差分

このページの2つのバージョン間の差分を表示します。

この比較画面へのリンク

両方とも前のリビジョン前のリビジョン
次のリビジョン
前のリビジョン
research:memos:inverse_compton_scattering [2022/07/25 00:00] – [General formula] kobayashresearch:memos:inverse_compton_scattering [2022/07/28 23:29] (現在) – [General formula] kobayash
行 2: 行 2:
 ==== General formula ===== ==== General formula =====
  
-{{ :research:memos:electron_photon_scattering_20220724.png?800 |}}+{{ :research:memos:electron_photon_scattering_20220724.png?700 |}}
  
 From the laws of conservation of the energy and the momentum, From the laws of conservation of the energy and the momentum,
 \begin{align} \begin{align}
-E_e + p_{\mathrm{ph}}c = E_e^\prime + p_{\mathrm{ph}}^{\prime}c\\+E_e + p_{\mathrm{ph}}c = E_e^\prime + p_{\mathrm{ph}}^{\prime}c,\\
 \boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}} = \boldsymbol{p}_e^\prime + \boldsymbol{p}_{\mathrm{ph}}^{\prime}.\\ \boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}} = \boldsymbol{p}_e^\prime + \boldsymbol{p}_{\mathrm{ph}}^{\prime}.\\
 \end{align} \end{align}
行 26: 行 26:
  
 \begin{align} \begin{align}
-p_e^{\prime 2} \cos^2 \theta_e^\prime &= |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}|^2 + p_{\mathrm{ph}}^{\prime 2} \cos^2 \theta_{\mathrm{ph}}^{\prime} -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime},\\+p_e^{\prime 2} \cos^2 \theta_e^\prime &= |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}|^2 + p_{\mathrm{ph}}^{\prime 2} \cos^2 \theta_{\mathrm{ph}}^{\prime} -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}\
 +\Leftrightarrow 
 p_e^{\prime 2} -p_e^{\prime 2}\sin^2 \theta_e^\prime &= |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}|^2 + p_{\mathrm{ph}}^{\prime 2} \cos^2 \theta_{\mathrm{ph}}^{\prime} -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}.\\ p_e^{\prime 2} -p_e^{\prime 2}\sin^2 \theta_e^\prime &= |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}|^2 + p_{\mathrm{ph}}^{\prime 2} \cos^2 \theta_{\mathrm{ph}}^{\prime} -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}.\\
 \end{align} \end{align}
 From $0 = p_e^\prime \sin \theta_e^\prime + p_{\mathrm{ph}}^{\prime} \sin \theta_{\mathrm{ph}}^{\prime}$, From $0 = p_e^\prime \sin \theta_e^\prime + p_{\mathrm{ph}}^{\prime} \sin \theta_{\mathrm{ph}}^{\prime}$,
 \begin{align} \begin{align}
-p_e^{\prime 2} -p_{\mathrm{ph}}^{\prime 2} \sin^2 \theta_{\mathrm{ph}}^{\prime} &= |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}|^2 + p_{\mathrm{ph}}^{\prime 2} \cos^2 \theta_{\mathrm{ph}}^{\prime} -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime},\\+p_e^{\prime 2} -p_{\mathrm{ph}}^{\prime 2} \sin^2 \theta_{\mathrm{ph}}^{\prime} &= |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}|^2 + p_{\mathrm{ph}}^{\prime 2} \cos^2 \theta_{\mathrm{ph}}^{\prime} -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}\
 +\Leftrightarrow 
 p_e^{\prime 2} p_e^{\prime 2}
 &= |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}|^2 + p_{\mathrm{ph}}^{\prime 2} \cos^2 \theta_{\mathrm{ph}}^{\prime} + p_{\mathrm{ph}}^{\prime 2} \sin^2 \theta_{\mathrm{ph}}^{\prime}-2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}\\ &= |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}|^2 + p_{\mathrm{ph}}^{\prime 2} \cos^2 \theta_{\mathrm{ph}}^{\prime} + p_{\mathrm{ph}}^{\prime 2} \sin^2 \theta_{\mathrm{ph}}^{\prime}-2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}\\
行 38: 行 40:
 In another way, this equation can be extracted from $\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}} = \boldsymbol{p}_e^\prime + \boldsymbol{p}_{\mathrm{ph}}^{\prime}$ as follows. In another way, this equation can be extracted from $\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}} = \boldsymbol{p}_e^\prime + \boldsymbol{p}_{\mathrm{ph}}^{\prime}$ as follows.
 \begin{align} \begin{align}
-\boldsymbol{p}_e^\prime &= \boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}} - \boldsymbol{p}_{\mathrm{ph}}^{\prime},\\+\boldsymbol{p}_e^\prime &= \boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}} - \boldsymbol{p}_{\mathrm{ph}}^{\prime}\
 +\Rightarrow 
 p_e^{\prime 2} p_e^{\prime 2}
 &= |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}|^2 + p_{\mathrm{ph}}^{\prime 2} -2\boldsymbol{p}_{\mathrm{ph}}^{\prime}\cdot(\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}})\\ &= |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}|^2 + p_{\mathrm{ph}}^{\prime 2} -2\boldsymbol{p}_{\mathrm{ph}}^{\prime}\cdot(\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}})\\
 &= |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}|^2 + p_{\mathrm{ph}}^{\prime 2} -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}\\ &= |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}|^2 + p_{\mathrm{ph}}^{\prime 2} -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}\\
-&= p_e^2 + p_{\mathrm{ph}}^2 + 2p_e p_{\mathrm{ph}} \cos(\theta_e+\theta_{\mathrm{ph}}) + p_{\mathrm{ph}}^{\prime 2} -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime},\\+&= p_e^2 + p_{\mathrm{ph}}^2 + 2p_e p_{\mathrm{ph}} \cos(\theta_e+\theta_{\mathrm{ph}}) + p_{\mathrm{ph}}^{\prime 2} -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}\
 +\Leftrightarrow 
 p_e^{\prime 2} &= p_e^2 + p_{\mathrm{ph}}^2 + p_{\mathrm{ph}}^{\prime 2} + 2p_e p_{\mathrm{ph}} \cos(\theta_e+\theta_{\mathrm{ph}}) -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime},\\ p_e^{\prime 2} &= p_e^2 + p_{\mathrm{ph}}^2 + p_{\mathrm{ph}}^{\prime 2} + 2p_e p_{\mathrm{ph}} \cos(\theta_e+\theta_{\mathrm{ph}}) -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime},\\
 \end{align} \end{align}
-where $\theta_e$ ($\theta_{\mathrm{ph}}$) is an angle between $\boldsymbol{p}_e$ ($\boldsymbol{p}_{\mathrm{ph}}$) and $\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}$, and $\theta_{\mathrm{ph}}^{\prime}$ is an angle between $\boldsymbol{p}_{\mathrm{ph}}^{\prime}$ and $\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}$.+where $\theta_e$ ($\theta_{\mathrm{ph}}$) is angle between $\boldsymbol{p}_e$ ($\boldsymbol{p}_{\mathrm{ph}}$) and $\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}$, and $\theta_{\mathrm{ph}}^{\prime}$ is angle between $\boldsymbol{p}_{\mathrm{ph}}^{\prime}$ and $\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}$.
  
 Then, from the law of energy conservation $E_e + p_{\mathrm{ph}}c = E_e^\prime + p_{\mathrm{ph}}^{\prime}c$, Then, from the law of energy conservation $E_e + p_{\mathrm{ph}}c = E_e^\prime + p_{\mathrm{ph}}^{\prime}c$,
行 55: 行 59:
 E_e^{\prime 2} = E_e^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2.\\ E_e^{\prime 2} = E_e^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2.\\
 \end{align} \end{align}
-By using $E^2 = m^2c^4 + p^2c^2$,+By using $E_e^2 = m_e^2c^4 + p_e^2c^2$ and $E_e^{\prime 2} = m_e^2c^4 + p_e^{\prime 2}c^2$
 \begin{align} \begin{align}
-m_e^2c^4  + p_e^{\prime 2}c^2 &= m_e^2c^4  + p_e^{\prime 2}c^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2,\\+m_e^2c^4  + p_e^{\prime 2}c^2 &= m_e^2c^4  + p_e^2c^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2\
 +\Leftrightarrow 
 p_e^{\prime 2}c^2 &= p_e^2c^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2.\\ p_e^{\prime 2}c^2 &= p_e^2c^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2.\\
 \end{align} \end{align}
 By using $p_e^{\prime 2} = p_e^2 + p_{\mathrm{ph}}^2 + p_{\mathrm{ph}}^{\prime 2} + 2p_e p_{\mathrm{ph}} \cos(\theta_e+\theta_{\mathrm{ph}}) -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}$, By using $p_e^{\prime 2} = p_e^2 + p_{\mathrm{ph}}^2 + p_{\mathrm{ph}}^{\prime 2} + 2p_e p_{\mathrm{ph}} \cos(\theta_e+\theta_{\mathrm{ph}}) -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}$,
 \begin{align} \begin{align}
-\left[p_e^2 + p_{\mathrm{ph}}^2 + p_{\mathrm{ph}}^{\prime 2} + 2p_e p_{\mathrm{ph}} \cos(\theta_e+\theta_{\mathrm{ph}}) -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}\right]c^2 &= p_e^2c^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2,\\ +\left[p_e^2 + p_{\mathrm{ph}}^2 + p_{\mathrm{ph}}^{\prime 2} + 2p_e p_{\mathrm{ph}} \cos(\theta_e+\theta_{\mathrm{ph}}) -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}\right]c^2 &= p_e^2c^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2\
-p_e p_{\mathrm{ph}} c \cos(\theta_e+\theta_{\mathrm{ph}}) - p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| c\cos \theta_{\mathrm{ph}}^{\prime} &= E_e p_{\mathrm{ph}} - E_e p_{\mathrm{ph}}^{\prime} -p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c,\\ +\Leftrightarrow \  
-\left[ E_e + p_{\mathrm{ph}} c - |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| c\cos \theta_{\mathrm{ph}}^{\prime}\right]p_{\mathrm{ph}}^{\prime} &= \left[E_e -p_e c \cos(\theta_e+\theta_{\mathrm{ph}})\right]p_{\mathrm{ph}},\\+p_e p_{\mathrm{ph}} c \cos(\theta_e+\theta_{\mathrm{ph}}) - p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| c\cos \theta_{\mathrm{ph}}^{\prime} &= E_e p_{\mathrm{ph}} - E_e p_{\mathrm{ph}}^{\prime} -p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c\
 +\Leftrightarrow \  
 +\left[ E_e + p_{\mathrm{ph}} c - |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| c\cos \theta_{\mathrm{ph}}^{\prime}\right]p_{\mathrm{ph}}^{\prime} &= \left[E_e -p_e c \cos(\theta_e+\theta_{\mathrm{ph}})\right]p_{\mathrm{ph}}\
 +\Rightarrow 
 p_{\mathrm{ph}}^{\prime} &= \frac{E_e -p_e c \cos(\theta_e+\theta_{\mathrm{ph}})}{E_e  + p_{\mathrm{ph}} c - |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| c\cos \theta_{\mathrm{ph}}^{\prime}}p_{\mathrm{ph}}.\\ p_{\mathrm{ph}}^{\prime} &= \frac{E_e -p_e c \cos(\theta_e+\theta_{\mathrm{ph}})}{E_e  + p_{\mathrm{ph}} c - |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| c\cos \theta_{\mathrm{ph}}^{\prime}}p_{\mathrm{ph}}.\\
 \end{align} \end{align}
行 80: 行 88:
 \end{align} \end{align}
  
-If unit vectors $\widehat{\boldsymbol{p}_{\mathrm{ph}}^{\prime}} = \boldsymbol{p}_{\mathrm{ph}}^{\prime}/p_{\mathrm{ph}}^{\prime}, \widehat{\boldsymbol{p}_{\mathrm{ph}}} = \boldsymbol{p}_{\mathrm{ph}}/p_{\mathrm{ph}}$, and $\widehat{\boldsymbol{p}_e} = \boldsymbol{p}_e/p_e$ is defined,+If unit vectors $\widehat{\boldsymbol{p}_{\mathrm{ph}}^{\prime}} = \boldsymbol{p}_{\mathrm{ph}}^{\prime}/p_{\mathrm{ph}}^{\prime},\widehat{\boldsymbol{p}_{\mathrm{ph}}} = \boldsymbol{p}_{\mathrm{ph}}/p_{\mathrm{ph}}$, and $\widehat{\boldsymbol{p}_e} = \boldsymbol{p}_e/p_e$ are defined,
 \begin{align} \begin{align}
 |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}
行 117: 行 125:
  
 \begin{align} \begin{align}
-p_{\mathrm{ph}}^{\prime} = \frac{1 - \beta_e \cos(\theta_e+\theta_{\mathrm{ph}})}{1 - \beta_e \widehat{\boldsymbol{p}_{\mathrm{ph}}^{\prime}}\cdot\widehat{\boldsymbol{p}_e} + \frac{p_{\mathrm{ph}} c}{E_e} (1 - \widehat{\boldsymbol{p}_{\mathrm{ph}}^{\prime}}\cdot\widehat{\boldsymbol{p}_{\mathrm{ph}}})}p_{\mathrm{ph}},\\ +p_{\mathrm{ph}}^{\prime} &= \frac{1 - \beta_e \cos(\theta_e+\theta_{\mathrm{ph}})}{1 - \beta_e \widehat{\boldsymbol{p}_{\mathrm{ph}}^{\prime}}\cdot\widehat{\boldsymbol{p}_e} + \frac{p_{\mathrm{ph}} c}{E_e} (1 - \widehat{\boldsymbol{p}_{\mathrm{ph}}^{\prime}}\cdot\widehat{\boldsymbol{p}_{\mathrm{ph}}})}p_{\mathrm{ph}},\\ 
-p_{\mathrm{ph}}^{\prime}c = \frac{p_{\mathrm{ph}}c\left[1 - \beta_e \cos(\theta_e+\theta_{\mathrm{ph}})\right]}{1 - \beta_e \widehat{\boldsymbol{p}_{\mathrm{ph}}^{\prime}}\cdot\widehat{\boldsymbol{p}_e} + \frac{p_{\mathrm{ph}} c(1 - \widehat{\boldsymbol{p}_{\mathrm{ph}}^{\prime}}\cdot\widehat{\boldsymbol{p}_{\mathrm{ph}}})}{E_e}}.\\+\Leftrightarrow\ p_{\mathrm{ph}}^{\prime}c &= \frac{p_{\mathrm{ph}}c\left[1 - \beta_e \cos(\theta_e+\theta_{\mathrm{ph}})\right]}{1 - \beta_e \widehat{\boldsymbol{p}_{\mathrm{ph}}^{\prime}}\cdot\widehat{\boldsymbol{p}_e} + \frac{p_{\mathrm{ph}} c(1 - \widehat{\boldsymbol{p}_{\mathrm{ph}}^{\prime}}\cdot\widehat{\boldsymbol{p}_{\mathrm{ph}}})}{E_e}}.\\
 \end{align} \end{align}
 According to definitions of the slant scattering paper,  According to definitions of the slant scattering paper, 
行 149: 行 157:
 By eliminating $p_{\mathrm{ph}}^{\prime}$ from the two equations, By eliminating $p_{\mathrm{ph}}^{\prime}$ from the two equations,
 \begin{align} \begin{align}
-E_e + 2p_{\mathrm{ph}}c - p_{e}c = E_e^\prime - p_e^{\prime}c\\ +E_e + 2p_{\mathrm{ph}}c - p_{e}c &= E_e^\prime - p_e^{\prime}c\
-E_e + 2p_{\mathrm{ph}}c - p_{e}c + p_e^{\prime}c = \sqrt{p_e^{{\prime}2}c^2+m_{e}^2c^4}.\\+\Rightarrow \  
 +E_e + 2p_{\mathrm{ph}}c - p_{e}c + p_e^{\prime}c &= \sqrt{p_e^{{\prime}2}c^2+m_{e}^2c^4}.\\
 \end{align} \end{align}
 By making the square of both sides, By making the square of both sides,
行 158: 行 167:
 Then, Then,
 \begin{align} \begin{align}
- 2p_e^{{\prime}}c\left(E_e + 2p_{\mathrm{ph}}c - p_{e}c\right) = m_{e}^2c^4 -\left(E_e + 2p_{\mathrm{ph}}c - p_{e}c\right)^2.\\ +2p_e^{{\prime}}c\left(E_e + 2p_{\mathrm{ph}}c - p_{e}c\right) = m_{e}^2c^4 -\left(E_e + 2p_{\mathrm{ph}}c - p_{e}c\right)^2\
- p_e^{{\prime}} = \frac{1}{2c}\left[\frac{m_{e}^2c^4}{E_e + 2p_{\mathrm{ph}}c - p_{e}c} -\left(E_e + 2p_{\mathrm{ph}}c - p_{e}c\right)\right].\\+\Rightarrow \  
 +p_e^{{\prime}} = \frac{1}{2c}\left[\frac{m_{e}^2c^4}{E_e + 2p_{\mathrm{ph}}c - p_{e}c} -\left(E_e + 2p_{\mathrm{ph}}c - p_{e}c\right)\right].\\
 \end{align} \end{align}
  
-=== Energy of the scattered photon $E_{\mathrm{ph}}^{\prime}$ (Solution A)===+=== Energy of the scattered photon $E_{\mathrm{ph}}^{\prime}$ (Solution A) === 
 +By using the above $E_{e}^{\prime}$, 
 +\begin{align} 
 +p_{\mathrm{ph}}^{\prime} 
 +&= p_e - p_{\mathrm{ph}} -p_e^\prime \\ 
 +&= p_e - p_{\mathrm{ph}} - \frac{1}{2c}\left[\frac{m_{e}^2c^4}{E_e + 2p_{\mathrm{ph}}c - p_{e}c} -\left(E_e + 2p_{\mathrm{ph}}c - p_{e}c\right)\right] \\ 
 +&= - \frac{1}{2c}\left[\frac{m_{e}^2c^4}{E_e + 2p_{\mathrm{ph}}c - p_{e}c} -\left(E_e + 2p_{\mathrm{ph}}c - p_{e}c\right) -2c\left(p_e - p_{\mathrm{ph}}\right) \right] \\ 
 +&= - \frac{1}{2c}\left[\frac{m_{e}^2c^4}{E_e + 2p_{\mathrm{ph}}c - p_{e}c} -\left(E_e + p_{e}c\right) \right] \\ 
 +&= - \frac{1}{2c}\left[\frac{m_{e}^2c^4  -\left(E_e + p_{e}c\right)\left(E_e + 2p_{\mathrm{ph}}c - p_{e}c\right)}{E_e + 2p_{\mathrm{ph}}c - p_{e}c} \right] \\ 
 +&= - \frac{1}{2c}\left[\frac{m_{e}^2c^4  -2p_{\mathrm{ph}}c\left(E_e + p_{e}c\right)-\left(E_e^2 - p_{e}^2c\right)}{E_e + 2p_{\mathrm{ph}}c - p_{e}c} \right] \\ 
 +&= - \frac{1}{2c}\left[\frac{m_{e}^2c^4  -2p_{\mathrm{ph}}c\left(E_e + p_{e}c\right)-m_{e}^2c^4}{E_e + 2p_{\mathrm{ph}}c - p_{e}c} \right] \\ 
 +&= - \frac{1}{2c}\left[\frac{-2p_{\mathrm{ph}}\left(E_e + p_{e}c\right)}{E_e + 2p_{\mathrm{ph}}c - p_{e}c} \right] \\ 
 +&= p_{\mathrm{ph}}\frac{E_e + p_{e}c}{E_e + 2p_{\mathrm{ph}}c - p_{e}c}\\ 
 +\end{align} 
 +Then, 
 +\begin{align} 
 +p_{\mathrm{ph}}^{\prime} = \frac{E_e + p_{e}c}{E_e - p_{e}c + 2p_{\mathrm{ph}}c}p_{\mathrm{ph}}\\ 
 +\end{align} 
 +=== Energy of the scattered photon $E_{\mathrm{ph}}^{\prime}$ (Solution B) ===
 From $E_e + p_{\mathrm{ph}}c = E_e^\prime + p_{\mathrm{ph}}^{\prime}c$, From $E_e + p_{\mathrm{ph}}c = E_e^\prime + p_{\mathrm{ph}}^{\prime}c$,
 \begin{align} \begin{align}
行 174: 行 202:
  
 \begin{align} \begin{align}
-m_e^2c^4  + p_e^{\prime 2}c^2= m_e^2c^4  + p_e^{\prime 2}c^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2,\\+m_e^2c^4  + p_e^{\prime 2}c^2= m_e^2c^4  + p_e^{\prime 2}c^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2\
 +\Leftrightarrow 
 p_e^{\prime 2}c^2= p_e^2c^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2.\\ p_e^{\prime 2}c^2= p_e^2c^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2.\\
 \end{align} \end{align}
行 188: 行 217:
 \begin{align} \begin{align}
 (p_e^2 + p_{\mathrm{ph}}^2 + p_{\mathrm{ph}}^{\prime 2} - 2 p_e p_{\mathrm{ph}} - 2 p_e p_{\mathrm{ph}}^{\prime} + 2 p_{\mathrm{ph}}p_{\mathrm{ph}}^{\prime})c^2 (p_e^2 + p_{\mathrm{ph}}^2 + p_{\mathrm{ph}}^{\prime 2} - 2 p_e p_{\mathrm{ph}} - 2 p_e p_{\mathrm{ph}}^{\prime} + 2 p_{\mathrm{ph}}p_{\mathrm{ph}}^{\prime})c^2
-&= p_e^2c^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2,\\+&= p_e^2c^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2\
 +\Leftrightarrow 
 - 2 p_e p_{\mathrm{ph}}c^2 - 2 p_e p_{\mathrm{ph}}^{\prime}c^2 + 2 p_{\mathrm{ph}}p_{\mathrm{ph}}^{\prime}c^2 - 2 p_e p_{\mathrm{ph}}c^2 - 2 p_e p_{\mathrm{ph}}^{\prime}c^2 + 2 p_{\mathrm{ph}}p_{\mathrm{ph}}^{\prime}c^2
-&= 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2,\\ +&= 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2\
-E_e p_{\mathrm{ph}}^{\prime}  -  p_e p_{\mathrm{ph}}^{\prime}c + 2 p_{\mathrm{ph}}p_{\mathrm{ph}}^{\prime}c &= E_e p_{\mathrm{ph}}  + p_e p_{\mathrm{ph}}c,\\ +\Leftrightarrow \  
-\left[ E_e -  p_e c + 2 p_{\mathrm{ph}}c \right]p_{\mathrm{ph}}^{\prime} &= \left[E_e + p_e c\right]p_{\mathrm{ph}},\\+E_e p_{\mathrm{ph}}^{\prime}  -  p_e p_{\mathrm{ph}}^{\prime}c + 2 p_{\mathrm{ph}}p_{\mathrm{ph}}^{\prime}c &= E_e p_{\mathrm{ph}}  + p_e p_{\mathrm{ph}}c\
 +\Leftrightarrow \  
 +\left[ E_e -  p_e c + 2 p_{\mathrm{ph}}c \right]p_{\mathrm{ph}}^{\prime} &= \left[E_e + p_e c\right]p_{\mathrm{ph}}\
 +\Rightarrow 
 p_{\mathrm{ph}}^{\prime} &=\frac{E_e + p_{e}c}{E_e - p_{e}c + 2p_{\mathrm{ph}}c}p_{\mathrm{ph}}\\ p_{\mathrm{ph}}^{\prime} &=\frac{E_e + p_{e}c}{E_e - p_{e}c + 2p_{\mathrm{ph}}c}p_{\mathrm{ph}}\\
 \end{align} \end{align}
行 208: 行 241:
 \end{align} \end{align}
  
-=== Energy of the scattered photon $E_{\mathrm{ph}}^{\prime}$ (Solution B)=== +=== Energy of the scattered photon $E_{\mathrm{ph}}^{\prime}$ (Solution C) ===
-By using the above $E_{e}^{\prime}$, +
-\begin{align} +
-p_{\mathrm{ph}}^{\prime} +
-&= p_e - p_{\mathrm{ph}} -p_e^\prime \\ +
-&= p_e - p_{\mathrm{ph}} - \frac{1}{2c}\left[\frac{m_{e}^2c^4}{E_e + 2p_{\mathrm{ph}}c - p_{e}c} -\left(E_e + 2p_{\mathrm{ph}}c - p_{e}c\right)\right] \\ +
-&= - \frac{1}{2c}\left[\frac{m_{e}^2c^4}{E_e + 2p_{\mathrm{ph}}c - p_{e}c} -\left(E_e + 2p_{\mathrm{ph}}c - p_{e}c\right) -2c\left(p_e - p_{\mathrm{ph}}\right) \right] \\ +
-&= - \frac{1}{2c}\left[\frac{m_{e}^2c^4}{E_e + 2p_{\mathrm{ph}}c - p_{e}c} -\left(E_e + p_{e}c\right) \right] \\ +
-&= - \frac{1}{2c}\left[\frac{m_{e}^2c^4  -\left(E_e + p_{e}c\right)\left(E_e + 2p_{\mathrm{ph}}c - p_{e}c\right)}{E_e + 2p_{\mathrm{ph}}c - p_{e}c} \right] \\ +
-&= - \frac{1}{2c}\left[\frac{m_{e}^2c^4  -2p_{\mathrm{ph}}c\left(E_e + p_{e}c\right)-\left(E_e^2 - p_{e}^2c\right)}{E_e + 2p_{\mathrm{ph}}c - p_{e}c} \right] \\ +
-&= - \frac{1}{2c}\left[\frac{m_{e}^2c^4  -2p_{\mathrm{ph}}c\left(E_e + p_{e}c\right)-m_{e}^2c^4}{E_e + 2p_{\mathrm{ph}}c - p_{e}c} \right] \\ +
-&= - \frac{1}{2c}\left[\frac{-2p_{\mathrm{ph}}\left(E_e + p_{e}c\right)}{E_e + 2p_{\mathrm{ph}}c - p_{e}c} \right] \\ +
-&= p_{\mathrm{ph}}\frac{E_e + p_{e}c}{E_e + 2p_{\mathrm{ph}}c - p_{e}c}\\ +
-\end{align} +
-Then, +
-\begin{align} +
-p_{\mathrm{ph}}^{\prime} = \frac{E_e + p_{e}c}{E_e - p_{e}c + 2p_{\mathrm{ph}}c}p_{\mathrm{ph}}\\ +
-\end{align} +
- +
-=== Energy of the scattered photon $E_{\mathrm{ph}}^{\prime}$ (Solution C)===+
 From the general formula, From the general formula,
 \begin{align} \begin{align}
行 234: 行 248:
 For head-on scattering, For head-on scattering,
 \begin{align} \begin{align}
-\theta_e+\theta_{\mathrm{ph}} &= \pi,\\+\theta_e &= 0,\\ 
 +\theta_{\mathrm{ph}} &= \pi,\\
 |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| &= p_e - p_{\mathrm{ph}},\\ |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| &= p_e - p_{\mathrm{ph}},\\
 \theta_\mathrm{ph}^{\prime} &= 0.\\ \theta_\mathrm{ph}^{\prime} &= 0.\\
research/memos/inverse_compton_scattering.1658674835.txt.gz · 最終更新: 2022/07/25 00:00 by kobayash
CC Attribution-Share Alike 4.0 International
Driven by DokuWiki Recent changes RSS feed Valid CSS Valid XHTML 1.0