差分

このページの2つのバージョン間の差分を表示します。

この比較画面へのリンク

両方とも前のリビジョン前のリビジョン
次のリビジョン
前のリビジョン
research:memos:inverse_compton_scattering [2022/07/25 00:19] – [Head-on scattering] kobayashresearch:memos:inverse_compton_scattering [2022/07/28 23:29] (現在) – [General formula] kobayash
行 6: 行 6:
 From the laws of conservation of the energy and the momentum, From the laws of conservation of the energy and the momentum,
 \begin{align} \begin{align}
-E_e + p_{\mathrm{ph}}c = E_e^\prime + p_{\mathrm{ph}}^{\prime}c\\+E_e + p_{\mathrm{ph}}c = E_e^\prime + p_{\mathrm{ph}}^{\prime}c,\\
 \boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}} = \boldsymbol{p}_e^\prime + \boldsymbol{p}_{\mathrm{ph}}^{\prime}.\\ \boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}} = \boldsymbol{p}_e^\prime + \boldsymbol{p}_{\mathrm{ph}}^{\prime}.\\
 \end{align} \end{align}
行 49: 行 49:
 p_e^{\prime 2} &= p_e^2 + p_{\mathrm{ph}}^2 + p_{\mathrm{ph}}^{\prime 2} + 2p_e p_{\mathrm{ph}} \cos(\theta_e+\theta_{\mathrm{ph}}) -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime},\\ p_e^{\prime 2} &= p_e^2 + p_{\mathrm{ph}}^2 + p_{\mathrm{ph}}^{\prime 2} + 2p_e p_{\mathrm{ph}} \cos(\theta_e+\theta_{\mathrm{ph}}) -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime},\\
 \end{align} \end{align}
-where $\theta_e$ ($\theta_{\mathrm{ph}}$) is an angle between $\boldsymbol{p}_e$ ($\boldsymbol{p}_{\mathrm{ph}}$) and $\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}$, and $\theta_{\mathrm{ph}}^{\prime}$ is an angle between $\boldsymbol{p}_{\mathrm{ph}}^{\prime}$ and $\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}$.+where $\theta_e$ ($\theta_{\mathrm{ph}}$) is angle between $\boldsymbol{p}_e$ ($\boldsymbol{p}_{\mathrm{ph}}$) and $\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}$, and $\theta_{\mathrm{ph}}^{\prime}$ is angle between $\boldsymbol{p}_{\mathrm{ph}}^{\prime}$ and $\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}$.
  
 Then, from the law of energy conservation $E_e + p_{\mathrm{ph}}c = E_e^\prime + p_{\mathrm{ph}}^{\prime}c$, Then, from the law of energy conservation $E_e + p_{\mathrm{ph}}c = E_e^\prime + p_{\mathrm{ph}}^{\prime}c$,
行 59: 行 59:
 E_e^{\prime 2} = E_e^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2.\\ E_e^{\prime 2} = E_e^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2.\\
 \end{align} \end{align}
-By using $E^2 = m^2c^4 + p^2c^2$,+By using $E_e^2 = m_e^2c^4 + p_e^2c^2$ and $E_e^{\prime 2} = m_e^2c^4 + p_e^{\prime 2}c^2$
 \begin{align} \begin{align}
-m_e^2c^4  + p_e^{\prime 2}c^2 &= m_e^2c^4  + p_e^{\prime 2}c^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2\\+m_e^2c^4  + p_e^{\prime 2}c^2 &= m_e^2c^4  + p_e^2c^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2\\
 \Leftrightarrow \  \Leftrightarrow \ 
 p_e^{\prime 2}c^2 &= p_e^2c^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2.\\ p_e^{\prime 2}c^2 &= p_e^2c^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2.\\
行 88: 行 88:
 \end{align} \end{align}
  
-If unit vectors $\widehat{\boldsymbol{p}_{\mathrm{ph}}^{\prime}} = \boldsymbol{p}_{\mathrm{ph}}^{\prime}/p_{\mathrm{ph}}^{\prime}, \widehat{\boldsymbol{p}_{\mathrm{ph}}} = \boldsymbol{p}_{\mathrm{ph}}/p_{\mathrm{ph}}$, and $\widehat{\boldsymbol{p}_e} = \boldsymbol{p}_e/p_e$ is defined,+If unit vectors $\widehat{\boldsymbol{p}_{\mathrm{ph}}^{\prime}} = \boldsymbol{p}_{\mathrm{ph}}^{\prime}/p_{\mathrm{ph}}^{\prime},\widehat{\boldsymbol{p}_{\mathrm{ph}}} = \boldsymbol{p}_{\mathrm{ph}}/p_{\mathrm{ph}}$, and $\widehat{\boldsymbol{p}_e} = \boldsymbol{p}_e/p_e$ are defined,
 \begin{align} \begin{align}
 |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}
行 248: 行 248:
 For head-on scattering, For head-on scattering,
 \begin{align} \begin{align}
-\theta_e+\theta_{\mathrm{ph}} &= \pi,\\+\theta_e &= 0,\\ 
 +\theta_{\mathrm{ph}} &= \pi,\\
 |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| &= p_e - p_{\mathrm{ph}},\\ |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| &= p_e - p_{\mathrm{ph}},\\
 \theta_\mathrm{ph}^{\prime} &= 0.\\ \theta_\mathrm{ph}^{\prime} &= 0.\\
research/memos/inverse_compton_scattering.1658675971.txt.gz · 最終更新: 2022/07/25 00:19 by kobayash
CC Attribution-Share Alike 4.0 International
Driven by DokuWiki Recent changes RSS feed Valid CSS Valid XHTML 1.0