テンソル最適化殻模型による 軽い核におけるテンソル力の働き

明 孝之 大阪工業大学

共同研究者 梅谷 篤史 日本工業大学 土岐 博 阪大RCNP 池田 清美 理研

実証的研究会@ RCNP, 2012.2

Purpose & Outline

- Role of V_{tensor} in the nuclear structure by describing strong tensor correlation explicitly.
- Tensor Optimized Shell Model (TOSM) to describe tensor correlation.
- Unitary Correlation Operator Method (UCOM) to describe short-range correlation.
- TOSM+UCOM to He & Li isotopes with V_{bare}

Deuteron properties & tensor force

Tensor-optimized shell model (TOSM) TM, Sugimoto, Kato, Toki, Ikeda PTP117(2007)257

 Configuration mixing within 2p2h excitations with high-L orbits.
 TM et al., PTP113(2005) TM et al., PTP117(2007)

- Length parameters such as b_{0s}, b_{0p}, ... are optimized independently, or superposed by many Gaussian bases.
 - Spatial shrinkage of *D*-wave as seen in deuteron
 HF by Sugimoto et al,(NPA740) / Akaishi (NPA738)
 RMF by Ogawa et al.(PRC73), AMD by Dote et al.(PTP115)
- Satisfy few-body results with Minnesota central force (^{4,6}He)

Hamiltonian and variational equations in TOSM

$$H = \sum_{i=1}^{A} t_i - T_G + \sum_{i

$$(0p0h+1p1h+2p2h)$$

$$\Phi(A) = \sum_{k} C_k \cdot \psi_k(A)$$

$$\psi_k(A): \text{ shell model type configuration with mass number } A$$

$$(Particle state : Gaussian expansion for each orbit)$$

$$\phi_{lj}^n(\mathbf{r}) = \sum_{m=1}^{N} C_{lj,m}^n \cdot \phi_{lj,m}(\mathbf{r}) \quad \phi_{lj,m}(\mathbf{r}) = N_l(b_{lj,m}) \cdot r^l e^{-\left(r/b_{lj,m}\right)^2} \left[Y_l(\hat{\mathbf{r}}), \chi_{1/2}^{\sigma}\right]_j$$

$$\left\langle \phi_{lj}^n \middle| \phi_{lj}^n \right\rangle = \delta_{n,n'}$$

$$\frac{\partial \langle H - E \rangle}{\partial \langle H - E \rangle} = 0$$$$

 ∂C_k

TOSM code : *p*-shell region

c.m. excitation is excluded by Lawson's method

 $\partial b_{li,m}$

= ()

Configurations in TOSM

Application to Hypernuclei by Umeya (NIT) to investigate ΛN - ΣN coupling

Unitary Correlation Operator Method
(short-range part)

$$\Psi_{corr.} = \underbrace{C} \cdot \Phi_{uncorr.} \quad TOSM$$

short-range correlator $C^{\dagger 1} = C^{-}$ (Unitary trans.)
 $H\Psi = E\Psi \rightarrow C^{\dagger}HC\Phi \equiv \widehat{H}\Phi = E\Phi$
Bare Hamiltonian
 $C = \exp(-i\sum_{i < j} g_{ij}), \quad g_{ij} = \frac{1}{2} \{p_r s(r_{ij}) + s(r_{ij})p_r\} \quad \vec{p} = \vec{p}_r + \vec{p}_{\Omega}$
Amount of shift, variationally determined.
 $C^{\dagger}rC \simeq r + s(r) + \frac{1}{2}s(r)s'(r) \cdots$ 2-body cluster expansion
H. Feldmeier, T. Neff, R. Roth, J. Schnack, NPA632(1998)61

Short-range correlator : **C** (or **C**_r)

We further introduce partial-wave dependence \rightarrow S-wave UCOM in "s(r)" of UCOM

⁴He in UCOM (Afnan-Tang, V_{central} only)

⁴⁻⁸He with TOSM+UCOM

Excitation energies in MeV

TM, A. Umeya, H. Toki, K. Ikeda PRC84 (2011) 034315

- Bound state app.
- No continuum
- No V_{NNN}

• Excitation energy spectra are reproduced well

⁵⁻⁹Li with TOSM+UCOM

• Excitation energies in MeV

- Bound state app.
- No continuum
- No V_{NNN}

Excitation energy spectra are reproduced well

Matter radius of He & Li isotopes

⁴⁻⁸He with TOSM+UCOM

• Difference from ⁴He in MeV

TM, A. Umeya, H. Toki, K. Ikeda PRC84 (2011) 034315

Configurations of ⁴He in TOSM with AV8'

	I M, H. IOKI, K. IKEda		
(0s _{1/2}) ⁴	83.0 %	PTP121(2009)511	
$(0s_{1/2})^{-2}_{JT}(p_{1/2})^{2}_{JT}$ JT=10	2.6		
<i>JT</i> =01	0.1	• deuteron correlation	
$(0s_{1/2})^{-2}{}_{10}(1s_{1/2})(d_{3/2})_{10}$	2.3	with $(J, I) = (1, 0)$	
$(0s_{1/2})^{-2}{}_{10}(p_{3/2})(f_{5/2})_{10}$	1.9	Cf. R.Schiavilla et al. (VM PRL98(2007)132 R. Subedi et al. (JLab	
Radius [fm]	1.54	Science320(2008)1476	
		$^{12}C(e,e'pN)$	

⁴He contains p_{1/2} of "pn-pair"

– Same feature in ⁵He-⁸He ground state

16

S.C.Simpson, J.A.Tostevin

PRC83(2011)014605

 $^{12}C \rightarrow ^{10}B + pn$

Selectivity of the tensor coupling in ⁴He

TM, Sugimoto, Kato, Toki, Ikeda, PTP117(2007)257

PHYSICAL REVIEW C 83, 014605 (2011)

Two-nucleon correlation effects in knockout reactions from ¹²C

E. C. Simpson and J. A. Tostevin (Surrey, UK)

Reactions that involve the direct and sudden removal of a pair of like or unlike nucleons from a fast projectile beam by a light target nucleus are considered. Specifically, we study the three two-nucleon removal channels from 12 C that populate final states in the 10 Be, 10 B, and 10 C reaction residues. The calculated two-nucleon removal cross sections and the residue momentum distributions are compared with available high-energy data at 250, 1050, and 2010 MeV per nucleon, i.e., data that are inclusive with respect to the bound final states of the residues. The measured *np* removal cross sections only are significantly greater than the values calculated, suggesting that the reaction mechanism observes enhanced *np* spatial correlations compared to those present in the shell-model wave functions.

$$^{12}C \longrightarrow ^{10}Be, ^{10}B, ^{10}C$$

TABLE III. Theoretical and experimental cross sections for two-nucleon knockout from ¹²C, 2100 MeV per nucleon. All cross sections are in mb. The TNAs used were calculated using the WBF

Energy		¹⁰ Be	-2p		¹⁰ C	-2 <i>n</i>
MeV/u	$\sigma_{ m th}$	$\sigma_{\rm exp}$	$\sigma_{ m exp}/\sigma_{ m th}$	$\sigma_{ m th}$	$\sigma_{ m exp}$	$\sigma_{ m exp}/\sigma_{ m th}$
250 [12] 1050 [13] 2100 [13]	7.48 6.62 6.52	5.88 ± 9.70 5.30 ± 0.30 5.81 ± 0.29	0.79 ± 1.30 0.80 ± 0.05 0.89 ± 0.04	5.80 5.13 5.04	5.33 ± 0.81 4.44 ± 0.24 4.11 ± 0.22	0.92 ± 0.14 0.87 ± 0.05 0.82 ± 0.04

for projectile energies of 250, 1050, and P interaction.

	¹⁰ B	-pn
$\sigma_{ m th}$	$\sigma_{ m exp}$	$\sigma_{ m exp}/\sigma_{ m th}$
21.57	47.50 ± 2.42	2.20 ± 0.11
19.27	27.90 ± 2.20	1.45 ± 0.11
19.02	35.10 ± 3.40	1.84 ± 0.18

- OXBASH shell model with WBP interaction
- Eikonal reaction model with optical limit of Glauber theory

⁴⁻⁸He with TOSM+UCOM

• Excitation energies in MeV

No continuum
 Excitation energy spectra are reproduced well

Tensor correlation in ⁶He

⁶He : Hamiltonian component in TOSM

• Difference from ⁴He in MeV

⁶ He	0 + ₁	0 + ₂
<i>n</i> ² config	(p _{3/2}) ²	(p _{1/2}) ²

 b_{hole} =1.5 fm $\hbar \omega$ =18.4 MeV (hole) same trend in ⁵⁻⁸He

LS splitting energy in ⁵He

Terasawa, Arima PTP23 ('60)
Nagata, Sasakawa, Sawada, Tamagaki, PTP22('59)
Myo, Kato, Ikeda, PTP113 ('05)

Configurations of "pn in ⁶Li_{gs}"

	S=0	S=1
(0p _{1/2})(0p _{3/2})	11%	89%
(0p _{3/2}) ²	56%	44%

Summary

- **TOSM+UCOM** with bare nuclear force.
- ⁴He contains much "pn-pair of p_{1/2}".
- He isotopes with $p_{3/2}$ has large contributions of V_{tensor} & Kinetic energy.
- ⁶Li with S=1 component.

Review Di-neutron clustering and deuteron-like tensor correlation in nuclear structure focusing on ¹¹Li K. Ikeda, T. Myo, K. Kato and H. Toki Springer, Lecture Notes in Physics 818 (2010) "Clusters in Nuclei" Vol.1, 165-221.