1\mu}]] \Psi_0 \rangle$	7 8

		AV8'+3NF	
q		$\langle V_q \rangle$	K_q
1	1	17.39	0
2	$\boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j$	-9.59	0
3	$oldsymbol{ au}_i\cdotoldsymbol{ au}_j$	-5.22	0.011
4	$oldsymbol{\sigma}_i\cdotoldsymbol{\sigma}_j au_i\cdotoldsymbol{ au}_j$	-59.42	0.460
		(-12.51)	(0.187)
5	S_{ij}	0.75	0
6	$S_{ij} \boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j$	-70.93	0.574
		(-68.65)	(0.667)
7	$(oldsymbol{L}\cdotoldsymbol{S})_{ij}$	11.09	0
8	$(oldsymbol{L}\cdotoldsymbol{S})_{ij}oldsymbol{ au}_i\cdotoldsymbol{ au}_j$	-15.93	0.061
	Total	-131.9	1.11

Pion exchange potential is essential to account for the TRK sum rule

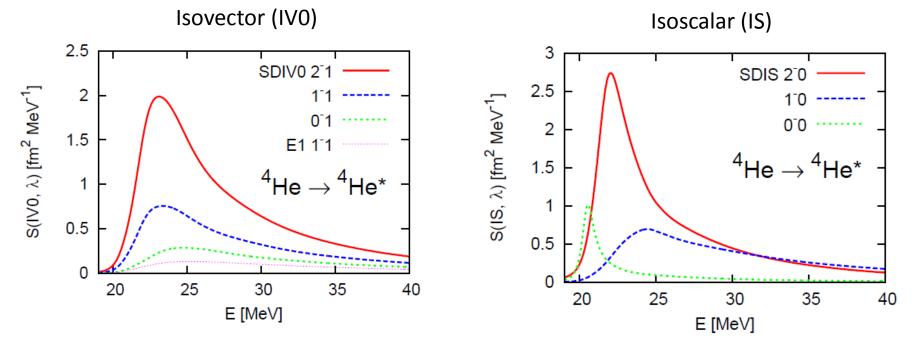
$$V_{OPEP} = \frac{1}{3} \frac{f^2}{\hbar c} m_{\pi} c^2 (\tau_1 \cdot \tau_2) \left\{ (\sigma_1 \cdot \sigma_2) + \left(1 + \frac{3}{\mu r} + \frac{3}{(\mu r)^2} \right) S_{12} \right\} \frac{e^{-\mu r}}{\mu r}$$

Spin-dipole strength function

Spin-dipole operator

$$\mathcal{O}^p_{\lambda\mu} = \sum_{i=1}^4 \left[(r_i - x_4) imes oldsymbol{\sigma}_i
ight]_{\lambda\mu} au_{3i}^p$$

 $S(p,\lambda,E) = \mathcal{S}_{f\mu} |\langle \Psi_f | \mathcal{O}_{\lambda\mu}^p | \Psi_0 \rangle |^2 \delta(E_f - E_0 - E)$



- Relatively small decay widths of 0⁻0, 2⁻0 (0.84, 2.01 MeV)
- Resonant structure ⇔ Strength function

Non energy weighted spin-dipole sum rule

$$\begin{split} m_0(p,\lambda) &= \int_0^\infty S(p,\lambda,E) dE = \sum_{\kappa=0}^2 U_{\lambda\kappa} \langle \mathcal{Q}_{(\kappa)0}^p \rangle \\ \mathcal{Q}_{(\kappa)0}^p &= \sum_{i,j=1}^A \left([\rho_i \times \rho_j]_\kappa \cdot [\sigma_i \times \sigma_j]_\kappa \right) T_i^{p\dagger} T_j^p, \\ \rho_i &= r_i - x_N \end{split} \qquad (U_{\lambda\kappa}) = \begin{pmatrix} \frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \\ 1 & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix} \\ \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix} \\ \frac{1}{5} & \frac{1}{5} \end{pmatrix} \\ \frac{1}{5} & \frac{1}{5} &$$

Summary

- Four-body calculation for electroweak strength functions of ⁴He
- Correlated Gaussian with double global vectors
 + complex scaling method
- Electroweak (E1, SD) strength function
 - Photoabsorption reaction
 - SD strength function and spectrum
 Good agreement with experiments
 Future: Neutrino-nucleus reaction
- Sum rule
 - Photonuclear sum rules -> importance of the OPEP
 - SD sum rule -> tensor correlations in the ground state