# Cluster Structures probed by Inelastic Scattering

KAWABATA Takahiro Department of Physics, Kyoto University

# Contents

- Introduction
  - $-\alpha$  condensed states in light nuclei.
  - E0 strengths and  $\alpha$  cluster structures.
- Missing Monopole Strengths in Inelastic  $\alpha$  Scattering
  - Double and single folding model calculation.
  - Systematic measurements at  $E_{\alpha} = 130$  MeV.
- Search for  $\alpha$  Cluster States in <sup>24</sup>Mg
  - Multipole decomposition analysis.
  - Decay particle measurement.
- Summary

### $\alpha$ Condensed State

 $\alpha$  cluster structure is expected to emerge near the  $\alpha$ -decay threshold energy in N = 4n nuclei.

The  $0^+_2$  state at  $E_x = 7.65$  MeV in  ${}^{12}C$ , a famous  $3\alpha$  cluster state, is called "Hoyle state".

A novel concept to describe the  $0^+_2$  state is proposed:  $\alpha$  Condensation.

A. Tohsaki et al., Phys. Rev. Lett. 87, 192501 (2001).



 $\alpha$ -condensed state where three alpha particles occupy the lowest s-orbit. Dilute-gas state of alpha particles. Large RMS. Does similar  $\alpha$  condensed state exist in heavier nuclei?

### E0 Strengths and $\alpha$ Cluster Structure

Large E0 strength could be a signature of spatially developed  $\alpha$  cluster states. T. Kawabata *et al.*, Phys. Lett. B **646**, 6 (2007).

> $0^{+}_{2}$  state in <sup>12</sup>C: B(E0; IS) =  $121 \pm 9 \text{ fm}^{4}$ Single Particle Unit: B(E0; IS)<sub>s. p.</sub> ~ 40 fm<sup>4</sup>

✓ SM-like compact GS w.f. is equivalent to the CM w.f. at SU(3) limit.
✓ GS contains CM-like component due to possible alpha correlation.



E0 strength is a key observable to examine  $\alpha$  cluster structure.

### Inelastic Alpha Scattering

Inelastic  $\alpha$  scattering is a good probe for nuclear excitation strengths.

- Simple reaction mechanism
  - Good linearity between  $d\sigma/d\Omega$  and  $B(\hat{o})$ .

$$\frac{d\sigma}{d\Omega}(\Delta J^{\pi}) \approx KN \left| J(q) \right|^2 B(\widehat{O})$$

- Folding model gives a reasonable description of  $d\sigma/d\Omega$ .
- Selectivity for the  $\Delta T = 0$  and natural-parity transitions.
- Multiple decomposition analysis is useful to separate  $\Delta J^{\pi}$ .  $\frac{d\sigma}{d\Omega}^{exp} = \sum_{\Delta J^{\pi}} A(\Delta J^{\pi}) \frac{d\sigma}{d\Omega} (\Delta J^{\pi})^{calc}$



We measured inelastic  $\alpha$  scattering to extract IS E0 strengths and to search for the  $\alpha$  condensed states.

# Missing Monopole Strength in Alpha Inelastic Scattering

# Missing Monopole Strength



EWSR fraction extracted from (e,e') seems to be reliable. Why is the monopole strength in  $(\alpha, \alpha')$  missing?

# Double Folding Model Analysis

Microscopic analysis was done by D. T. Khoa and D. C. Cuong.

D. T. Khoa and D. C. Cuong, Phys. Lett. B 660, 331–338 (2008).



Strong absorption due to the dilute and weakly bound natures of the Hoyle state ???

### Single Folding Model Analysis

Experimental data at RCNP is analyzed by single folding model.



Single folding by phenomenological  $\alpha N$  interaction.  $U_{0}(r) = \int d\vec{r}' \rho_{0}(r') V(|\vec{r} - \vec{r}'|, \rho_{0}(r'))$ ► GS densities are taken from <sup>12</sup>C:  $\rho_{0p}$ : Electron Scattering Assumption:  $\rho_{0p} = \rho_{0n}$ <sup>13</sup>C:  $\rho_{0p}$ : Electron Scattering  $\rho_{0n}(\mathbf{r}) = \rho_{0n}(\mathbf{r}')$ ,  $\mathbf{r}' = (6/7)^{1/3}\mathbf{r}$  $\blacktriangleright$  Two choices of  $\alpha N$  interaction to fit  $d\sigma/d\Omega$  $V(|\vec{r} - \vec{r}'|, \rho_0(r')) = -V(1 + \beta_V \rho_0(r')^{2/3}) \exp(-|\vec{r} - \vec{r}'|^2 / \alpha_V)$  $-iW(1+\beta_{W}\rho_{0}(r')^{2/3})\exp(-|\vec{r}-\vec{r}'|^{2}/\alpha_{W})$ Density-independent (DI) V = 16.9 MeV, W = 11.7 MeV,

> $\alpha_V = \alpha_W = 4.38 \text{ fm}^2, \beta_V = \beta_W = 0$ Density-dependent (DD) V = 36.6 MeV, W = 24.7 MeV,

> > $\alpha_V = \alpha_W = 3.60 \text{ fm}^2, \beta_V = \beta_W = -1.9$

Both DI and DD interaction give reasonable results.

### Inelastic Scattering from <sup>12</sup>C



> Transition potential is obtained by a single folding

$$\delta U_{L}(r) = \int d\vec{r}' \delta \rho_{L}(r) \left( V\left(\left|\vec{r} - \vec{r}'\right|, \rho_{0}(r')\right) + \rho_{0}(r') \frac{\partial V\left(\left|\vec{r} - \vec{r}'\right|, \rho_{0}(r')\right)}{\partial \rho_{0}(r')} \right)$$

- $0^+_1 \rightarrow 2^+_1$ : From macroscopic model and known B(E2) value.
  - $0^+_1 \rightarrow 0^+_2$ : From electron scattering.



 $0^+_1 \rightarrow 2^+_1$ 

 $0_1^+ \rightarrow 0_2^+$ 

R'(fm)

 $\begin{array}{l} \beta = 0\\ \beta = -1.9 \end{array}$ 

 $\beta = 0$ - \beta = -1.9

Too strong density dependence in the inner region of the Hoyle state.

Is the strong absorption really needed?

### Discrete States in <sup>24</sup>Mg

Discrete states in <sup>24</sup>Mg are also analyzed by the single folding model.



# Inelastic $\alpha$ Scattering at 130 MeV

Both DD and DI calculation agree with the experiment for the 2<sup>+</sup> transitions.



# Monopole transitions at 130 MeV

# DI calculation agrees with the experiment, but DD calculation overestimates.

| Nuclide          | $E_x$   | $J_n^{\pi}$ | $B(\text{E0})_{\text{exp}}$ |
|------------------|---------|-------------|-----------------------------|
|                  | (Iviev) |             | $(e^2)$                     |
| <sup>12</sup> C  | 7.65    | $0_{2}^{+}$ | $30.3 \pm 0.04$             |
| $^{24}Mg$        | 6.43    | $0_{2}^{+}$ | $44.9 \pm 0.16$             |
| <sup>28</sup> Si | 4.98    | $0_{2}^{+}$ | $46.2 \pm 0.16$             |





## Summary of the first part

- Missing monopole strength is not special for the Hoyle state.
- Missing monopole strength is observed in the other nuclei.
- Density independent calculation does not draw the missing monopole strength.
- Need for help from reaction theorists.

# Search for $\alpha$ Cluster States in <sup>24</sup>Mg

### $\alpha$ Condensed States in Heavier N = 4n Nuclei



If such n $\alpha$  condensed states are formed, they should sequentially decay into lighter  $\alpha$  condensed states by emitting  $\alpha$  particles.

 $\alpha$  decay measurement could be a probe to search for the  $\alpha$  condensed state.

### $\alpha$ Condensed State with Core Nucleus

#### Possibility of $\alpha$ condensed states with core nuclei is proposed.

α

16**O** 

Attractive potential for  $\alpha$  clusters provided by the core nucleus might stabilize the  $\alpha$ condensed state in heavy nuclei.

Schuck-type wave function for <sup>24</sup>Mg

$$\Phi = \mathcal{A}\prod_{i=1}^{6} d\overrightarrow{R_{i}} G_{i}(\overrightarrow{R_{i}}) \exp\left[-\overrightarrow{R_{i}}^{2} / \sigma^{2}\right]$$

 $\mathcal{A}$ : Antisymmetrizer

 $G_i(\overline{R_i})$ : Wave function for the i-th  $\alpha$  cluster

 $R_i$ : i-th  $\alpha$ -cluster center (Randamly generated)

 $\sigma$ : Oscillator parameter for the  $\alpha$  condensation

The <sup>16</sup>O core is expressed by the tetrahedron configuration of  $4\alpha$  with the relative distance of 1 fm.

N. Itagaki et al., Phys. Rev. C 75, 037303 (2007).



The  $\alpha$  condensed state is predicted at E<sub>x</sub>=12.2 MeV with B(E0; IS) = 168.4 fm<sup>4</sup>.

A new experiment to search for the  $\alpha$  condensed state in <sup>24</sup>Mg was proposed.

### Decay Particles from $\alpha$ Condensed States

Decay-particle measurement provides structural information.



4 Silicon counter telescopes (5 layers) are installed in the scattering chamber, and cover 2.5% of  $4\pi$  (309 mSr).



- Complementary information for the E0 strength is expected.
  - $-\alpha$  cluster state should prefer to decay into the alpha-decay channel.
  - GS in <sup>20</sup>Ne is a well-known  $\alpha$  + <sup>16</sup>O cluster state.

### Discrete States in <sup>24</sup>Mg

#### Several discrete states were analyzed by the single folding model.





### **Multipole Decomposition Analysis**



Fine structure in  $\Delta L=0$  strengths was observed.

# Decay Particle Measurement

Decay to the proton and alpha emission channels were identified.



# Highly Excited Region

 $6\alpha$  condensed state was searched for in the highly excited region.



- 6α condensed state is expected at 5 MeV above the 6α threshold.
  - E<sub>x</sub> ~ 28.5 + 5 = 33.5 MeV
- No significant structure suggesting the 6α condensed state.
  - Several small structures indistinguishable from the statistical fluctuation. → Need more statistics.



# <sup>8</sup>Be Emission Events

<sup>8</sup>Be(0<sup>+</sup><sub>1</sub>) emission events were indentified from  $2\alpha$  emission events by E<sub>x</sub> in <sup>8</sup>Be.





- Several states at 20.5, 22.0, and 24.3 MeV were observed near the  ${}^{12}C+3\alpha$  threshold.
- Possible structures were seen above the  $6\alpha$  threshold although statistically poor .
  - $\rightarrow$  Need more statistics.

# Summary

Inelastic  $\alpha$  scattering should be a useful tool to search for  $\alpha$  cluster states.

- "Missing monopole strength" problems are partially solved by using the DI interaction, but still need for help from reaction theorists.
- $\alpha$  Condensed states in <sup>24</sup>Mg were searched.
  - The 13.9-MeV state is the most probable candidate of the  $2\alpha$  condensed state around the <sup>16</sup>O core.
  - The 13.1, 13.4 and 15.8-MeV states decay to the  $^{20}Ne + \alpha$  channel only.
  - Several states at 20.5, 22.0, and 24.3 MeV were found to decay into the  ${}^{16}\text{O} + {}^{8}\text{Be}(0{}^{+}{}_{1})$  channel.
  - Expected  $6\alpha$  condensed state was not identified.

# Monopole transitions in <sup>16</sup>O and <sup>40</sup>Ca

DWBA extraordinary overestimates  $d\sigma/d\Omega$  for the 0<sup>+</sup><sub>2</sub> states in <sup>16</sup>O and <sup>40</sup>Ca.

Uncertainties in the αN interaction still remain. Effects of isovector component???

| Nuclide          | $E_x$ (MeV) | $J_n^{\pi}$                                       | $\begin{array}{c} B(\text{E0})_{\text{ele}} \\ (e^2) \end{array}$ |
|------------------|-------------|---------------------------------------------------|-------------------------------------------------------------------|
| <sup>16</sup> O  | 6.05        | $\begin{array}{c} 0_2{}^+ \\ 0_2{}^+ \end{array}$ | $11.4 \pm 0.01$                                                   |
| <sup>40</sup> Ca | 3.35        |                                                   | 7.34 ± 0.002                                                      |



# Inelastic proton scattering from <sup>16</sup>O

#### Inelastic proton scattering from <sup>16</sup>O was measured at 400 MeV.



 $0_{1}^{+}, 0_{2}^{+}$ : LDA underestimates by a factor of ~2.  $2_{1}^{+}, 2_{3}^{+}$ : LDA agrees with the experiment.  $2_{2}^{+}$ : Strange behavior



# Missing Monopole Strength



# **Theoretical Models**



M. Kamimura, Nucl. Phys. **Fig. 1d**. A**351**, 456—480 (1981).

FIG. 1. Left column: FMD (solid lines),  $\alpha$  cluster (dashed lines), and BEC (from [17], dotted lines) predictions of the charge form factors in <sup>12</sup>C in comparison to experimental data (open squares). Elastic scattering on g.s. (top panel), transition to the Hoyle state (middle panel), elastic scattering on the Hoyle state (bottom panel). Right column: Corresponding charge density distributions.

M. Chernykh et all, Phys. Rev. Lett. 98, 032501 (2007).

|                        | 3aRGM | FMD  | BEC  |
|------------------------|-------|------|------|
| ME (efm <sup>2</sup> ) | 6.62  | 6.53 | 6.45 |
| EWSR<br>Fraction (%)   | 22.8  | 22.2 | 21.7 |

EWSR fraction extracted from (e,e') seems to be reliable. Why is the monopole strength in  $(\alpha, \alpha')$  missing?

### Inelastic $\alpha$ Scattering to the 2<sup>+</sup><sub>1</sub> state in <sup>12</sup>C

Inelastic  $\alpha$  scattering to the 2<sup>+</sup><sub>1</sub> state at 4.44 MeV was also examined.



Fig. 5. Inelastic  $\alpha + {}^{12}C$  scattering data measured at  $E_{lab} = 104$  [1,2], 139 [3], 172.5 [4] and 240 [15] MeV for the  $2_1^+$  excitation at 4.44 MeV in  ${}^{12}C$  in comparison with the DWBA and CC results obtained with the complex folded OP and inelastic folded FF. See more details in text.

- Experimental data is nicely reproduced by the CC calculation at all energies **without the enhancement of**  $N_I$  in the  $\alpha + {}^{12}C(2^+_1)$  channel.
- Enhanced absorption found for the  $\alpha$  +  ${}^{12}C(0{}^{+}_{2})$  channel seems to be associated with the fragile structure and short lifetime of the Hoyle state.
  - $-2^{+}_{1}$  lives about 600 times longer than the Hoyle state.
  - $-3_{1}^{-}$  also shows a sizable enhancement of absorption.

### Experiment

Experiment was performed at RCNP, Osaka University.

Background-free measurement at extremely forward angles

