微視的構造・反応理論による

island of inversion核の

定量的反応解析

九大院理 蓑茂 工将 渡邊 慎,角 剛典,清水 良文,八尋 正信 北大創成 木村 真明 阪大RCNP 緒方一介

Island of inversion核の反応実験

 ✓ ³¹Neの1中性子除去反応断面積 *T. Nakamura et al.*, *PRL103*, 262501 (2009).
 ³¹Ne + ¹²C , *E*_{lab} = 230 (MeV/nucleon)
 ³¹Ne + ²⁰⁸Pb , *E*_{lab} = 234 (MeV/nucleon)
 非常に大きなCoulomb分解断面積

✓ Ne同位体の相互作用断面積測定
 M. Takechi et al., NPA834, 412c (2010). ^ANe + ¹²C , E_{lab} ~ 240 (MeV/nucleon)
 異常に大きな³¹Neの相互作用断面積

→ p3/2配位が支配的なハロー構造? 魔法数N=20の変化,または消失?

Systematics of

32

30

Stable Nuclei

Mass Number

1100-

1000

20N

20

22

Island of inversion核の反応解析

³¹Neの1中性子除去反応

Glauber model *W. Horiuchi et al., PRC81, 024606 (2010).* Particle-rotor model *Y. Urata et al., PRC83, 041303(R) (2011).*

Eikonal reaction theory *M. Yahiro et al.*, *PTP126*, *167* (2011).

Suggested properties of ³¹Ne

イスピン・パリティ
$$J^{\pi} = 3/2^{-}, 3/2^{+}, 7/2^{-}, 1/2^{+}$$

✓ Intruder configuration Super deformation

 \checkmark Halo structure ($S_n^{(\mathrm{exp})}=0.29\pm1.64~(\mathrm{MeV})~$)

観測量へのアプローチ

全反応断面積 原子核の"大きさ"

- ✓ Antisymmetrized Molecular Dynamics (AMD)
- ✓ Double folding model
- ✓ Melbourne g-matrix

包括的断面積価核子配位

- ✓ Continuum Descretized Coupled Channels (CDCC)
- ✓ Eikonal Reaction Theory (ERT)

微視的理論による定量的反応解析

多重散乱理論

✓ Full microscopic Schrödinger equation

$$\left[K + h_{\mathrm{P}} + h_{\mathrm{T}} + \sum_{i \in \mathrm{P}, j \in \mathrm{T}} v_{ij} - E\right] \Psi = 0$$

Multistep of v_{ij} between *i* th nucleon in projectile and *j* th nucleon in target

二重畳み込み模型

✓有効相互作用を用いたSchrödinger方程式

$$\left[K + h_{\mathrm{P}} + h_{\mathrm{T}} + \sum_{i \in \mathrm{P}, j \in \mathrm{T}} \tau_{ij} - E\right] \Psi = 0$$

Brieva-Rook流の方法で局所化する

K. Minomo, K. Ogata, M. Kohno, Y. R. Shimizu, M. Yahiro, J. Phys. G37, 085011 (2010).

Melbourne相互作用の信頼性

$$U = \left(\varphi_{\mathbf{P}} \varphi_{\mathbf{T}} \right) \sum_{i \in \mathbf{P}, \ j \in \mathbf{T}} \left(\tau_{ij} \varphi_{\mathbf{P}} \varphi_{\mathbf{T}} \right)$$
Melbourne相互作用

電子散乱実験から得られた 現象論的な核密度 H. de Vries et al., ADNDT36, 495 (1987).

<u>Test</u>

A + 12C@250MeV/nucleon T. Suzuki et al., PRL75, 3241 (1995). L. Chulkov et al., NPA603, 219 (1996). M. Takechi et al., PRC79, 061601(R) (2009).

Fine tuning

理論の結果を1.8%だけreduction.

Ne同位体の解析にもこの規格化係数を用いる.

K. Amos et al., PRL75, 3241 (1995).

AMDとRGM

AMD波動関数のテール補正 AMD-RGM

AMDによるNe同位体の計算

✓ 四重極変形度

核種	²⁵ Ne	²⁶ Ne	²⁷ Ne	²⁸ Ne	²⁹ Ne	³⁰ Ne	³¹ Ne	³² Ne
β_2	0.20	0.22	0.27	-0.29	0.45	0.40	0.42	0.34

AMD-RGMによる³¹Neの計算

✓ 中性子配位

✓ 中性子密度

Configurations	Configurations Amplitude		10-1	— AMD-RGM	
	AMD-RGM	AMD		AMD	
30 Ne(0 ⁺) $\otimes 1p_{3/2}$	56 %	37 %	<u><u><u></u></u> 10⁻²</u>		
${}^{30}\mathrm{Ne}(2^+)\otimes 1p_{3/2}$	24 %	41 %	(ff)		
30 Ne(2 ⁺) $\otimes 0f_{7/2}$	9 %	12 %	10^{-3}	<i>N</i>	
30 Ne(1 ⁻) $\otimes 1s_{1/2}$	5 %	5 %	den		
other components	6 %	5 %	E 10 ⁻⁴		
✓ 1中性子分离	離エネルギー	-	$\overset{\circ}{\mathbf{Z}}$ 10 ⁻⁵		
$S_n^{(AMD)} =$	$0.25 \; (MeV)$		10^{-6} <u>2</u> 4	<u>6 8 10 12</u>	
	Т ТТ (<pre>/ ``</pre>	Ra	dius (fm)	
$S_n^{(AMD-RC)}$	(100, 100) = 0.45 ((MeV)	中性子密度の平均二乗半径		
$S_r^{(\exp)} = 0$	$.29 \pm 1.64$ (MeV)	AMD-RGM: 3.62 fm		
16	(/	AMD: 3.49 fm		

Ne同位体の反応断面積

^ANe + ¹²C , $E_{\text{lab}} \sim 240 \text{ (MeV/nucleon)}$

変形平均場模型

✓変形Woods-Saxonポテンシャルを用いた平均場計算

✓ R. Wyss氏提唱のパラメータを用いる

✓ 変形度はAMDの結果を用いる

他のエネルギー領域での実験

		Ne isotopes	Mg isotopes
低エネルギー	実験	存在	存在
~50 MeV/nucleon	理論	未解析	未解析
中間エネルギー	実験	存在	解析中
240 MeV/nucleon	理論	人解析済	未解析
高エネルギー	実験	存在	存在
950 MeV/nucleon	理論	未解析	未解析

高エネルギーでの全反応断面積

低エネルギーでの全反応断面積

低エネルギーでは分解(と回転励起)の効果が重要.

Summary

✓ island of inversion核の全反応断面積の解析

AMD(RGM), 二重畳み込み模型, Melbourne相互作用を組み合わせ, Ne同位体の反応断面積を非常に良く再現.

- ✓ Conclusive results
 - I. Strong deformation $^{\rm 28-32}{\rm Ne}\, {\rm C}\, \beta_2 \sim 0.4$
 - II. The structure of ³¹Ne 変形に加えて, ハロー構造を持つ. スピン・パリティ 3/2-.
 - III. Loss of magic number Island of inversionでのN=20魔法数の消失

調節パラメータのない微視的枠組み ⇒ Mg同位体などの理論予測