差分
このページの2つのバージョン間の差分を表示します。
両方とも前のリビジョン前のリビジョン次のリビジョン | 前のリビジョン | ||
research:memos:inverse_compton_scattering [2022/07/25 00:04] – [Laser Compton slant-scattering] kobayash | research:memos:inverse_compton_scattering [2022/07/28 23:29] (現在) – [General formula] kobayash | ||
---|---|---|---|
行 6: | 行 6: | ||
From the laws of conservation of the energy and the momentum, | From the laws of conservation of the energy and the momentum, | ||
\begin{align} | \begin{align} | ||
- | E_e + p_{\mathrm{ph}}c = E_e^\prime + p_{\mathrm{ph}}^{\prime}c\\ | + | E_e + p_{\mathrm{ph}}c = E_e^\prime + p_{\mathrm{ph}}^{\prime}c,\\ |
\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}} = \boldsymbol{p}_e^\prime + \boldsymbol{p}_{\mathrm{ph}}^{\prime}.\\ | \boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}} = \boldsymbol{p}_e^\prime + \boldsymbol{p}_{\mathrm{ph}}^{\prime}.\\ | ||
\end{align} | \end{align} | ||
行 26: | 行 26: | ||
\begin{align} | \begin{align} | ||
- | p_e^{\prime 2} \cos^2 \theta_e^\prime &= |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}|^2 + p_{\mathrm{ph}}^{\prime 2} \cos^2 \theta_{\mathrm{ph}}^{\prime} -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime},\\ | + | p_e^{\prime 2} \cos^2 \theta_e^\prime &= |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}|^2 + p_{\mathrm{ph}}^{\prime 2} \cos^2 \theta_{\mathrm{ph}}^{\prime} -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}\\ |
+ | \Leftrightarrow | ||
p_e^{\prime 2} -p_e^{\prime 2}\sin^2 \theta_e^\prime &= |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}|^2 + p_{\mathrm{ph}}^{\prime 2} \cos^2 \theta_{\mathrm{ph}}^{\prime} -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}.\\ | p_e^{\prime 2} -p_e^{\prime 2}\sin^2 \theta_e^\prime &= |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}|^2 + p_{\mathrm{ph}}^{\prime 2} \cos^2 \theta_{\mathrm{ph}}^{\prime} -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}.\\ | ||
\end{align} | \end{align} | ||
From $0 = p_e^\prime \sin \theta_e^\prime + p_{\mathrm{ph}}^{\prime} \sin \theta_{\mathrm{ph}}^{\prime}$, | From $0 = p_e^\prime \sin \theta_e^\prime + p_{\mathrm{ph}}^{\prime} \sin \theta_{\mathrm{ph}}^{\prime}$, | ||
\begin{align} | \begin{align} | ||
- | p_e^{\prime 2} -p_{\mathrm{ph}}^{\prime 2} \sin^2 \theta_{\mathrm{ph}}^{\prime} &= |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}|^2 + p_{\mathrm{ph}}^{\prime 2} \cos^2 \theta_{\mathrm{ph}}^{\prime} -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime},\\ | + | p_e^{\prime 2} -p_{\mathrm{ph}}^{\prime 2} \sin^2 \theta_{\mathrm{ph}}^{\prime} &= |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}|^2 + p_{\mathrm{ph}}^{\prime 2} \cos^2 \theta_{\mathrm{ph}}^{\prime} -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}\\ |
+ | \Leftrightarrow | ||
p_e^{\prime 2} | p_e^{\prime 2} | ||
&= |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}|^2 + p_{\mathrm{ph}}^{\prime 2} \cos^2 \theta_{\mathrm{ph}}^{\prime} + p_{\mathrm{ph}}^{\prime 2} \sin^2 \theta_{\mathrm{ph}}^{\prime}-2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}\\ | &= |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}|^2 + p_{\mathrm{ph}}^{\prime 2} \cos^2 \theta_{\mathrm{ph}}^{\prime} + p_{\mathrm{ph}}^{\prime 2} \sin^2 \theta_{\mathrm{ph}}^{\prime}-2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}\\ | ||
行 38: | 行 40: | ||
In another way, this equation can be extracted from $\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}} = \boldsymbol{p}_e^\prime + \boldsymbol{p}_{\mathrm{ph}}^{\prime}$ as follows. | In another way, this equation can be extracted from $\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}} = \boldsymbol{p}_e^\prime + \boldsymbol{p}_{\mathrm{ph}}^{\prime}$ as follows. | ||
\begin{align} | \begin{align} | ||
- | \boldsymbol{p}_e^\prime &= \boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}} - \boldsymbol{p}_{\mathrm{ph}}^{\prime},\\ | + | \boldsymbol{p}_e^\prime &= \boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}} - \boldsymbol{p}_{\mathrm{ph}}^{\prime}\\ |
+ | \Rightarrow | ||
p_e^{\prime 2} | p_e^{\prime 2} | ||
&= |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}|^2 + p_{\mathrm{ph}}^{\prime 2} -2\boldsymbol{p}_{\mathrm{ph}}^{\prime}\cdot(\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}})\\ | &= |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}|^2 + p_{\mathrm{ph}}^{\prime 2} -2\boldsymbol{p}_{\mathrm{ph}}^{\prime}\cdot(\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}})\\ | ||
&= |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}|^2 + p_{\mathrm{ph}}^{\prime 2} -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}\\ | &= |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}|^2 + p_{\mathrm{ph}}^{\prime 2} -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}\\ | ||
- | &= p_e^2 + p_{\mathrm{ph}}^2 + 2p_e p_{\mathrm{ph}} \cos(\theta_e+\theta_{\mathrm{ph}}) + p_{\mathrm{ph}}^{\prime 2} -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime},\\ | + | &= p_e^2 + p_{\mathrm{ph}}^2 + 2p_e p_{\mathrm{ph}} \cos(\theta_e+\theta_{\mathrm{ph}}) + p_{\mathrm{ph}}^{\prime 2} -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}\\ |
+ | \Leftrightarrow | ||
p_e^{\prime 2} &= p_e^2 + p_{\mathrm{ph}}^2 + p_{\mathrm{ph}}^{\prime 2} + 2p_e p_{\mathrm{ph}} \cos(\theta_e+\theta_{\mathrm{ph}}) -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}, | p_e^{\prime 2} &= p_e^2 + p_{\mathrm{ph}}^2 + p_{\mathrm{ph}}^{\prime 2} + 2p_e p_{\mathrm{ph}} \cos(\theta_e+\theta_{\mathrm{ph}}) -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}, | ||
\end{align} | \end{align} | ||
- | where $\theta_e$ ($\theta_{\mathrm{ph}}$) is an angle between $\boldsymbol{p}_e$ ($\boldsymbol{p}_{\mathrm{ph}}$) and $\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}$, | + | where $\theta_e$ ($\theta_{\mathrm{ph}}$) is angle between $\boldsymbol{p}_e$ ($\boldsymbol{p}_{\mathrm{ph}}$) and $\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}$, |
Then, from the law of energy conservation $E_e + p_{\mathrm{ph}}c = E_e^\prime + p_{\mathrm{ph}}^{\prime}c$, | Then, from the law of energy conservation $E_e + p_{\mathrm{ph}}c = E_e^\prime + p_{\mathrm{ph}}^{\prime}c$, | ||
行 55: | 行 59: | ||
E_e^{\prime 2} = E_e^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2.\\ | E_e^{\prime 2} = E_e^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2.\\ | ||
\end{align} | \end{align} | ||
- | By using $E^2 = m^2c^4 + p^2c^2$, | + | By using $E_e^2 = m_e^2c^4 + p_e^2c^2$ |
\begin{align} | \begin{align} | ||
- | m_e^2c^4 | + | m_e^2c^4 |
+ | \Leftrightarrow | ||
p_e^{\prime 2}c^2 &= p_e^2c^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2.\\ | p_e^{\prime 2}c^2 &= p_e^2c^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2.\\ | ||
\end{align} | \end{align} | ||
By using $p_e^{\prime 2} = p_e^2 + p_{\mathrm{ph}}^2 + p_{\mathrm{ph}}^{\prime 2} + 2p_e p_{\mathrm{ph}} \cos(\theta_e+\theta_{\mathrm{ph}}) -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}$, | By using $p_e^{\prime 2} = p_e^2 + p_{\mathrm{ph}}^2 + p_{\mathrm{ph}}^{\prime 2} + 2p_e p_{\mathrm{ph}} \cos(\theta_e+\theta_{\mathrm{ph}}) -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}$, | ||
\begin{align} | \begin{align} | ||
- | \left[p_e^2 + p_{\mathrm{ph}}^2 + p_{\mathrm{ph}}^{\prime 2} + 2p_e p_{\mathrm{ph}} \cos(\theta_e+\theta_{\mathrm{ph}}) -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}\right]c^2 &= p_e^2c^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2,\\ | + | \left[p_e^2 + p_{\mathrm{ph}}^2 + p_{\mathrm{ph}}^{\prime 2} + 2p_e p_{\mathrm{ph}} \cos(\theta_e+\theta_{\mathrm{ph}}) -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}\right]c^2 &= p_e^2c^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2\\ |
- | p_e p_{\mathrm{ph}} c \cos(\theta_e+\theta_{\mathrm{ph}}) - p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| c\cos \theta_{\mathrm{ph}}^{\prime} &= E_e p_{\mathrm{ph}} - E_e p_{\mathrm{ph}}^{\prime} -p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c,\\ | + | \Leftrightarrow |
- | \left[ E_e + p_{\mathrm{ph}} c - |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| c\cos \theta_{\mathrm{ph}}^{\prime}\right]p_{\mathrm{ph}}^{\prime} &= \left[E_e -p_e c \cos(\theta_e+\theta_{\mathrm{ph}})\right]p_{\mathrm{ph}},\\ | + | p_e p_{\mathrm{ph}} c \cos(\theta_e+\theta_{\mathrm{ph}}) - p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| c\cos \theta_{\mathrm{ph}}^{\prime} &= E_e p_{\mathrm{ph}} - E_e p_{\mathrm{ph}}^{\prime} -p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c\\ |
+ | \Leftrightarrow | ||
+ | \left[ E_e + p_{\mathrm{ph}} c - |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| c\cos \theta_{\mathrm{ph}}^{\prime}\right]p_{\mathrm{ph}}^{\prime} &= \left[E_e -p_e c \cos(\theta_e+\theta_{\mathrm{ph}})\right]p_{\mathrm{ph}}\\ | ||
+ | \Rightarrow | ||
p_{\mathrm{ph}}^{\prime} &= \frac{E_e -p_e c \cos(\theta_e+\theta_{\mathrm{ph}})}{E_e | p_{\mathrm{ph}}^{\prime} &= \frac{E_e -p_e c \cos(\theta_e+\theta_{\mathrm{ph}})}{E_e | ||
\end{align} | \end{align} | ||
行 80: | 行 88: | ||
\end{align} | \end{align} | ||
- | If unit vectors $\widehat{\boldsymbol{p}_{\mathrm{ph}}^{\prime}} = \boldsymbol{p}_{\mathrm{ph}}^{\prime}/ | + | If unit vectors $\widehat{\boldsymbol{p}_{\mathrm{ph}}^{\prime}} = \boldsymbol{p}_{\mathrm{ph}}^{\prime}/ |
\begin{align} | \begin{align} | ||
|\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime} | |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime} | ||
行 149: | 行 157: | ||
By eliminating $p_{\mathrm{ph}}^{\prime}$ from the two equations, | By eliminating $p_{\mathrm{ph}}^{\prime}$ from the two equations, | ||
\begin{align} | \begin{align} | ||
- | E_e + 2p_{\mathrm{ph}}c - p_{e}c = E_e^\prime - p_e^{\prime}c\\ | + | E_e + 2p_{\mathrm{ph}}c - p_{e}c |
- | E_e + 2p_{\mathrm{ph}}c - p_{e}c + p_e^{\prime}c = \sqrt{p_e^{{\prime}2}c^2+m_{e}^2c^4}.\\ | + | \Rightarrow |
+ | E_e + 2p_{\mathrm{ph}}c - p_{e}c + p_e^{\prime}c | ||
\end{align} | \end{align} | ||
By making the square of both sides, | By making the square of both sides, | ||
行 158: | 行 167: | ||
Then, | Then, | ||
\begin{align} | \begin{align} | ||
- | 2p_e^{{\prime}}c\left(E_e + 2p_{\mathrm{ph}}c - p_{e}c\right) = m_{e}^2c^4 -\left(E_e + 2p_{\mathrm{ph}}c - p_{e}c\right)^2.\\ | + | 2p_e^{{\prime}}c\left(E_e + 2p_{\mathrm{ph}}c - p_{e}c\right) = m_{e}^2c^4 -\left(E_e + 2p_{\mathrm{ph}}c - p_{e}c\right)^2\\ |
- | | + | \Rightarrow |
+ | p_e^{{\prime}} = \frac{1}{2c}\left[\frac{m_{e}^2c^4}{E_e + 2p_{\mathrm{ph}}c - p_{e}c} -\left(E_e + 2p_{\mathrm{ph}}c - p_{e}c\right)\right].\\ | ||
\end{align} | \end{align} | ||
- | === Energy of the scattered photon $E_{\mathrm{ph}}^{\prime}$ (Solution A)=== | + | === Energy of the scattered photon $E_{\mathrm{ph}}^{\prime}$ (Solution A) === |
+ | By using the above $E_{e}^{\prime}$, | ||
+ | \begin{align} | ||
+ | p_{\mathrm{ph}}^{\prime} | ||
+ | &= p_e - p_{\mathrm{ph}} -p_e^\prime \\ | ||
+ | &= p_e - p_{\mathrm{ph}} - \frac{1}{2c}\left[\frac{m_{e}^2c^4}{E_e + 2p_{\mathrm{ph}}c - p_{e}c} -\left(E_e + 2p_{\mathrm{ph}}c - p_{e}c\right)\right] \\ | ||
+ | &= - \frac{1}{2c}\left[\frac{m_{e}^2c^4}{E_e + 2p_{\mathrm{ph}}c - p_{e}c} -\left(E_e + 2p_{\mathrm{ph}}c - p_{e}c\right) -2c\left(p_e - p_{\mathrm{ph}}\right) \right] \\ | ||
+ | &= - \frac{1}{2c}\left[\frac{m_{e}^2c^4}{E_e + 2p_{\mathrm{ph}}c - p_{e}c} -\left(E_e + p_{e}c\right) \right] \\ | ||
+ | &= - \frac{1}{2c}\left[\frac{m_{e}^2c^4 | ||
+ | &= - \frac{1}{2c}\left[\frac{m_{e}^2c^4 | ||
+ | &= - \frac{1}{2c}\left[\frac{m_{e}^2c^4 | ||
+ | &= - \frac{1}{2c}\left[\frac{-2p_{\mathrm{ph}}\left(E_e + p_{e}c\right)}{E_e + 2p_{\mathrm{ph}}c - p_{e}c} \right] \\ | ||
+ | &= p_{\mathrm{ph}}\frac{E_e + p_{e}c}{E_e + 2p_{\mathrm{ph}}c - p_{e}c}\\ | ||
+ | \end{align} | ||
+ | Then, | ||
+ | \begin{align} | ||
+ | p_{\mathrm{ph}}^{\prime} = \frac{E_e + p_{e}c}{E_e - p_{e}c + 2p_{\mathrm{ph}}c}p_{\mathrm{ph}}\\ | ||
+ | \end{align} | ||
+ | === Energy of the scattered photon $E_{\mathrm{ph}}^{\prime}$ (Solution B) === | ||
From $E_e + p_{\mathrm{ph}}c = E_e^\prime + p_{\mathrm{ph}}^{\prime}c$, | From $E_e + p_{\mathrm{ph}}c = E_e^\prime + p_{\mathrm{ph}}^{\prime}c$, | ||
\begin{align} | \begin{align} | ||
行 174: | 行 202: | ||
\begin{align} | \begin{align} | ||
- | m_e^2c^4 | + | m_e^2c^4 |
+ | \Leftrightarrow | ||
p_e^{\prime 2}c^2= p_e^2c^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2.\\ | p_e^{\prime 2}c^2= p_e^2c^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2.\\ | ||
\end{align} | \end{align} | ||
行 188: | 行 217: | ||
\begin{align} | \begin{align} | ||
(p_e^2 + p_{\mathrm{ph}}^2 + p_{\mathrm{ph}}^{\prime 2} - 2 p_e p_{\mathrm{ph}} - 2 p_e p_{\mathrm{ph}}^{\prime} + 2 p_{\mathrm{ph}}p_{\mathrm{ph}}^{\prime})c^2 | (p_e^2 + p_{\mathrm{ph}}^2 + p_{\mathrm{ph}}^{\prime 2} - 2 p_e p_{\mathrm{ph}} - 2 p_e p_{\mathrm{ph}}^{\prime} + 2 p_{\mathrm{ph}}p_{\mathrm{ph}}^{\prime})c^2 | ||
- | &= p_e^2c^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2,\\ | + | &= p_e^2c^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2\\ |
+ | \Leftrightarrow | ||
- 2 p_e p_{\mathrm{ph}}c^2 - 2 p_e p_{\mathrm{ph}}^{\prime}c^2 + 2 p_{\mathrm{ph}}p_{\mathrm{ph}}^{\prime}c^2 | - 2 p_e p_{\mathrm{ph}}c^2 - 2 p_e p_{\mathrm{ph}}^{\prime}c^2 + 2 p_{\mathrm{ph}}p_{\mathrm{ph}}^{\prime}c^2 | ||
- | &= 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2,\\ | + | &= 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2\\ |
- | E_e p_{\mathrm{ph}}^{\prime} | + | \Leftrightarrow |
- | \left[ E_e - p_e c + 2 p_{\mathrm{ph}}c \right]p_{\mathrm{ph}}^{\prime} &= \left[E_e + p_e c\right]p_{\mathrm{ph}},\\ | + | E_e p_{\mathrm{ph}}^{\prime} |
+ | \Leftrightarrow | ||
+ | \left[ E_e - p_e c + 2 p_{\mathrm{ph}}c \right]p_{\mathrm{ph}}^{\prime} &= \left[E_e + p_e c\right]p_{\mathrm{ph}}\\ | ||
+ | \Rightarrow | ||
p_{\mathrm{ph}}^{\prime} & | p_{\mathrm{ph}}^{\prime} & | ||
\end{align} | \end{align} | ||
行 208: | 行 241: | ||
\end{align} | \end{align} | ||
- | === Energy of the scattered photon $E_{\mathrm{ph}}^{\prime}$ (Solution B)=== | + | === Energy of the scattered photon $E_{\mathrm{ph}}^{\prime}$ (Solution C) === |
- | By using the above $E_{e}^{\prime}$, | + | |
- | \begin{align} | + | |
- | p_{\mathrm{ph}}^{\prime} | + | |
- | &= p_e - p_{\mathrm{ph}} -p_e^\prime \\ | + | |
- | &= p_e - p_{\mathrm{ph}} - \frac{1}{2c}\left[\frac{m_{e}^2c^4}{E_e + 2p_{\mathrm{ph}}c - p_{e}c} -\left(E_e + 2p_{\mathrm{ph}}c - p_{e}c\right)\right] \\ | + | |
- | &= - \frac{1}{2c}\left[\frac{m_{e}^2c^4}{E_e + 2p_{\mathrm{ph}}c - p_{e}c} -\left(E_e + 2p_{\mathrm{ph}}c - p_{e}c\right) -2c\left(p_e - p_{\mathrm{ph}}\right) \right] \\ | + | |
- | &= - \frac{1}{2c}\left[\frac{m_{e}^2c^4}{E_e + 2p_{\mathrm{ph}}c - p_{e}c} -\left(E_e + p_{e}c\right) \right] \\ | + | |
- | &= - \frac{1}{2c}\left[\frac{m_{e}^2c^4 | + | |
- | &= - \frac{1}{2c}\left[\frac{m_{e}^2c^4 | + | |
- | &= - \frac{1}{2c}\left[\frac{m_{e}^2c^4 | + | |
- | &= - \frac{1}{2c}\left[\frac{-2p_{\mathrm{ph}}\left(E_e + p_{e}c\right)}{E_e + 2p_{\mathrm{ph}}c - p_{e}c} \right] \\ | + | |
- | &= p_{\mathrm{ph}}\frac{E_e + p_{e}c}{E_e + 2p_{\mathrm{ph}}c - p_{e}c}\\ | + | |
- | \end{align} | + | |
- | Then, | + | |
- | \begin{align} | + | |
- | p_{\mathrm{ph}}^{\prime} = \frac{E_e + p_{e}c}{E_e - p_{e}c + 2p_{\mathrm{ph}}c}p_{\mathrm{ph}}\\ | + | |
- | \end{align} | + | |
- | + | ||
- | === Energy of the scattered photon $E_{\mathrm{ph}}^{\prime}$ (Solution C)=== | + | |
From the general formula, | From the general formula, | ||
\begin{align} | \begin{align} | ||
行 234: | 行 248: | ||
For head-on scattering, | For head-on scattering, | ||
\begin{align} | \begin{align} | ||
- | \theta_e+\theta_{\mathrm{ph}} &= \pi,\\ | + | \theta_e |
+ | \theta_{\mathrm{ph}} &= \pi,\\ | ||
|\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| &= p_e - p_{\mathrm{ph}}, | |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| &= p_e - p_{\mathrm{ph}}, | ||
\theta_\mathrm{ph}^{\prime} &= 0.\\ | \theta_\mathrm{ph}^{\prime} &= 0.\\ |