p-n Spin Correlation in the Ground State Studied by Measuring Spin-M1 Excitations in the *sd*-Shell Region

H. Matsubara¹ and <u>A. Tamii²</u>

¹Nishina Center, RIKEN ²RCNP, Osaka University

Contents

1. Tensor Correlation in Nuclear Ground States

• Spin-*M1* Excitation and Sum-Rule (H. Matsubara *et al.,*)

•Channel-Spin *S* of Correlated *p-n* Pairs in ⁴He (K. Miki *et al.,*)

2. E1 Response of ²⁰⁸Pb and Symmetry Energy of the Nuclear EOS

Spin-M1 Excitation and Sum-Rule

Deuteron

Mixing between ${}^{3}S_{1}$ and ${}^{3}D_{1}$ by tensor interaction is important to bind a deuteron

Tensor Correlation in Nuclear Ground States

Proton and Neutron Spin Operators

Tensor Correlation in Particle-Hole Configurations

Simplest case: ⁴He

$<S_{p} \cdot S_{n} >$ geometrical values

2p2h channels in 4He, in p-p coupling

$[[kl]JT[s_{1/2}s_{1/2}]JT]$	$\langle 2\mathrm{p}2\mathrm{h} ec{S_{\mathrm{p}}}\cdotec{S_{\mathrm{n}}} 2\mathrm{p}2\mathrm{h} angle$
$ige \ [p_{1/2} \ p_{1/2}]10$	1.11
$\bullet \ [d_{3/2} \ d_{3/2}]10$	0.56
$\bullet \ [f_{5/2} \ f_{5/2}]10$	0.37
$[g_{7/2} \ g_{7/2}]10$	0.27
$[h_{9/2} \ h_{9/2}]10$	0.22
$[i_{11/2} \ i_{11/2}]10$	0.18
$[j_{13/2} \ j_{13/2}]10$	0.15

$[[kl]JT[s_{1/2}s_{1/2}]JT]$	$\langle 2\mathrm{p}2\mathrm{h} ec{S}_\mathrm{p}\cdotec{S}_\mathrm{n} 2\mathrm{p}2\mathrm{h} angle$
$[p_{3/2} \ p_{3/2}]10$	-0.22
$[d_{5/2} \ d_{5/2}]10$	-0.24
$[f_{7/2} \ f_{7/2}]10$	-0.20
$[g_{9/2} \ g_{9/2}]10$	-0.17
$[h_{11/2} \ h_{11/2}]10$	-0.15
$[i_{13/2} \ i_{13/2}]10$	-0.13
$[j_{15/2} \ j_{15/2}]10$	-0.12

j = I -1/2

$[[kl]JT[s_{1/2}s_{1/2}]JT]$	$\langle 2\mathrm{p}2\mathrm{h} ec{S}_\mathrm{p}\cdotec{S}_\mathrm{n} 2\mathrm{p}2\mathrm{h} angle$	
\bullet $[s_{1/2} \ d_{3/2}]10$	2.00	
\bullet $[p_{3/2} f_{5/2}]10$	2.00	
$[d_{5/2} \ g_{7/2}]10$	2.00	
\bullet $[f_{7/2} h_{9/2}]10$	2.00	
$[g_{9/2} \ i_{11/2}]10$	2.00	
$[h_{11/2} \;\; j_{13/2}]10$	2.00	

 $[Y_2 \otimes [\vec{\sigma} \otimes \vec{\sigma}]_2]_0$

i = 1 + 1/2

large amplitude Important channel for pionic correlation

 $|C_{lpha}|^2 \langle 2\mathrm{p}2\mathrm{h}: lpha | ec{S}_\mathrm{p} \cdot ec{S}_\mathrm{n} | 2\mathrm{p}2\mathrm{h}: lpha
angle$

Positive $\langle S_p \cdot S_n \rangle$ is a signature of the tensor correlation

Precise calculation of ⁴He with realistic NN interactions

by W. Horiuchi

 $\vec{S} = \vec{S}_p + \vec{S}_n$

Spin matrix elements of the ⁴He ground state

	$\left\langle \vec{S}_{p}^{2}+\vec{S}_{n}^{2} ight angle$	$\left\langle \vec{S}_{p}\cdot\vec{S}_{n} ight angle$	S=0	S=1	S=2
AV8' Stronger tensor int.	0.572	0.135	85.8%	0.4%	13.9%
G3RS Weaker tensor int.	0.465	0.109	88.5%	0.3%	11.3%
Minnesota No tensor int.	0.039	-0.020	100%	0%	0%

Y. Suzuki, W. Horiuchi et al., FBS42, 33(2007) H. Feldmeier, W. Horiuchi et al., PRC84, 054003(2011) $\langle \vec{S}_p \cdot \vec{S}_n \rangle$ is **sensitive** to the tensor correlation in the ground state, and may give **quantitative evaluation** of the correlation.

We have measured IS/IV spin-M1 transition strengths and used sum-rules to extract the ground state property.

How to Measure $\langle \vec{S}_p \cdot \vec{S}_n \rangle$ - Sum-Rule

The ground state expectation value can be extracted from the sum-rules of the IS/IV spin-M1 transition matrix elements.

Self-Conjugate (N=Z) even-even Nuclei

Spectrometer Setup for 0-deg (p,p') at RCNP

Excitation energy [MeV]

³⁶Ar ${}^{36}\text{Ar}(p,p')$ at $E_p = 295 \text{ MeV}$ $\theta_{lab} = 0 - 0.5^{\circ}$ Excitation energy [MeV]

Excitation energy [MeV]

IS/IV 1⁺ states were identified from angular distribution for each of IS and IV transitions.

The cross sections at the most forward angles have were converted to the spin-M1 strengths.

IS/IV Spin-M1 Matrix Elements

- summed strengths up to 16 MeV
- comparison with a shell-model calculation with USD int.

p-n Spin Correlation Function

- summed strengths up to 16 MeV
- comparison with a shell-model calculation with USD int.

Precise calculation of for a nucleon system with realistic NN interaction

by W. Horiuchi

 $\vec{S} = \vec{S}_p + \vec{S}_n$

Spin matrix elements of the ⁴He ground state

	$\left\langle \vec{S}_{p}^{2}+\vec{S}_{n}^{2} ight angle$	$\left\langle \vec{S}_{p}\cdot\vec{S}_{n} ight angle$	S=0	S=1	S=2
AV8' Stronger tensor int.	0.572	0.135	85.8%	0.4%	13.9%
G3RS Weaker tensor int.	0.465	0.109	88.5%	0.3%	11.3%
Minnesota No tensor int.	0.039	-0.020	100%	0%	0%

Y. Suzuki, W. Horiuchi et al., FBS42, 33(2007) H. Feldmeier, W. Horiuchi et al., PRC84, 054003(2011)

Calculation with Modern Realistic Interactions for ⁴He

⁴He calc. by W. Horiuchi

Predictions by Non-Core Shell Model

 $<S^{2}>=<S_{p}^{2}+S_{n}^{2}>$

Theoretical predictions are hoped for higher masses and on mass dependence with realistic tensor interaction.

Ab initio calculations up to A~12.

Channel-Spin S of Correlated p-n pairs in ⁴He

Study of tensor correlations in ⁴He via the ⁴He(p,dp) reaction

• Only one spectrum at P_{rel}=315MeV/c

Ratio between the S=1 and S=0 contributions

E1 Response of ²⁰⁸Pb and Symmetry Energy of the Nuclear EOS

Complete B(E1) Distribution of ²⁰⁸Pb Determined by Coulomb Excitation by (p,p') at Forward Angles

Dipole Polarizability

$$\alpha_D = \frac{\hbar c}{2\pi^2} \int \frac{\sigma_{abs}}{\omega^2} d\varpi = \frac{8\pi}{9} \int \frac{dB(E1)}{\omega} = 20.1 \pm 0.6 \text{ fm}^3$$

Neutron Skin Thickness of 208 Pb = 0.168±0.022 fm including model dependence

Determination of Symmetry Energy

M.B. Tsang *et al.*, PRC**86**, 015803 (2012). I. Tews et al., arXiv:1206.0025v1 and this work (DP) L=45±18 MeV J=30.9±1.5 MeV

Preliminary DP: Dipole Polarizability HIC: Heavy Ion Collision PDR: Pygmy Dipole Resonance of ^{68Ni} and ¹³²Sn IAS: Isobaric Analogue State FRDM: Finite Range Droplet Model (nuclear mass analysis) n-star: Neutron Star Observation χEFT: Chiral Effective Field Theory

$$\rho(r) = \rho_n(r) + \rho_p(r)$$

$$\delta(r) = \frac{\rho_n(r) - \rho_p(r)}{\rho_n(r) + \rho_p(r)}$$

Saturation Density ~0.16 fm⁻³

Determination of Symmetry Energy

Contents

1. Tensor Correlation in Nuclear Ground States

• Spin-*M1* Excitation and Sum-Rule (H. Matsubara *et al.,*)

•Channel-Spin *S* of Correlated *p-n* Pairs in ⁴He (K. Miki *et al.,*)

2. E1 Response of ²⁰⁸Pb and Symmetry Energy of the Nuclear EOS

Thank you for your attention!

