差分
このページの2つのバージョン間の差分を表示します。
両方とも前のリビジョン前のリビジョン次のリビジョン | 前のリビジョン | ||
research:memos:inverse_compton_scattering [2022/07/25 00:19] – [Head-on scattering] kobayash | research:memos:inverse_compton_scattering [2022/07/28 23:29] (現在) – [General formula] kobayash | ||
---|---|---|---|
行 6: | 行 6: | ||
From the laws of conservation of the energy and the momentum, | From the laws of conservation of the energy and the momentum, | ||
\begin{align} | \begin{align} | ||
- | E_e + p_{\mathrm{ph}}c = E_e^\prime + p_{\mathrm{ph}}^{\prime}c\\ | + | E_e + p_{\mathrm{ph}}c = E_e^\prime + p_{\mathrm{ph}}^{\prime}c,\\ |
\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}} = \boldsymbol{p}_e^\prime + \boldsymbol{p}_{\mathrm{ph}}^{\prime}.\\ | \boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}} = \boldsymbol{p}_e^\prime + \boldsymbol{p}_{\mathrm{ph}}^{\prime}.\\ | ||
\end{align} | \end{align} | ||
行 49: | 行 49: | ||
p_e^{\prime 2} &= p_e^2 + p_{\mathrm{ph}}^2 + p_{\mathrm{ph}}^{\prime 2} + 2p_e p_{\mathrm{ph}} \cos(\theta_e+\theta_{\mathrm{ph}}) -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}, | p_e^{\prime 2} &= p_e^2 + p_{\mathrm{ph}}^2 + p_{\mathrm{ph}}^{\prime 2} + 2p_e p_{\mathrm{ph}} \cos(\theta_e+\theta_{\mathrm{ph}}) -2 p_{\mathrm{ph}}^{\prime} |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime}, | ||
\end{align} | \end{align} | ||
- | where $\theta_e$ ($\theta_{\mathrm{ph}}$) is an angle between $\boldsymbol{p}_e$ ($\boldsymbol{p}_{\mathrm{ph}}$) and $\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}$, | + | where $\theta_e$ ($\theta_{\mathrm{ph}}$) is angle between $\boldsymbol{p}_e$ ($\boldsymbol{p}_{\mathrm{ph}}$) and $\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}$, |
Then, from the law of energy conservation $E_e + p_{\mathrm{ph}}c = E_e^\prime + p_{\mathrm{ph}}^{\prime}c$, | Then, from the law of energy conservation $E_e + p_{\mathrm{ph}}c = E_e^\prime + p_{\mathrm{ph}}^{\prime}c$, | ||
行 59: | 行 59: | ||
E_e^{\prime 2} = E_e^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2.\\ | E_e^{\prime 2} = E_e^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2.\\ | ||
\end{align} | \end{align} | ||
- | By using $E^2 = m^2c^4 + p^2c^2$, | + | By using $E_e^2 = m_e^2c^4 + p_e^2c^2$ |
\begin{align} | \begin{align} | ||
- | m_e^2c^4 | + | m_e^2c^4 |
\Leftrightarrow \ | \Leftrightarrow \ | ||
p_e^{\prime 2}c^2 &= p_e^2c^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2.\\ | p_e^{\prime 2}c^2 &= p_e^2c^2 + p_{\mathrm{ph}}^2c^2 + p_{\mathrm{ph}}^{\prime 2}c^2 + 2E_e p_{\mathrm{ph}}c - 2E_e p_{\mathrm{ph}}^{\prime}c -2p_{\mathrm{ph}} p_{\mathrm{ph}}^{\prime}c^2.\\ | ||
行 88: | 行 88: | ||
\end{align} | \end{align} | ||
- | If unit vectors $\widehat{\boldsymbol{p}_{\mathrm{ph}}^{\prime}} = \boldsymbol{p}_{\mathrm{ph}}^{\prime}/ | + | If unit vectors $\widehat{\boldsymbol{p}_{\mathrm{ph}}^{\prime}} = \boldsymbol{p}_{\mathrm{ph}}^{\prime}/ |
\begin{align} | \begin{align} | ||
|\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime} | |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| \cos \theta_{\mathrm{ph}}^{\prime} | ||
行 248: | 行 248: | ||
For head-on scattering, | For head-on scattering, | ||
\begin{align} | \begin{align} | ||
- | \theta_e+\theta_{\mathrm{ph}} &= \pi,\\ | + | \theta_e |
+ | \theta_{\mathrm{ph}} &= \pi,\\ | ||
|\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| &= p_e - p_{\mathrm{ph}}, | |\boldsymbol{p}_e + \boldsymbol{p}_{\mathrm{ph}}| &= p_e - p_{\mathrm{ph}}, | ||
\theta_\mathrm{ph}^{\prime} &= 0.\\ | \theta_\mathrm{ph}^{\prime} &= 0.\\ |