差分
このページの2つのバージョン間の差分を表示します。
両方とも前のリビジョン前のリビジョン次のリビジョン | 前のリビジョン | ||
research:memos:chi2 [2019/12/19 14:06] – kobayash | research:memos:chi2 [2019/12/19 17:30] (現在) – kobayash | ||
---|---|---|---|
行 5: | 行 5: | ||
\chi^2 | \chi^2 | ||
&= \sum_i \left[ \ln(y_i-c) - \ln a +bx_i \right]^2\\ | &= \sum_i \left[ \ln(y_i-c) - \ln a +bx_i \right]^2\\ | ||
- | &= \sum_i \left[ \left[ \right]^2 \right]\\ | + | &= \sum_i \left[ \left[ |
\end{align} | \end{align} | ||
+ | |||
+ | \begin{align} | ||
+ | \frac{\partial \chi^2 }{\partial a} = \sum_i \left[ 2 \ln a - 2\ln(y_i-c) - 2b x_i \right] = 0\\ | ||
+ | \frac{\partial \chi^2 }{\partial b} = \sum_i \left[2 b x_i^2 + 2x_i \ln\left( y_i-c\right) - 2x_i \ln a \right] = 0\\ | ||
+ | \frac{\partial \chi^2 }{\partial c} = \sum_i \left[ 2\frac{\ln(y_i-c)}{y_i-c} - 2\frac{\ln a}{y_i-c} + 2\frac{b x_i}{y_i-c}\right] | ||
+ | \end{align} | ||
+ | |||
+ | \begin{align} | ||
+ | n\ln a - \sum_i \ln(y_i-c) - b \sum_i x_i = 0\\ | ||
+ | b \sum_i x_i^2 + \sum_i x_i \ln\left( y_i-c\right) - \ln a \sum_i x_i = 0\\ | ||
+ | \sum_i \frac{\ln(y_i-c)}{y_i-c} | ||
+ | \end{align} | ||
+ | |||
+ | \begin{align} | ||
+ | n \ln a \sum_i x_i - \sum_i x_i \sum_i \ln(y_i-c) - b \left(\sum_i x_i\right)^2 = 0\\ | ||
+ | n b \sum_i x_i^2 + n \sum_i x_i \ln\left( y_i-c\right) - n\ln a \sum_i x_i = 0\\ | ||
+ | \end{align} | ||
+ | |||
+ | \begin{align} | ||
+ | \left[n \sum_i x_i^2 + \left(\sum_i x_i\right)^2 \right] b = \sum_i x_i \sum_i \ln(y_i-c) - n \sum_i x_i \ln\left( y_i-c\right) \\ | ||
+ | \end{align} | ||
+ | |||
+ | \begin{align} | ||
+ | b = \frac{\sum_i x_i \sum_i \ln(y_i-c) - n \sum_i x_i \ln\left( y_i-c\right)}{n \sum_i x_i^2 + \left(\sum_i x_i\right)^2} \\ | ||
+ | \end{align} | ||
+ | |||
+ | 書きかけ | ||
+ | |||
+ | |||
+ | |||