差分
このページの2つのバージョン間の差分を表示します。
両方とも前のリビジョン前のリビジョン次のリビジョン | 前のリビジョン | ||
research:memos:kinematics:non-relativistic_kinematics [2017/09/29 23:11] – [The total center of mass energy $W$, $\gamma_{\rm cm}$ and $\boldsymbol{\beta}_{\rm cm}\gamma_{\rm cm}$] kobayash | research:memos:kinematics:non-relativistic_kinematics [2020/07/29 17:10] (現在) – [Formulae for Non-relativistic Kinematics] kobayash | ||
---|---|---|---|
行 8: | 行 8: | ||
{{: | {{: | ||
- | Adopt units where $c=1$. In the Laboratory System (Center of Mass System), mass, momentum, | + | Adopt units where $c=1$. In the Laboratory System (Center of Mass System), mass, momentum, |
In the following, the quantities $\delta_{ij}$ are defined by | In the following, the quantities $\delta_{ij}$ are defined by | ||
行 14: | 行 14: | ||
\delta_{ij} = |\boldsymbol{v}_i|/ | \delta_{ij} = |\boldsymbol{v}_i|/ | ||
\end{align} | \end{align} | ||
- | where the subscripts refer to the particles. | + | where the subscripts refer to the particles. |
+ | |||
+ | \begin{align} | ||
+ | \delta_{23}^* = \delta_{21}^* = |\boldsymbol{v}_2^*|/ | ||
+ | \end{align} | ||
|** Quantity **|** General Formula **|**Elastic Scattering**|**N-N Scattering (equal mass)**| | |** Quantity **|** General Formula **|**Elastic Scattering**|**N-N Scattering (equal mass)**| | ||
行 20: | 行 24: | ||
W | W | ||
&= m_1 + m_2\\ | &= m_1 + m_2\\ | ||
- | &= m_3 + m_4 | + | &= m_3 + m_4? |
\end{align}| Same as the General formula |\begin{align} | \end{align}| Same as the General formula |\begin{align} | ||
- | W= 2m_\mathrm{N} | + | W= 2m_\mathrm{N}? |
\end{align}| | \end{align}| | ||
| 2. c.m. momentum before the interaction |\begin{align} | | 2. c.m. momentum before the interaction |\begin{align} | ||
- | |\boldsymbol{p}_1^{*}| = \frac{1}{2W}\sqrt{\left[W^2-\left(m_1+m_2\right)^2\right]\left[W^2-\left(m_1-m_2\right)^2\right]} | + | \boldsymbol{p}_1^* |
+ | &= \frac{m_2}{m_1+m_2}\boldsymbol{p}_1\\ | ||
+ | & | ||
\end{align}| Same as the General formula |\begin{align} | \end{align}| Same as the General formula |\begin{align} | ||
- | |\boldsymbol{p}_1' | + | \boldsymbol{p}_1' |
\end{align}| | \end{align}| | ||
| 3. c.m. momentum after the interaction |\begin{align} | | 3. c.m. momentum after the interaction |\begin{align} | ||
- | |\boldsymbol{p}_3^{*}| = \frac{1}{2W}\sqrt{\left[W^2-\left(m_3+m_4\right)^2\right]\left[W^2-\left(m_3-m_4\right)^2\right]} | + | \boldsymbol{p}_3^* |
+ | &= \frac{m_4}{m_3+m_4}\boldsymbol{p}_3\\ | ||
+ | & | ||
\end{align}|\begin{align} | \end{align}|\begin{align} | ||
|\boldsymbol{p}_3^{*}| = |\boldsymbol{p}_1^{*}| | |\boldsymbol{p}_3^{*}| = |\boldsymbol{p}_1^{*}| | ||
\end{align}|\begin{align} | \end{align}|\begin{align} | ||
- | |\boldsymbol{p}_3' | + | |\boldsymbol{p}_3' |
\end{align}| | \end{align}| | ||
| 4. Velocity of the c.m. |\begin{align} | | 4. Velocity of the c.m. |\begin{align} | ||
- | \boldsymbol{\beta}_2^* = \boldsymbol{\beta}_{\rm cm} = \frac{\boldsymbol{p}_1}{E_1+m_2} | + | \boldsymbol{v}_2^* = \boldsymbol{v}_{\rm cm} = \frac{\boldsymbol{p}_1}{m_1+m_2} |
\end{align}| Same as the General formula | Same as the General formula | | \end{align}| Same as the General formula | Same as the General formula | | ||
| 5. $\gamma$ of the c.m. |\begin{align} | | 5. $\gamma$ of the c.m. |\begin{align} | ||
- | \gamma_2^* = \gamma_\mathrm{cm} | + | \gamma_2^* = \gamma_\mathrm{cm}^* \approx 1? |
\end{align}| Same as the General formula | Same as the General formula | | \end{align}| Same as the General formula | Same as the General formula | | ||
| 6. Maximum lab scattering angle |\begin{align} | | 6. Maximum lab scattering angle |\begin{align} | ||
- | \tan\theta_{3\mathrm{max}} = \frac{1}{\gamma_2^*\sqrt{\delta_{23}^{*2}-1}}\\ | + | \tan\theta_{3\mathrm{max}} = \frac{1}{\sqrt{\delta_{23}^{*2}-1}}\\ |
\mathrm{For\ \ } \delta_{23}^* \ge 1\\ | \mathrm{For\ \ } \delta_{23}^* \ge 1\\ | ||
\mathrm{otherwise\ } \theta_{3\mathrm{max}} = 180^\circ | \mathrm{otherwise\ } \theta_{3\mathrm{max}} = 180^\circ | ||
行 50: | 行 58: | ||
\end{align}| | \end{align}| | ||
| 7. c.m. to lab angle ($\theta_{\rm cm} \rightarrow \theta_{\rm lab}$) |\begin{align} | | 7. c.m. to lab angle ($\theta_{\rm cm} \rightarrow \theta_{\rm lab}$) |\begin{align} | ||
- | \cos\theta_3 = \frac{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}{\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}} | + | \cos\theta_3 = \frac{\delta_{23}^*+\cos\theta_3^*}{\sqrt{\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2}} |
\end{align}|\begin{align} | \end{align}|\begin{align} | ||
- | \tan\theta_3 &= \frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{21}^*+\cos\theta_3^*\right)}\\ | + | \tan\theta_3 &= \frac{\sin\theta_3^*}{\delta_{21}^*+\cos\theta_3^*}\\ |
- | \tan\theta_4 & | + | \tan\theta_4 &= \cot\frac{\theta_3^*}{2} |
\end{align}|\begin{align} | \end{align}|\begin{align} | ||
- | \tan\theta_3 = \frac{\sin\theta_3^*}{\gamma_2^*\left(1+\cos\theta_3^*\right)}\\ | + | \tan\theta_3 = \frac{\sin\theta_3^*}{1+\cos\theta_3^*}\\ |
\end{align}| | \end{align}| | ||
- | | 8. lab to c.m. angle transformation ($\theta_\mathrm{cm} \rightarrow \theta_\mathrm{lab}$) |\begin{align} | + | | 8. lab to c.m. angle transformation ($\theta_\mathrm{lab} \rightarrow \theta_\mathrm{cm}$) |\begin{align} |
- | \cos\theta_3^*=\frac{\delta_{23}^*(\gamma_2^*\tan\theta_3)^2}{(\gamma_2^*\tan\theta_3)^2+1}\pm\sqrt{\left(\frac{\delta_{23}^*(\gamma_2^*\tan\theta_3)^2}{(\gamma_2^*\tan\theta_3)^2+1}\right)^2-\frac{\delta_{23}^{*2}(\gamma_2^*\tan\theta_3)^2-1}{(\gamma_2^*\tan\theta_3)^2+1}} | + | \cos\theta_3^*=-\frac{\delta_{23}^*\tan^2\theta_3}{\tan^2\theta_3+1}\pm\sqrt{\left(\frac{\delta_{23}^*\tan^2\theta_3}{\tan^2\theta_3+1}\right)^2-\frac{\delta_{23}^{*2}\tan^2\theta_3-1}{\tan^2\theta_3+1}} |
\end{align} Another solution (not written in the document) \begin{align} | \end{align} Another solution (not written in the document) \begin{align} | ||
- | \tan\theta_{\rm cm} = \frac{\sin\theta_{\rm lab}}{\gamma_{\rm cm}\left(\cos\theta_{\rm lab}-\beta_{\rm cm}/ | + | \tan\theta_{\rm cm} = \frac{\sin\theta_{\rm lab}}{\left(\cos\theta_{\rm lab}-v_{\rm cm}/ |
\end{align}||| | \end{align}||| | ||
| 9. Solid angle transformation (Jacobian) |\begin{align} | | 9. Solid angle transformation (Jacobian) |\begin{align} | ||
- | \frac{d\Omega_3}{d\Omega_3^*} &= \frac{\gamma_2^*(1+\delta_{23}^*\cos\theta_3^*)}{\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]^{3/ | + | \frac{d\Omega_3}{d\Omega_3^*} &= \frac{1+\delta_{23}^*\cos\theta_3^*}{\left[\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]^{3/ |
- | \frac{d\Omega_3}{d\Omega_3^*} &= \frac{\sin^3\theta_3}{\sin^3\theta_3^*}\gamma_2^*(1+\delta_{23}^*\cos\theta_3^*) | + | \frac{d\Omega_3}{d\Omega_3^*} &= \frac{\sin^3\theta_3}{\sin^3\theta_3^*}(1+\delta_{23}^*\cos\theta_3^*) |
\end{align}||\begin{align} | \end{align}||\begin{align} | ||
- | \frac{d\Omega_3}{d\Omega_3^*} = \frac{\gamma_2^*(1+\cos\theta_3^*)}{\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(1+\cos\theta_3^*\right)^2\right]^{3/ | + | \frac{d\Omega_3}{d\Omega_3^*} = \frac{1}{2^{3/2}\sqrt{1+\cos\theta_3^*}} |
\end{align}| | \end{align}| | ||
- | | 10. Relations between the $\gamma$ factors \\ N.B. $k_{12}=m_1/ | + | | 10. Relations between the $\gamma$ factors \\ N.B. $k_{12}=m_1/ |
- | &&(\gamma_1^{*2}-1) = k_{21}^2(\gamma_2^{*2}-1)\\ | + | | 11. Lab quantity relations |
- | && | + | 2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 |
- | &&\gamma_2^* = \frac{k_{21}+\gamma_1}{\sqrt{1+k_{21}^2+2\gamma_1k_{21}}}=\gamma_\mathrm{cm} | + | 2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) & |
\end{align}||\begin{align} | \end{align}||\begin{align} | ||
- | \gamma_1^* = \gamma_2^*\\ | + | |\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) |
- | \gamma_1^* = \sqrt{\frac{1+\gamma_1}{2}}\\ | + | \theta_3+\theta_4 |
- | \end{align}| | + | |
- | | 11. Lab quantity relations |\begin{align} | + | |
- | 2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 = m_4^2-m_1^2-m_2^2-m_3^2+2(E_1+m_2)E_3-2E_1m_2\\ | + | |
- | 2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) = m_3^2+m_4^2-m_1^2-m_2^2-2E_1m_2+2E_3E_4\\ | + | |
- | \end{align} The sign between $m_1$ and $m_2$ of the second formula is missing in the document.||\begin{align} | + | |
- | |\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) = T_3T_4 | + | |
\end{align}| | \end{align}| | ||
| 12. Maximum K.E. transfer to a stationary particle |\begin{align} | | 12. Maximum K.E. transfer to a stationary particle |\begin{align} | ||
+ | T_\mathrm{max}=\frac{\left[\sqrt{m_1m_4}\pm\sqrt{m_3(m_3+m_4-m_1)}\right]^2}{(m_3+m_4)^2}T_1 | ||
+ | \end{align}|\begin{align} | ||
T_\mathrm{max} | T_\mathrm{max} | ||
- | &= \frac{2\boldsymbol{p}_1^2}{m_1(k_{12}+k_{21}+2\gamma_1)}\\ | + | & =\frac{4m_1m_2}{(m_1+m_2)^2}T_1\\ |
- | & | + | &= 2m_2 \boldsymbol{v}_\mathrm{cm}^2\\ |
- | \end{align} | + | & |
+ | \end{align}|\begin{align} | ||
+ | T_\mathrm{max}=T_1 | ||
+ | \end{align}| | ||
=== Derivation of Quantity 1. Total c.m. energy === | === Derivation of Quantity 1. Total c.m. energy === | ||
** The General Formula ** | ** The General Formula ** | ||
- | They are definitions. | + | They are definitions? |
** The formula for N-N Scattering ** | ** The formula for N-N Scattering ** | ||
行 105: | 行 112: | ||
** The General Formula ** | ** The General Formula ** | ||
- | In the center of mass frame, $\boldsymbol{p}_1^*+\boldsymbol{p}_2^*=0$. Therefore, | + | For the center of mass system, |
\begin{align} | \begin{align} | ||
- | W | + | \boldsymbol{p}_1^* = \boldsymbol{p}_1 |
- | & | + | |
- | & | + | |
\end{align} | \end{align} | ||
- | By using the following equations | + | From Quantity 4, the velocity of the c.m. is |
\begin{align} | \begin{align} | ||
- | |\boldsymbol{p}_1| &= |\boldsymbol{p}_2|,\\ | + | \boldsymbol{v}_{\rm cm} = \frac{\boldsymbol{p}_1}{m_1+m_2}. |
- | E_1^{*2} &= \boldsymbol{p}_1^{*2}+m_1^2,\\ | + | |
- | E_2^{*2} &= \boldsymbol{p}_2^{*2}+m_2^2=\boldsymbol{p}_1^{*2}+m_2^2, | + | |
\end{align} | \end{align} | ||
- | $W$ can be written as | + | By substituting this formula into the formula of $\boldsymbol{p}_1^*$, |
\begin{align} | \begin{align} | ||
- | W | + | \boldsymbol{p}_1^* |
- | & | + | &= \boldsymbol{p}_1 - m_1\frac{\boldsymbol{p}_1}{m_1+m_2}\\ |
- | & | + | &= \frac{m_2}{m_1+m_2}\boldsymbol{p}_1\\ |
- | \end{align} | + | &= \frac{m_1m_2}{m_1+m_2}\boldsymbol{v}_1 |
- | By making square for both sides, | + | |
- | \begin{align} | + | |
- | W^2 | + | |
- | & | + | |
- | & | + | |
- | W^2-2\boldsymbol{p}_1^{*2}-\left(m_1^2+m_2^2\right) &= 2\sqrt{\boldsymbol{p}_1^{*4}+\boldsymbol{p}_1^{*2}\left(m_1^2+m_2^2\right)+m_1^2m_2^2}.\\ | + | |
- | \end{align} | + | |
- | Again by making square for both sides, | + | |
- | \begin{align} | + | |
- | \left[W^2-2\boldsymbol{p}_1^{*2}-\left(m_1^2+m_2^2\right)\right]^2 | + | |
- | W^4+4\boldsymbol{p}_1^{*4}+\left(m_1^2+m_2^2\right)^2-4W^2\boldsymbol{p}_1^{*2}-2W^2\left(m_1^2+m_2^2\right)+4\boldsymbol{p}_1^{*2}\left(m_1^2+m_2^2\right)& | + | |
- | W^4+\left(m_1^2+m_2^2\right)^2-4W^2\boldsymbol{p}_1^{*2}-2W^2\left(m_1^2+m_2^2\right)& | + | |
- | 4W^2\boldsymbol{p}_1^{*2} | + | |
- | &= W^4-2W^2\left(m_1^2+m_2^2\right)+\left(m_1^2+m_2^2\right)^2-4m_1^2m_2^2\\ | + | |
- | &= W^4-2W^2\left(m_1^2+m_2^2\right)+\left(m_1^2-m_2^2\right)^2\\ | + | |
- | &= W^4-W^2\left[\left(m_1+m_2\right)^2+\left(m_1-m_2\right)^2\right]+\left(m_1^2-m_2^2\right)^2\\ | + | |
- | &= \left[W^2-\left(m_1+m_2\right)^2\right]\left[W^2-\left(m_1-m_2\right)^2\right]\\ | + | |
- | \boldsymbol{p}_1^{*2} | + | |
- | &= \frac{1}{4W^2}\left[W^2-\left(m_1+m_2\right)^2\right]\left[W^2-\left(m_1-m_2\right)^2\right]\\ | + | |
- | |\boldsymbol{p}_1^{*}| | + | |
- | &= \frac{1}{2W}\sqrt{\left[W^2-\left(m_1+m_2\right)^2\right]\left[W^2-\left(m_1-m_2\right)^2\right]}\\ | + | |
\end{align} | \end{align} | ||
行 151: | 行 133: | ||
\begin{align} | \begin{align} | ||
- | |\boldsymbol{p}_1' | + | \boldsymbol{p}_1' |
- | &= \frac{1}{2W}\sqrt{\left[W^2-\left(m_1+m_2\right)^2\right]\left[W^2-\left(m_1-m_2\right)^2\right]}\\ | + | &= \frac{m_2}{m_1+m_2}\boldsymbol{p}_1\\ |
- | &= \frac{1}{2W}\sqrt{\left[W^2-\left(m_\mathrm{N}+m_\mathrm{N}\right)^2\right]\left[W^2-\left(m_\mathrm{N}-m_\mathrm{N}\right)^2\right]}\\ | + | &= \frac{m_\mathrm{N}}{2m_\mathrm{N}}\boldsymbol{p}_1\\ |
- | &= \frac{1}{2W}\sqrt{\left[W^2-(2m_\mathrm{N})^2\right]W^2}\\ | + | &= \frac{\boldsymbol{p}_1}{2} |
- | &= \frac{1}{2}\sqrt{W^2-4m_\mathrm{N}^2}\\ | + | |
\end{align} | \end{align} | ||
行 167: | 行 148: | ||
For the elastic scattering, $m_1 = m_3$ and $m_2 = m_4$. Therefore, | For the elastic scattering, $m_1 = m_3$ and $m_2 = m_4$. Therefore, | ||
\begin{align} | \begin{align} | ||
- | |\boldsymbol{p}_3^{*}| | + | |\boldsymbol{p}_3^{*}| = |\boldsymbol{p}_1^{*}| |
- | &= \frac{1}{2W}\sqrt{\left[W^2-\left(m_3+m_4\right)^2\right]\left[W^2-\left(m_3-m_4\right)^2\right]}\\ | + | |
- | &= \frac{1}{2W}\sqrt{\left[W^2-\left(m_1+m_2\right)^2\right]\left[W^2-\left(m_1-m_2\right)^2\right]}\\ | + | |
- | &= |\boldsymbol{p}_1^{*}| | + | |
\end{align} | \end{align} | ||
行 178: | 行 156: | ||
\begin{align} | \begin{align} | ||
- | |\boldsymbol{p}_3' | + | |\boldsymbol{p}_3' |
\end{align} | \end{align} | ||
行 184: | 行 162: | ||
** The General Formula ** | ** The General Formula ** | ||
- | From the notes below, the velocity of the c.m. $\boldsymbol{\beta}_{\rm cm}$ of two moving particles is written as | + | From the notes below, the velocity of the c.m. $\boldsymbol{v}_{\rm cm}$ of two moving particles is written as |
\begin{align} | \begin{align} | ||
- | \boldsymbol{\beta}_{\rm cm} = \frac{\boldsymbol{p}_1+\boldsymbol{p}_2}{E_1+E_2}. | + | \boldsymbol{v}_{\rm cm} = \frac{\boldsymbol{p}_1+\boldsymbol{p}_2}{m_1+m_2}. |
\end{align} | \end{align} | ||
If the second particle is not moving, $\boldsymbol{p}_2=0$ and $E_2=m_2$. Therefore, | If the second particle is not moving, $\boldsymbol{p}_2=0$ and $E_2=m_2$. Therefore, | ||
\begin{align} | \begin{align} | ||
- | \boldsymbol{\beta}_{\rm cm} = \frac{\boldsymbol{p}_1}{E_1+m_2}. | + | \boldsymbol{v}_{\rm cm} = \frac{\boldsymbol{p}_1}{m_1+m_2}. |
\end{align} | \end{align} | ||
- | In the center of mass system, $\boldsymbol{\beta}_\mathrm{cm}=\boldsymbol{\beta}_2^*$. As a result, | + | In the center of mass system, $\boldsymbol{v}_\mathrm{cm}=\boldsymbol{v}_2^*$. As a result, |
\begin{align} | \begin{align} | ||
- | \boldsymbol{\beta}_2^* = \boldsymbol{\beta}_{\rm cm} = \frac{\boldsymbol{p}_1}{E_1+m_2} | + | \boldsymbol{v}_2^* = \boldsymbol{v}_{\rm cm} = \frac{\boldsymbol{p}_1}{m_1+m_2} |
\end{align} | \end{align} | ||
行 204: | 行 182: | ||
** The General Formula ** | ** The General Formula ** | ||
- | In general, | + | In the non-relativistic limit, |
\begin{align} | \begin{align} | ||
- | \gamma = \frac{1}{\sqrt{1-|\boldsymbol{\beta}|^2}}. | + | \gamma |
+ | &= \frac{1}{\sqrt{1-|\boldsymbol{\beta}|^2}}\\ | ||
+ | & | ||
\end{align} | \end{align} | ||
- | |||
- | Therefore, | ||
- | |||
- | \begin{align} | ||
- | \gamma_2^* | ||
- | &= \frac{1}{\sqrt{1-|\boldsymbol{\beta}_2^*|^2}}\\ | ||
- | &= \frac{1}{\sqrt{1-\left|\frac{\boldsymbol{p}_1}{E_1+m_2}\right|^2}}\\ | ||
- | &= \frac{E_1+m_2}{\sqrt{(E_1+m_2)^2-\boldsymbol{p}_1^2}}\\ | ||
- | &= \frac{E_1+m_2}{W}. | ||
- | \end{align} | ||
- | |||
- | In the center of the mass system, $\boldsymbol{\beta}_2^*=\boldsymbol{\beta}_\mathrm{cm}$ and $\gamma_2^* = \gamma_\mathrm{cm}$. As a result, | ||
- | |||
- | \begin{align} | ||
- | \gamma_2^* = \gamma_\mathrm{cm} = \frac{E_1+m_2}{W}. | ||
- | \end{align} | ||
- | |||
=== Derivation of Quantity 6. Maximum lab scattering angle === | === Derivation of Quantity 6. Maximum lab scattering angle === | ||
行 232: | 行 195: | ||
\begin{align} | \begin{align} | ||
- | \tan\theta_3 &= \frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}.\\ | + | \tan\theta_3 &= \frac{\sin\theta_3^*}{\delta_{23}^*+\cos\theta_3^*}.\\ |
\end{align} | \end{align} | ||
行 239: | 行 202: | ||
\begin{align} | \begin{align} | ||
\frac{d(\tan\theta_3)}{d\theta_3^*} | \frac{d(\tan\theta_3)}{d\theta_3^*} | ||
- | &= \frac{\cos\theta_3^*[\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)]-\sin\theta_3^*\gamma_2^*(-\sin\theta_3^*)}{\left[\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\right]^2}\\ | + | &= \frac{\cos\theta_3^*[\delta_{23}^*+\cos\theta_3^*]-\sin\theta_3^*(-\sin\theta_3^*)}{\left(\delta_{23}^*+\cos\theta_3^*\right)^2}\\ |
- | &= \frac{\gamma_2^*[\delta_{23}^*\cos^2\theta_3^*+\cos^2\theta_3^*+\cos^2\theta_3^*]}{\left[\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\right]^2}\\ | + | &= \frac{\delta_{23}^*\cos^2\theta_3^*+\cos^2\theta_3^*+\cos^2\theta_3^*}{\left(\delta_{23}^*+\cos\theta_3^*\right)^2}\\ |
- | &= \frac{\gamma_2^*[\delta_{23}^*\cos\theta_3^*+1]}{\left[\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\right]^2}.\\ | + | &= \frac{\delta_{23}^*\cos\theta_3^*+1}{\left(\delta_{23}^*+\cos\theta_3^*\right)^2}.\\ |
\end{align} | \end{align} | ||
行 255: | 行 218: | ||
\begin{align} | \begin{align} | ||
\tan\theta_3 | \tan\theta_3 | ||
- | &= \frac{\sqrt{1-(1/ | + | &= \frac{\sqrt{1-(1/ |
- | &= \frac{\sqrt{\delta_{23}^{*2}-1}}{\gamma_2^*\left(\delta_{23}^{*2}-1\right)}\\ | + | &= \frac{\sqrt{\delta_{23}^{*2}-1}}{\delta_{23}^{*2}-1}\\ |
- | &= \frac{1}{\gamma_2^*\sqrt{\delta_{23}^{*2}-1}}.\\ | + | &= \frac{1}{\sqrt{\delta_{23}^{*2}-1}}.\\ |
\end{align} | \end{align} | ||
行 266: | 行 229: | ||
\begin{align} | \begin{align} | ||
|\boldsymbol{p}_3' | |\boldsymbol{p}_3' | ||
- | |\boldsymbol{\beta}_3'| = |\boldsymbol{\beta}_1'| = |\boldsymbol{\beta}_2' | + | |\boldsymbol{v}_3'| = |\boldsymbol{v}_1'| = |\boldsymbol{v}_2' |
\end{align} | \end{align} | ||
Therefore, | Therefore, | ||
行 277: | 行 240: | ||
\begin{align} | \begin{align} | ||
\tan\theta_3 | \tan\theta_3 | ||
- | &= \frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}.\\ | + | &= \frac{\sin\theta_3^*}{\delta_{23}^*+\cos\theta_3^*}.\\ |
- | &= \frac{\sin\theta_3^*}{\gamma_2^*\left(1+\cos\theta_3^*\right)}. | + | &= \frac{\sin\theta_3^*}{1+\cos\theta_3^*}. |
\end{align} | \end{align} | ||
- | Therefore, $\tan\theta_3$ becomes infinite at $\cos\theta_3^*=-1$. In that case, $\mathrm{3max}=90^\circ$. | + | Therefore, $\tan\theta_3$ becomes infinite at $\cos\theta_3^*=-1$. In that case, $\theta_\mathrm{3max}=90^\circ$. |
=== Derivation of Quantity 7. c.m. to lab angle ($\theta_{\rm cm} \rightarrow \theta_{\rm lab}$) === | === Derivation of Quantity 7. c.m. to lab angle ($\theta_{\rm cm} \rightarrow \theta_{\rm lab}$) === | ||
行 287: | 行 250: | ||
\begin{align} | \begin{align} | ||
- | \begin{pmatrix} | + | |\boldsymbol{v}_3|\cos\theta_{\rm lab} &= |\boldsymbol{v}_3^*|\cos\theta_{\rm cm}+v_{\rm cm}\\ |
- | E_3\\ | + | |\boldsymbol{v}_3|\sin\theta_{\rm lab} &= |\boldsymbol{v}_3^*|\sin\theta_{\rm cm} |
- | |\boldsymbol{p}_3|\cos\theta_{\rm lab} | + | |
- | \end{pmatrix} | + | |
- | &= | + | |
- | \begin{pmatrix} | + | |
- | \gamma_{\rm cm} & \beta_{\rm cm}\gamma_{\rm cm}\\ | + | |
- | \beta_{\rm cm}\gamma_{\rm cm} & \gamma_{\rm cm} | + | |
- | \end{pmatrix} | + | |
- | \begin{pmatrix} | + | |
- | E_3^*\\ | + | |
- | |\boldsymbol{p}_3^*|\cos\theta_{\rm cm} | + | |
- | \end{pmatrix}\\ | + | |
- | |\boldsymbol{p}_3|\cos\theta_{\rm lab} &= \gamma_{\rm cm}\left(|\boldsymbol{p}_3^*|\cos\theta_{\rm cm}+\beta_{\rm cm}E_3^*\right)\\ | + | |
- | |\boldsymbol{p}_3|\sin\theta_{\rm lab} &= |\boldsymbol{p}_3^*|\sin\theta_{\rm cm} | + | |
\end{align} | \end{align} | ||
行 307: | 行 257: | ||
\begin{align} | \begin{align} | ||
- | \frac{|\boldsymbol{p}_3|\sin\theta_{\rm lab}}{|\boldsymbol{p}_3|\cos\theta_{\rm lab}} &= \frac{|\boldsymbol{p}_3^*|\sin\theta_{\rm cm}}{\gamma_{\rm cm}\left(|\boldsymbol{p}_3^*|\cos\theta_{\rm cm}+\beta_{\rm cm}E_3^*\right)}\\ | + | \frac{|\boldsymbol{v}_3|\sin\theta_{\rm lab}}{|\boldsymbol{v}_3|\cos\theta_{\rm lab}} &= \frac{|\boldsymbol{v}_3^*|\sin\theta_{\rm cm}}{|\boldsymbol{v}_3^*|\cos\theta_{\rm cm}+v_{\rm cm}}\\ |
- | \tan\theta_{\rm lab} &= \frac{\sin\theta_{\rm cm}}{\gamma_{\rm cm}\left(\cos\theta_{\rm cm}+\beta_{\rm cm}(E_3^*/ | + | \tan\theta_{\rm lab} &= \frac{\sin\theta_{\rm cm}}{\cos\theta_{\rm cm}+v_{\rm cm}/ |
- | \tan\theta_{\rm lab} &= \frac{\sin\theta_{\rm cm}}{\gamma_{\rm cm}\left(\cos\theta_{\rm cm}+\beta_{\rm cm}/ | + | |
\end{align} | \end{align} | ||
- | In the center of mass system, $\beta_\mathrm{cm}=|\boldsymbol{\beta}_2^*|$. Therefore, | + | In the center of mass system, $v_\mathrm{cm}=|\boldsymbol{v}_2^*|$. Therefore, |
\begin{align} | \begin{align} | ||
- | \beta_{\rm cm}/ | + | v_{\rm cm}/ |
- | &= |\boldsymbol{\beta}_2^*|/ | + | &= |\boldsymbol{v}_2^*|/ |
&= \delta_{23}^*. | &= \delta_{23}^*. | ||
\end{align} | \end{align} | ||
- | By using this formula, $\gamma_\mathrm{cm}=\gamma_2^*$, $\theta_\mathrm{cm}=\theta_3^*$, | + | By using this formula, $\theta_\mathrm{cm}=\theta_3^*$, |
\begin{align} | \begin{align} | ||
- | \tan\theta_3 &= \frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}.\\ | + | \tan\theta_3 &= \frac{\sin\theta_3^*}{\delta_{23}^*+\cos\theta_3^*}.\\ |
\end{align} | \end{align} | ||
行 325: | 行 274: | ||
\begin{align} | \begin{align} | ||
\cos\theta_3 | \cos\theta_3 | ||
- | &= \frac{1}{\sqrt{1+\left[\frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}\right]^2}}\\ | + | &= \frac{1}{\sqrt{1+\left[\frac{\sin\theta_3^*}{\delta_{23}^*+\cos\theta_3^*}\right]^2}}\\ |
- | &= \frac{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}{\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}} | + | &= \frac{\delta_{23}^*+\cos\theta_3^*}{\sqrt{\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2}} |
\end{align} | \end{align} | ||
行 334: | 行 283: | ||
\begin{align} | \begin{align} | ||
- | |\boldsymbol{\beta}_3^*| = |\boldsymbol{\beta}_1^*|\\ | + | |\boldsymbol{v}_3^*| = |\boldsymbol{v}_1^*|\\ |
\delta_{23}^* = \delta_{21}^* | \delta_{23}^* = \delta_{21}^* | ||
\end{align} | \end{align} | ||
行 342: | 行 291: | ||
\begin{align} | \begin{align} | ||
\tan\theta_3 | \tan\theta_3 | ||
- | &= \frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}.\\ | + | &= \frac{\sin\theta_3^*}{\delta_{23}^*+\cos\theta_3^*}.\\ |
- | &= \frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{21}^*+\cos\theta_3^*\right)}.\\ | + | &= \frac{\sin\theta_3^*}{\delta_{21}^*+\cos\theta_3^*}.\\ |
\end{align} | \end{align} | ||
行 349: | 行 298: | ||
\begin{align} | \begin{align} | ||
- | \begin{pmatrix} | + | |\boldsymbol{v}_4|\cos\theta_4 &= -|\boldsymbol{v}_4^*|\cos\theta_4^*+v_{\rm cm}\\ |
- | E_4\\ | + | |\boldsymbol{v}_4|\sin\theta_4 &= |\boldsymbol{v}_4^*|\sin\theta_4^* |
- | |\boldsymbol{p}_4|\cos\theta_4 | + | |
- | \end{pmatrix} | + | |
- | &= | + | |
- | \begin{pmatrix} | + | |
- | \gamma_{\rm cm} & \beta_{\rm cm}\gamma_{\rm cm}\\ | + | |
- | \beta_{\rm cm}\gamma_{\rm cm} & \gamma_{\rm cm} | + | |
- | \end{pmatrix} | + | |
- | \begin{pmatrix} | + | |
- | E_4^*\\ | + | |
- | -|\boldsymbol{p}_4^*|\cos\theta_4^* | + | |
- | \end{pmatrix}\\ | + | |
- | |\boldsymbol{p}_4|\cos\theta_4 &= \gamma_{\rm cm}\left(\beta_{\rm cm}E_4^*-|\boldsymbol{p}_4^*|\cos\theta_4^*\right)\\ | + | |
- | |\boldsymbol{p}_4|\sin\theta_4 &= |\boldsymbol{p}_4^*|\sin\theta_4^* | + | |
\end{align} | \end{align} | ||
行 369: | 行 305: | ||
\begin{align} | \begin{align} | ||
- | \frac{|\boldsymbol{p}_4|\sin\theta_4}{|\boldsymbol{p}_4|\cos\theta_4} &= \frac{|\boldsymbol{p}_4^*|\sin\theta_4^*}{\gamma_{\rm cm}\left(\beta_{\rm cm}E_4^*-|\boldsymbol{p}_4^*|\cos\theta_4\right)}\\ | + | \frac{|\boldsymbol{v}_4|\sin\theta_4}{|\boldsymbol{v}_4|\cos\theta_4} &= \frac{|\boldsymbol{v}_4^*|\sin\theta_4^*}{v_{\rm cm}-|\boldsymbol{v}_4^*|\cos\theta_4^*}\\ |
- | \tan\theta_4 &= \frac{\sin\theta_4^*}{\gamma_{\rm cm}\left(\beta_{\rm cm}(E_4^*/ | + | \tan\theta_4 &= \frac{\sin\theta_4^*}{v_{\rm cm}/ |
- | \tan\theta_4 &= \frac{\sin\theta_4^*}{\gamma_{\rm cm}\left(\beta_{\rm cm}/ | + | |
\end{align} | \end{align} | ||
- | By using $\theta_4^* = \theta_3^*$, $\beta_{\rm cm} = |\boldsymbol{\beta}_2^*|$ and $\gamma_{\rm cm} = \gamma_2^*$, | + | By using $\theta_4^* = \theta_3^*$ |
\begin{align} | \begin{align} | ||
- | \tan\theta_4 = \frac{\sin\theta_3^*}{\gamma_2^*\left(|\boldsymbol{\beta}_2^*|/ | + | \tan\theta_4 = \frac{\sin\theta_3^*}{|\boldsymbol{v}_2^*|/ |
\end{align} | \end{align} | ||
- | For elastic scattering, $m_2=m_4$, $|\boldsymbol{p}_2^*|=|\boldsymbol{p}_4^*|$, | + | For elastic scattering, $m_2=m_4$ and $|\boldsymbol{v}_2^*|=|\boldsymbol{v}_4^*|$. Therefore, |
\begin{align} | \begin{align} | ||
- | \tan\theta_4 = \frac{\sin\theta_3^*}{\gamma_2^*(1-\cos\theta_3^*)} | + | \tan\theta_4 = \frac{\sin\theta_3^*}{1-\cos\theta_3^*} |
\end{align} | \end{align} | ||
行 387: | 行 322: | ||
\begin{align} | \begin{align} | ||
- | \tan\theta_4 = \frac{1}{\gamma_2^*}\cot\frac{\theta_3^*}{2} | + | \tan\theta_4 = \cot\frac{\theta_3^*}{2} |
\end{align} | \end{align} | ||
行 397: | 行 332: | ||
\begin{align} | \begin{align} | ||
\tan\theta_3 | \tan\theta_3 | ||
- | &= \frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}.\\ | + | &= \frac{\sin\theta_3^*}{\delta_{23}^*+\cos\theta_3^*}.\\ |
- | &= \frac{\sin\theta_3^*}{\gamma_2^*\left(1+\cos\theta_3^*\right)}.\\ | + | &= \frac{\sin\theta_3^*}{1+\cos\theta_3^*}.\\ |
\end{align} | \end{align} | ||
行 406: | 行 341: | ||
From an equation in the derivation of Quantity 7., | From an equation in the derivation of Quantity 7., | ||
\begin{align} | \begin{align} | ||
- | \tan\theta_3 &= \frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}.\\ | + | \tan\theta_3 &= \frac{\sin\theta_3^*}{\delta_{23}^*+\cos\theta_3^*}.\\ |
\end{align} | \end{align} | ||
行 412: | 行 347: | ||
\begin{align} | \begin{align} | ||
\tan^2\theta_3 | \tan^2\theta_3 | ||
- | &= \frac{\sin^2\theta_3^*}{\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}\\ | + | &= \frac{\sin^2\theta_3^*}{\left(\delta_{23}^*+\cos\theta_3^*\right)^2}\\ |
- | &= \frac{1-\cos^2\theta_3^*}{\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}, | + | &= \frac{1-\cos^2\theta_3^*}{\left(\delta_{23}^*+\cos\theta_3^*\right)^2}, |
- | & | + | & |
- | & | + | & |
\end{align} | \end{align} | ||
行 424: | 行 359: | ||
is | is | ||
\begin{align} | \begin{align} | ||
- | x=\frac{b}{a}\pm\sqrt{\left(\frac{b}{a}\right)^2-\frac{c}{a}}. | + | x=-\frac{b}{a}\pm\sqrt{\left(\frac{b}{a}\right)^2-\frac{c}{a}}. |
\end{align} | \end{align} | ||
Therefore, | Therefore, | ||
\begin{align} | \begin{align} | ||
- | \cos\theta_3^*=\frac{\delta_{23}^*(\gamma_2^*\tan\theta_3)^2}{(\gamma_2^*\tan\theta_3)^2+1}\pm\sqrt{\left(\frac{\delta_{23}^*(\gamma_2^*\tan\theta_3)^2}{(\gamma_2^*\tan\theta_3)^2+1}\right)^2-\frac{\delta_{23}^{*2}(\gamma_2^*\tan\theta_3)^2-1}{(\gamma_2^*\tan\theta_3)^2+1}}. | + | \cos\theta_3^*=-\frac{\delta_{23}^*\tan^2\theta_3}{\tan^2\theta_3+1}\pm\sqrt{\left(\frac{\delta_{23}^*\tan^2\theta_3}{\tan^2\theta_3+1}\right)^2-\frac{\delta_{23}^{*2}\tan^2\theta_3-1}{\tan^2\theta_3+1}}. |
\end{align} | \end{align} | ||
行 435: | 行 370: | ||
\begin{align} | \begin{align} | ||
- | \begin{pmatrix} | + | |\boldsymbol{v}_3^*|\cos\theta_{\rm cm} &= |\boldsymbol{v}_3|\cos\theta_{\rm lab}-v_{\rm cm}\\ |
- | E_3^*\\ | + | |\boldsymbol{v}_3^*|\sin\theta_{\rm cm} &= |\boldsymbol{v}_3|\sin\theta_{\rm lab} |
- | |\boldsymbol{p}_3^*|\cos\theta_{\rm cm} | + | |
- | \end{pmatrix} | + | |
- | &= | + | |
- | \begin{pmatrix} | + | |
- | \gamma_{\rm cm} & -\beta_{\rm cm}\gamma_{\rm cm}\\ | + | |
- | -\beta_{\rm cm}\gamma_{\rm cm} & \gamma_{\rm cm} | + | |
- | \end{pmatrix} | + | |
- | \begin{pmatrix} | + | |
- | E_3\\ | + | |
- | |\boldsymbol{p}_3|\cos\theta_{\rm lab} | + | |
- | \end{pmatrix}\\ | + | |
- | |\boldsymbol{p}_3^*|\cos\theta_{\rm cm} &= \gamma_{\rm cm}\left(|\boldsymbol{p}_3|\cos\theta_{\rm lab}-\beta_{\rm cm}E_3\right)\\ | + | |
- | |\boldsymbol{p}_3^*|\sin\theta_{\rm cm} &= |\boldsymbol{p}_3|\sin\theta_{\rm lab} | + | |
\end{align} | \end{align} | ||
行 455: | 行 377: | ||
\begin{align} | \begin{align} | ||
- | \frac{|\boldsymbol{p}_3^*|\sin\theta_{\rm cm}}{|\boldsymbol{p}_3^*|\cos\theta_{\rm cm}} &= \frac{|\boldsymbol{p}_3|\sin\theta_{\rm lab}}{\gamma_{\rm cm}\left(|\boldsymbol{p}_3|\cos\theta_{\rm lab}-\beta_{\rm cm}E_3\right)}\\ | + | \frac{|\boldsymbol{v}_3^*|\sin\theta_{\rm cm}}{|\boldsymbol{v}_3^*|\cos\theta_{\rm cm}} &= \frac{|\boldsymbol{v}_3|\sin\theta_{\rm lab}}{|\boldsymbol{v}_3|\cos\theta_{\rm lab}-v_{\rm cm}}\\ |
- | \tan\theta_{\rm cm} &= \frac{\sin\theta_{\rm lab}}{\gamma_{\rm cm}\left(\cos\theta_{\rm lab}-\beta_{\rm cm}(E_3/ | + | \tan\theta_{\rm cm} &= \frac{\sin\theta_{\rm lab}}{\cos\theta_{\rm lab}-v_{\rm cm}/ |
- | \tan\theta_{\rm cm} &= \frac{\sin\theta_{\rm lab}}{\gamma_{\rm cm}\left(\cos\theta_{\rm lab}-\beta_{\rm cm}/ | + | |
\end{align} | \end{align} | ||
行 472: | 行 393: | ||
By using the Quantity 7. and $(f/ | By using the Quantity 7. and $(f/ | ||
\begin{align} | \begin{align} | ||
- | \frac{d(\cos\theta_3)}{d(\cos\theta_3^*)} | + | \frac{d\Omega_3}{d\Omega_3^*}=\frac{d(\cos\theta_3)}{d(\cos\theta_3^*)} |
- | &= \frac{d}{d(\cos\theta_3^*)}\left[\frac{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}{\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\right]\\ | + | &= \frac{d}{d(\cos\theta_3^*)}\left[\frac{\delta_{23}^*+\cos\theta_3^*}{\sqrt{\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\right]\\ |
- | &= \left.\left[\frac{d\left[\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\right]}{d(\cos\theta_3^*)}\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}-\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\frac{d\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}{d(\cos\theta_3^*)}\right]\right/ | + | &= \left.\left[\frac{d\left(\delta_{23}^*+\cos\theta_3^*\right)}{d(\cos\theta_3^*)}\sqrt{\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2}-\left(\delta_{23}^*+\cos\theta_3^*\right)\frac{d\sqrt{\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}{d(\cos\theta_3^*)}\right]\right/ |
- | &= \left.\left[\gamma_2^*\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}-\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\frac{1}{2\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\frac{d\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]}{d(\cos\theta_3^*)}\right]\right/ | + | &= \left.\left[\frac{d\left(\delta_{23}^*+\cos\theta_3^*\right)}{d(\cos\theta_3^*)}\sqrt{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*}-\left(\delta_{23}^*+\cos\theta_3^*\right)\frac{d\sqrt{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*}}{d(\cos\theta_3^*)}\right]\right/ |
- | &= \left.\left[\gamma_2^*\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}-\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\frac{1}{2\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\frac{d\left[1-\cos^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^{*2}+2\delta_{23}^{*}\cos\theta_3^*+\cos^2\theta_3^*\right)\right]}{d(\cos\theta_3^*)}\right]\right/ | + | &= \left.\left[\sqrt{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*}-\left(\delta_{23}^*+\cos\theta_3^*\right)\frac{1}{2\sqrt{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*}}\frac{d\left(1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*\right)}{d(\cos\theta_3^*)}\right]\right/ |
- | &= \left.\left[\gamma_2^*\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}-\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\frac{1}{2\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\frac{d\left[(\gamma_2^{*2}-1)\cos^2\theta_3^*+2\delta_{23}^{*}\gamma_2^{*2}\cos\theta_3^*+\delta_{23}^{*2}\gamma_2^{*2}+1\right]}{d(\cos\theta_3^*)}\right]\right/ | + | &= \left.\left[\sqrt{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*}-\left(\delta_{23}^*+\cos\theta_3^*\right)\frac{1}{2\sqrt{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*}}\cdot 2\delta_{23}^{*}\right]\right/ |
- | &= \left.\left[\gamma_2^*\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}-\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\frac{1}{2\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\left[2(\gamma_2^{*2}-1)\cos\theta_3^*+2\delta_{23}^{*}\gamma_2^{*2}\right]\right]\right/ | + | &= \left.\left[\left[1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*\right]-\delta_{23}^{*}\left(\delta_{23}^*+\cos\theta_3^*\right)\right]\right/ |
- | &= \left.\left[\gamma_2^*\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]-\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\left[(\gamma_2^{*2}-1)\cos\theta_3^*+\delta_{23}^{*}\gamma_2^{*2}\right]\right]\right/ | + | &= \left.\left[1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*-\delta_{23}^{*2}-\delta_{23}^{*}\cos\theta_3^*\right]\right/ |
- | & | + | &= \frac{1+\delta_{23}^{*}\cos\theta_3^*}{\left[\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]^{3/ |
- | &= \gamma_2^*\left.\left[(\gamma_2^{*2}-1)\cos^2\theta_3^*+2\delta_{23}^{*}\gamma_2^{*2}\cos\theta_3^*+\delta_{23}^{*2}\gamma_2^{*2}+1-\left[(\gamma_2^{*2}-1)\cos^2\theta_3^*+\delta_{23}^{*}\gamma_2^{*2}\cos\theta_3^*+\delta_{23}^{*}(\gamma_2^{*2}-1)\cos\theta_3^*+\delta_{23}^{*2}\gamma_2^{*2}\right]\right]\right/ | + | |
- | & | + | |
- | &= \frac{\gamma_2^*(1+\delta_{23}^{*}\cos\theta_3^*)}{\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]^{3/ | + | |
\end{align} | \end{align} | ||
行 490: | 行 408: | ||
From Quantity 7., | From Quantity 7., | ||
\begin{align} | \begin{align} | ||
- | \cos\theta_3 &= \frac{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}{\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}. | + | \cos\theta_3 |
+ | &= \frac{\delta_{23}^*+\cos\theta_3^*}{\sqrt{\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2}} | ||
\end{align} | \end{align} | ||
In general, $\sin\theta=\sqrt{1-\cos^2\theta}$. Therefore, | In general, $\sin\theta=\sqrt{1-\cos^2\theta}$. Therefore, | ||
\begin{align} | \begin{align} | ||
\sin\theta_3 | \sin\theta_3 | ||
- | &= \sqrt{1-\left[\frac{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}{\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\right]^2}\\ | + | &= \sqrt{1-\left[\frac{\delta_{23}^*+\cos\theta_3^*}{\sqrt{\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\right]^2}\\ |
- | &= \sqrt{\frac{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2-\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\\ | + | & |
- | &= \sqrt{\frac{\sin^2\theta_3^*}{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\\ | + | &= \sqrt{\frac{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*-\left(\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*+\cos^2\theta_3^*\right)}{\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\\ |
- | &= \frac{\sin\theta_3^*}{\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\\ | + | &= \sqrt{\frac{1-\cos^2\theta_3^*}{\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\\ |
+ | &= \sqrt{\frac{\sin^2\theta_3^*}{\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\\ | ||
+ | &= \frac{\sin\theta_3^*}{\sqrt{\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\\ | ||
\Rightarrow \frac{\sin\theta_3}{\sin\theta_3^*} | \Rightarrow \frac{\sin\theta_3}{\sin\theta_3^*} | ||
- | &= \frac{1}{\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}} | + | &= \frac{1}{\sqrt{\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2}} |
\end{align} | \end{align} | ||
By substituting this formula into the first formula of Quantity 9., | By substituting this formula into the first formula of Quantity 9., | ||
\begin{align} | \begin{align} | ||
\frac{d\Omega_3}{d\Omega_3^*} | \frac{d\Omega_3}{d\Omega_3^*} | ||
- | &= \frac{\gamma_2^*(1+\delta_{23}^*\cos\theta_3^*)}{\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]^{3/ | + | &= \frac{1+\delta_{23}^*\cos\theta_3^*}{\left[\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]^{3/ |
- | &= \frac{\sin^3\theta_3}{\sin^3\theta_3^*}\gamma_2^*(1+\delta_{23}^*\cos\theta_3^*)\\ | + | &= \frac{\sin^3\theta_3}{\sin^3\theta_3^*}(1+\delta_{23}^*\cos\theta_3^*)\\ |
\end{align} | \end{align} | ||
行 515: | 行 436: | ||
\begin{align} | \begin{align} | ||
- | \frac{d(\cos\theta_3)}{d(\cos\theta_3^*)} | + | \frac{d\Omega_3}{d\Omega_3^*} |
- | &= \frac{\gamma_2^*(1+\delta_{23}^{*}\cos\theta_3^*)}{\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]^{3/ | + | &= \frac{1+\delta_{23}^{*}\cos\theta_3^*}{\left[\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]^{3/ |
- | &= \frac{\gamma_2^*(1+\cos\theta_3^*)}{\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(1+\cos\theta_3^*\right)^2\right]^{3/ | + | &= \frac{1+\delta_{23}^{*}\cos\theta_3^*}{\left[1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*\right]^{3/ |
+ | &= \frac{1+\cos\theta_3^*}{\left[2+2\cos\theta_3^*\right]^{3/2}}\\ | ||
+ | &= \frac{1+\cos\theta_3^*}{\left[2\left(1+\cos\theta_3^*\right)\right]^{3/ | ||
+ | &= \frac{1}{2^{3/ | ||
\end{align} | \end{align} | ||
- | === Derivation of Quantity | + | === Derivation of Quantity |
** The first formula of the General Formulae ** | ** The first formula of the General Formulae ** | ||
- | In general, | + | From the law of conservation of momentum, |
\begin{align} | \begin{align} | ||
- | |\boldsymbol{p}|=m\gamma|\boldsymbol{\beta}|=m\sqrt{\gamma^2-1}. | + | &&|\boldsymbol{p}_1| = |\boldsymbol{p}_3|\cos\theta_3 + |\boldsymbol{p}_4|\cos\theta_4, |
+ | && | ||
\end{align} | \end{align} | ||
- | On the other hand, in the Center | + | By moving $|\boldsymbol{p}_3|\cos\theta_3$ to left and making squares for the both sides of each formula, |
\begin{align} | \begin{align} | ||
- | |\boldsymbol{p}_1^*|=|\boldsymbol{p}_2^*|. | + | \boldsymbol{p}_1^2 + \boldsymbol{p}_3^2\cos^2\theta_3 -2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 &= \boldsymbol{p}_4^2\cos^2\theta_4, |
+ | \boldsymbol{p}_3^2\sin^2\theta_3 &= \boldsymbol{p}_4^2\sin^2\theta_4.\\ | ||
\end{align} | \end{align} | ||
- | Therefore, | + | By summing these formulae, |
\begin{align} | \begin{align} | ||
- | m_1\sqrt{\gamma_1^{*2}-1}=m_2\sqrt{\gamma_2^{*2}-1}\\ | + | \boldsymbol{p}_1^2 + (\boldsymbol{p}_3^2\cos^2\theta_3+\boldsymbol{p}_3^2\sin^2\theta_3) |
- | \Rightarrow m_1^2(\gamma_1^{*2}-1)=m_2^2(\gamma_2^{*2}-1)\\ | + | \boldsymbol{p}_1^2 + \boldsymbol{p}_3^2 -2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 &= \boldsymbol{p}_4^2.\\ |
- | \Rightarrow (\gamma_1^{*2}-1)=k_{21}^2(\gamma_2^{*2}-1). | + | |
\end{align} | \end{align} | ||
- | ** The third formula of the General Formulae ** | + | (N.B. This formula |
- | + | ||
- | From Quantity 1. and 5., | + | |
+ | Then, | ||
\begin{align} | \begin{align} | ||
- | \gamma_2^* | + | 2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 |
- | &= \gamma_\mathrm{cm}\\ | + | &= \boldsymbol{p}_1^2 + \boldsymbol{p}_3^2 - \boldsymbol{p}_4^2. |
- | &= \frac{E_1+m_2}{W}\\ | + | |
- | &= \frac{E_1+m_2}{\sqrt{m_1^2+m_2^2+2m_2E_1}}\\ | + | |
- | & | + | |
\end{align} | \end{align} | ||
- | Then, by using $k_{12}=m_1/ | ||
- | |||
- | \begin{align} | ||
- | \gamma_2^* = \frac{k_{21}+\gamma_1}{\sqrt{1+k_{21}^2+2\gamma_1k_{21}}} | ||
- | \end{align} | ||
- | |||
** The second formula of the General Formulae ** | ** The second formula of the General Formulae ** | ||
- | By substituting | + | From the law of conservation of momentum in the direction of $\boldsymbol{p}_3$, |
\begin{align} | \begin{align} | ||
- | (\gamma_1^{*2}-1) | + | |\boldsymbol{p}_1|\cos\theta_3 |
- | & | + | \Rightarrow |
- | &= k_{21}^2\left[\frac{k_{21}^2+\gamma_1^2+2\gamma_1k_{21}}{1+k_{21}^2+2\gamma_1k_{21}}-1\right]\\ | + | 2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 |
- | &= k_{21}^2\frac{k_{21}^2+\gamma_1^2+2\gamma_1k_{21}-(1+k_{21}^2+2\gamma_1k_{21})}{1+k_{21}^2+2\gamma_1k_{21}}\\ | + | &= 2\boldsymbol{p}_3^2+2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4)\\ |
- | & | + | \Rightarrow |
- | & | + | 2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) |
- | &= \frac{\gamma_1^2-1}{1+k_{12}^2+2\gamma_1k_{12}}\\ | + | & |
- | \Leftrightarrow | + | |
- | \gamma_1^{*2} | + | |
- | & | + | |
- | &= \frac{\gamma_1^2-1+(1+k_{12}^2+2\gamma_1k_{12})}{1+k_{12}^2+2\gamma_1k_{12}}\\ | + | |
- | & | + | |
- | & | + | |
\end{align} | \end{align} | ||
- | + | By substituting the first formula of the Quantity 11. Lab quantity relations into this formula, | |
- | Then, | + | |
\begin{align} | \begin{align} | ||
- | \gamma_1^* = \frac{k_{12}+\gamma_1}{\sqrt{1+k_{12}^2+2\gamma_1k_{12}}} | + | 2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) |
+ | & | ||
+ | &= \boldsymbol{p}_1^2 - \boldsymbol{p}_3^2 - \boldsymbol{p}_4^2 | ||
\end{align} | \end{align} | ||
- | ** The formulae | + | ** The formula |
- | For N-N scattering, $m_1 = m_2 = m_\mathrm{N}$. Therefore, | + | From the law of conservation of energy, |
\begin{align} | \begin{align} | ||
- | k_{12} | + | \frac{\boldsymbol{p}_1^2}{2m_1} = \frac{\boldsymbol{p}_3^2}{2m_3} + \frac{\boldsymbol{p}_4^2}{2m_4} |
- | & | + | |
- | &= \frac{m_\mathrm{N}}{m_\mathrm{N}}\\ | + | |
- | &= 1\\ | + | |
\end{align} | \end{align} | ||
- | Similarly, $k_{21} = 1$. As a result, from the first formula of the General Formulae, | + | For N-N scattering, $m_1 = m_2 = m_3 = m_4 = m_\mathrm{N}$. Therefore, |
\begin{align} | \begin{align} | ||
- | (\gamma_1^{*2}-1)=k_{21}^2(\gamma_2^{*2}-1)\\ | + | \boldsymbol{p}_1^2 = \boldsymbol{p}_3^2 + \boldsymbol{p}_4^2. |
- | \Rightarrow \gamma_1^{*2}-1=\gamma_2^{*2}-1\\ | + | |
- | \Rightarrow \gamma_1^*=\gamma_2^*. | + | |
\end{align} | \end{align} | ||
- | And, from the second | + | From this formula |
+ | \begin{align} | ||
+ | 2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) | ||
+ | &= \boldsymbol{p}_1^2 - \boldsymbol{p}_3^2 - \boldsymbol{p}_4^2\\ | ||
+ | &= 0 | ||
+ | \end{align} | ||
+ | Therefore, | ||
\begin{align} | \begin{align} | ||
- | \gamma_1^* | + | \cos(\theta_3+\theta_4) |
- | & | + | \theta_3+\theta_4 |
- | & | + | |
- | & | + | |
- | &= \sqrt{\frac{1+\gamma_1}{2}}\\ | + | |
\end{align} | \end{align} | ||
+ | === Derivation of Quantity 12. Maximum K.E. transfer to a stationary particle === | ||
- | === Derivation of Quantity 11. Lab quantity relations === | + | ** The General Formula ** |
- | ** The first formula of the General Formulae ** | ||
- | |||
- | From the law of conservation of momentum, | ||
\begin{align} | \begin{align} | ||
- | &&|\boldsymbol{p}_1| = |\boldsymbol{p}_3|\cos\theta_3 + |\boldsymbol{p}_4|\cos\theta_4,\\ | + | |\boldsymbol{v}_4|\cos\theta_4 &= -|\boldsymbol{v}_4^*|\cos\theta_4^*+v_{\rm cm}\\ |
- | &&|\boldsymbol{p}_3|\sin\theta_3 | + | |\boldsymbol{v}_4|\sin\theta_4 &= |\boldsymbol{v}_4^*|\sin\theta_4^* |
\end{align} | \end{align} | ||
- | By moving $|\boldsymbol{p}_3|\cos\theta_3$ to left and making | + | |
+ | By taking the squares for the both sides, | ||
\begin{align} | \begin{align} | ||
- | \boldsymbol{p}_1^2 + \boldsymbol{p}_3^2\cos^2\theta_3 -2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 & | + | |\boldsymbol{v}_4|^2\cos^2\theta_4 &= |\boldsymbol{v}_4^*|^2\cos^2\theta_4^*+v_{\rm cm}^2-2v_{\rm cm}|\boldsymbol{v}_4^*|\cos\theta_4^*\\ |
- | \boldsymbol{p}_3^2\sin^2\theta_3 | + | |\boldsymbol{v}_4|^2\sin^2\theta_4 |
\end{align} | \end{align} | ||
- | By summing these formulae, | + | |
+ | By adding each side, | ||
\begin{align} | \begin{align} | ||
- | \boldsymbol{p}_1^2 + (\boldsymbol{p}_3^2\cos^2\theta_3+\boldsymbol{p}_3^2\sin^2\theta_3) -2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 & | + | |\boldsymbol{v}_4|^2(\sin^2\theta_4+\cos^2\theta_4) &= |\boldsymbol{v}_4^*|^2(\sin^2\theta_4^*+\cos^2\theta_4^*)+v_{\rm cm}^2-2v_{\rm cm}|\boldsymbol{v}_4^*|\cos\theta_4^*\\ |
- | \boldsymbol{p}_1^2 + \boldsymbol{p}_3^2 -2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 & | + | \Rightarrow |\boldsymbol{v}_4|^2 &= |\boldsymbol{v}_4^*|^2+v_{\rm cm}^2-2v_{\rm cm}|\boldsymbol{v}_4^*|\cos\theta_4^* |
\end{align} | \end{align} | ||
- | (N.B. This formula can be obtained directly by taking square of the both sides of the relation | + | Therefore, |
- | Then, | ||
\begin{align} | \begin{align} | ||
- | 2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 | + | T_1 &= T_3 + T_4\\ |
- | & | + | \boldsymbol{p}_1 |
- | &= E_1^2 - m_1^2 + E_3^2 - m_3^2 - E_4^2 + m_4^2.\\ | + | |
\end{align} | \end{align} | ||
- | From the law of conservation of energy, | + | |
+ | In general, $T = \frac{\boldsymbol{p}^2}{2m}$. Therefore, the first equation is written as | ||
\begin{align} | \begin{align} | ||
- | E_1+m_2& | + | \frac{\boldsymbol{p}_1^2}{2m_1} |
- | E_4&=E_1+m_2-E_3,\\ | + | \Rightarrow \frac{\boldsymbol{p}_1^2}{m_1} |
- | E_4^2&=E_1^2+m_2^2+E_3^2-2(E_1+m_2)E_3+2E_1m_2.\\ | + | |
\end{align} | \end{align} | ||
- | By substituting this formula into the above formula, | + | |
+ | By substituting | ||
\begin{align} | \begin{align} | ||
- | 2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 | + | \frac{\boldsymbol{p}_1^2}{m_1} |
- | & | + | &= \frac{(\boldsymbol{p}_1 - \boldsymbol{p}_4)^2}{m_3} + \frac{\boldsymbol{p}_4^2}{m_4}\\ |
+ | &= \frac{\boldsymbol{p}_1^2 - 2|\boldsymbol{p}_1||\boldsymbol{p}_4|\cos\theta_4 + \boldsymbol{p}_4^2}{m_3} + \frac{\boldsymbol{p}_4^2}{m_4}\\ | ||
+ | & | ||
\end{align} | \end{align} | ||
- | ** The second formula of the General Formulae ** | + | Therefore, by using $\boldsymbol{p}^2=|\boldsymbol{p}|^2$, |
- | From the law of conservation of momentum in the direction of $\boldsymbol{p}_3$, | ||
\begin{align} | \begin{align} | ||
- | |\boldsymbol{p}_1|\cos\theta_3 &= |\boldsymbol{p}_3|+|\boldsymbol{p}_4|\cos(\theta_3+\theta_4)\\ | + | \left(\frac{1}{m_3}+\frac{1}{m_4}\right)|\boldsymbol{p}_4|^2-\frac{2|\boldsymbol{p}_1|}{m_3}|\boldsymbol{p}_4|+\left(\frac{1}{m_3}-\frac{1}{m_1}\right)|\boldsymbol{p}_1|^2=0\\ |
- | \Rightarrow | + | |
- | 2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 | + | |
- | & | + | |
- | \Rightarrow | + | |
- | 2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) | + | |
- | & | + | |
- | & | + | |
\end{align} | \end{align} | ||
- | By substituting | + | |
+ | In general, | ||
\begin{align} | \begin{align} | ||
- | 2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) | + | |\boldsymbol{p}_4| |
- | & | + | & |
- | &= m_3^2 + m_4^2 - m_1^2 - m_2^2+2(E_1+m_2)E_3-2E_1m_2 -2E_3^2\\ | + | &=\frac{\frac{1}{m_3}\pm\sqrt{\frac{1}{m_3^2}-\left(\frac{1}{m_3}+\frac{1}{m_4}\right)\left(\frac{1}{m_3}-\frac{1}{m_1}\right)}}{\frac{1}{m_3}+\frac{1}{m_4}}|\boldsymbol{p}_1|\\ |
+ | & | ||
+ | & | ||
+ | & | ||
+ | &=\frac{m_4\pm\sqrt{m_3m_4}\sqrt{\frac{m_3}{m_1}+\frac{m_4}{m_1}-1}}{m_3+m_4}|\boldsymbol{p}_1|\\ | ||
+ | & | ||
\end{align} | \end{align} | ||
- | By substituting the $E_1+m_2=E_3+E_4$ into the formula, | + | |
+ | The direction of $\boldsymbol{p}_4$ is the same as $\boldsymbol{p}_1$, then | ||
\begin{align} | \begin{align} | ||
- | 2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) | + | \boldsymbol{p}_4 |
- | & | + | &=\frac{m_4\pm\sqrt{\frac{m_3m_4}{m_1}}\sqrt{m_3+m_4-m_1}}{m_3+m_4}\boldsymbol{p}_1. |
- | & | + | |
\end{align} | \end{align} | ||
- | ** The formula for N-N Scattering ** | + | From $\boldsymbol{p}_3=\boldsymbol{p}_1-\boldsymbol{p}_4$, |
+ | \begin{align} | ||
+ | \boldsymbol{p}_3 | ||
+ | &= \boldsymbol{p}_1-\boldsymbol{p}_4\\ | ||
+ | &= \boldsymbol{p}_1-\frac{m_4\pm\sqrt{\frac{m_3m_4}{m_1}(m_3+m_4-m_1)}}{m_3+m_4}\boldsymbol{p}_1\\ | ||
+ | &= \frac{m_3+m_4-m_4\mp\sqrt{\frac{m_3m_4}{m_1}(m_3+m_4-m_1)}}{m_3+m_4}\boldsymbol{p}_1\\ | ||
+ | &= \frac{m_3\mp\sqrt{\frac{m_3m_4}{m_1}(m_3+m_4-m_1)}}{m_3+m_4}\boldsymbol{p}_1\\ | ||
+ | \end{align} | ||
- | For N-N scattering, | + | By using $T_4=\frac{|\boldsymbol{p}_4|^2}{2m_4}$ and $T_1=\frac{|\boldsymbol{p}_1|^2}{2m_1}$, |
\begin{align} | \begin{align} | ||
- | 2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) | + | T_4 |
- | &= m_3^2 + m_4^2 - m_1^2 - m_2^2+2(E_3+E_4)E_3-2E_1m_2 -2E_3^2\\ | + | &=\frac{|\boldsymbol{p}_4|^2}{2m_4}\\ |
- | & | + | &=\frac{1}{2m_4}\frac{\left[m_4\pm\sqrt{\frac{m_3m_4}{m_1}}\sqrt{m_3+m_4-m_1}\right]^2}{(m_3+m_4)^2}|\boldsymbol{p}_1|^2\\ |
- | & | + | &=\frac{m_1}{m_4}\frac{\left[m_4\pm\sqrt{\frac{m_3m_4}{m_1}}\sqrt{m_3+m_4-m_1}\right]^2}{(m_3+m_4)^2}\frac{|\boldsymbol{p}_1|^2}{2m_1}\\ |
- | \Rightarrow | + | &=\frac{m_1}{m_4}\frac{\left[m_4\pm\sqrt{\frac{m_3m_4}{m_1}}\sqrt{m_3+m_4-m_1}\right]^2}{(m_3+m_4)^2}T_1\\ |
- | |\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) | + | &=\frac{\left[\sqrt{\frac{m_1}{m_4}}m_4\pm\sqrt{\frac{m_1}{m_4}}\sqrt{\frac{m_3m_4}{m_1}}\sqrt{m_3+m_4-m_1}\right]^2}{(m_3+m_4)^2}T_1\\ |
- | & | + | &=\frac{\left[\sqrt{m_1m_4}\pm\sqrt{m_3(m_3+m_4-m_1)}\right]^2}{(m_3+m_4)^2}T_1. |
- | & | + | |
\end{align} | \end{align} | ||
- | From the law of conservation of energy, $E_1+m_\mathrm{N}=E_3+E_4$. Therefore, | + | As a result, |
\begin{align} | \begin{align} | ||
- | |\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) | + | T_\mathrm{max} = T_4 &=\frac{\left[\sqrt{m_1m_4}\pm\sqrt{m_3(m_3+m_4-m_1)}\right]^2}{(m_3+m_4)^2}T_1. |
- | &= E_3E_4-m_\mathrm{N}(E_1+m_\mathrm{N})+m_\mathrm{N}^2\\ | + | |
- | &= E_3E_4-m_\mathrm{N}(E_3+E_4)+m_\mathrm{N}^2\\ | + | |
- | &= (E_3-m_\mathrm{N})(E_4-m_\mathrm{N})\\ | + | |
- | &= T_3T_4 | + | |
\end{align} | \end{align} | ||
+ | By the way, from $T_3=T_1-T_4$, | ||
- | === Derivation of Quantity 12. Maximum K.E. transfer to a stationary particle === | ||
- | |||
- | ** The first formula of the General Formulae ** | ||
\begin{align} | \begin{align} | ||
- | \begin{pmatrix} | + | T_3 |
- | E_4\\ | + | &= T_1-T_4\\ |
- | |\boldsymbol{p}_4|\cos\theta_\mathrm{lab} | + | &= T_1-\frac{\left[\sqrt{m_1m_4}\pm\sqrt{m_3(m_3+m_4-m_1)}\right]^2}{(m_3+m_4)^2}T_1\\ |
- | \end{pmatrix} | + | & |
- | &= | + | &= T_1-\frac{m_1m_4+m_3(m_3+m_4-m_1)\pm2\sqrt{m_1m_4}\sqrt{m_3(m_3+m_4-m_1)}}{(m_3+m_4)^2}T_1\\ |
- | \begin{pmatrix} | + | &= T_1-\frac{m_1m_4-m_1m_3+m_3^2+m_3m_4\pm2\sqrt{m_1m_4}\sqrt{m_3(m_3+m_4-m_1)}}{(m_3+m_4)^2}T_1\\ |
- | \gamma_\mathrm{cm} & \beta_\mathrm{cm}\gamma_\mathrm{cm}\\ | + | &= \frac{(m_3+m_4)^2 -m_1m_4+m_1m_3-m_3^2-m_3m_4\mp2\sqrt{m_1m_4}\sqrt{m_3(m_3+m_4-m_1)}}{(m_3+m_4)^2}T_1\\ |
- | \beta_\mathrm{cm}\gamma_\mathrm{cm} & \gamma_\mathrm{cm} | + | & |
- | \end{pmatrix} | + | &= \frac{m_1m_3+m_3m_4+m_4^2-m_1m_4\mp2\sqrt{m_1m_4}\sqrt{m_3(m_3+m_4-m_1)}}{(m_3+m_4)^2}T_1\\ |
- | \begin{pmatrix} | + | & |
- | E_4^*\\ | + | &= \frac{\sqrt{m_1m_3}^2+\sqrt{m_4(m_3+m_4-m_1)}^2\mp2\sqrt{m_1m_4}\sqrt{m_3(m_3+m_4-m_1)}}{(m_3+m_4)^2}T_1\\ |
- | -|\boldsymbol{p}_4^*|\cos\theta_\mathrm{cm} | + | & |
- | \end{pmatrix}\\ | + | |
- | \Rightarrow E_4 & | + | |
\end{align} | \end{align} | ||
- | Therefore, $E_4$ becomes maximum at $\theta_\mathrm{cm}=\pi$. The maximum value is | + | ** The first formula for elastic scattering ** |
+ | |||
+ | For elastic scattering, $m_3 = m_1$ and $m_4 = m_2$. Therefore, | ||
\begin{align} | \begin{align} | ||
- | E_\mathrm{4max} & | + | \boldsymbol{p}_4&=\frac{2m_2}{m_1+m_2}\boldsymbol{p}_1\\ |
+ | \boldsymbol{p}_3& | ||
+ | T_4& | ||
+ | & | ||
+ | & | ||
+ | T_3& | ||
\end{align} | \end{align} | ||
+ | As a result, | ||
- | From this formula, | ||
\begin{align} | \begin{align} | ||
- | T_\mathrm{max} | + | T_\mathrm{max}=T_4=\frac{4m_1m_2}{(m_1+m_2)^2}T_1 |
- | &= E_\mathrm{4max} - m_4\\ | + | |
- | &= \gamma_\mathrm{cm} (E_4^* + \beta_\mathrm{cm}|\boldsymbol{p}_4^*|) - m_4. | + | |
\end{align} | \end{align} | ||
- | For the elastic scattering, $m_4 = m_2$, $|\boldsymbol{p}_4^*| = |\boldsymbol{p}_2^*|$, and $|E_4^*| | + | |
+ | |||
+ | ** Another derivation of the first formula for elastic scattering | ||
+ | |||
+ | From the above discussion, $|\boldsymbol{v}_4|$ becomes maximum at $\theta_4^* = \theta_\mathrm{cm}=180^\circ$. In this case, $\theta_4 | ||
\begin{align} | \begin{align} | ||
- | T_\mathrm{max} | + | \frac{1}{2}m_1\boldsymbol{v}_1^2 |
- | &= \gamma_\mathrm{cm} (E_2^* + \beta_\mathrm{cm}|\boldsymbol{p}_2^*|) - m_2\\ | + | m_1\boldsymbol{v}_1 = m_1\boldsymbol{v}_3 + m_2\boldsymbol{v}_4\\ |
- | & | + | |
\end{align} | \end{align} | ||
- | By using $|\boldsymbol{\beta}_2^*| = \beta_\mathrm{cm}$ and $\gamma_2^* = \gamma_\mathrm{cm}$, | + | |
+ | From the second equation, | ||
\begin{align} | \begin{align} | ||
- | T_\mathrm{max} | + | \boldsymbol{v}_3 = \frac{m_1\boldsymbol{v}_1 - m_2\boldsymbol{v}_4}{m_1}. |
- | &= \gamma_\mathrm{cm} [m_2\gamma_\mathrm{cm} + \beta_\mathrm{cm}(m_2\beta_\mathrm{cm}\gamma_\mathrm{cm})] - m_2\\ | + | |
- | &= m_2\gamma_\mathrm{cm}^2 (1+\beta_\mathrm{cm}^2) - m_2.\\ | + | |
- | \end{align} | + | |
- | In general, $|\boldsymbol{\beta}| = \sqrt{\gamma^2-1}/ | + | |
- | \begin{align} | + | |
- | T_\mathrm{max} | + | |
- | &= m_2\gamma_\mathrm{cm}^2 \left(1+\frac{\gamma_\mathrm{cm}^2-1}{\gamma_\mathrm{cm}^2}\right) - m_2\\ | + | |
- | &= m_2 (\gamma_\mathrm{cm}^2+\gamma_\mathrm{cm}^2-1) - m_2\\ | + | |
- | &= 2m_2 (\gamma_\mathrm{cm}^2-1)\\ | + | |
- | &= 2m_2 \boldsymbol{\beta}_\mathrm{cm}^2\gamma_\mathrm{cm}^2.\\ | + | |
- | \end{align} | + | |
- | By using Quantity 4. and 5., | + | |
- | \begin{align} | + | |
- | T_\mathrm{max} | + | |
- | &= 2m_2 \left(\frac{\boldsymbol{p}_1}{E_1+m_2}\right)^2\left(\frac{E_1+m_2}{W}\right)^2\\ | + | |
- | &= 2m_2 \frac{\boldsymbol{p}_1^2}{W^2}.\\ | + | |
\end{align} | \end{align} | ||
- | $W$ can be written as | + | By substituting this formula into the formula of the law of conservation of energy, |
\begin{align} | \begin{align} | ||
- | W | + | \frac{1}{2}m_1\boldsymbol{v}_1^2 |
- | &= \sqrt{m_1^2+m_2^2+2m_2E_1}\\ | + | &= \frac{1}{2}m_1\frac{(m_1\boldsymbol{v}_1 - m_2\boldsymbol{v}_4)^2}{m_1^2} + \frac{1}{2}m_2\boldsymbol{v}_4^2\\ |
- | &= \sqrt{m_1^2+m_2^2+2m_2m_1\gamma_1}\\ | + | &= \frac{1}{2}m_1\frac{m_1^2\boldsymbol{v}_1^2 + m_2^2\boldsymbol{v}_4^2 - 2m_1m_2|\boldsymbol{v}_1||\boldsymbol{v}_4|}{m_1^2} |
- | &= \sqrt{m_1m_2\left(\frac{m_1}{m_2}+\frac{m_2}{m_1}+2\gamma_1\right)}\\ | + | \Rightarrow 0 &= \frac{1}{2}m_1\frac{m_2^2\boldsymbol{v}_4^2 - 2m_1m_2|\boldsymbol{v}_1||\boldsymbol{v}_4|}{m_1^2} + \frac{1}{2}m_2\boldsymbol{v}_4^2 \\ |
- | & | + | \Rightarrow 0 & |
- | \end{align} | + | \Rightarrow 2|\boldsymbol{v}_1| |
- | By substituting this formula into the former formula, | + | \Rightarrow |\boldsymbol{v}_4| |
- | \begin{align} | + | &= 2\frac{1}{\frac{m_2}{m_1}+1}|\boldsymbol{v}_1|\\ |
- | T_\mathrm{max} | + | &= \frac{2m_1}{m_1+m_2}|\boldsymbol{v}_1|\\ |
- | & | + | \Rightarrow \boldsymbol{v}_4^2 & |
- | & | + | \Rightarrow |
+ | \Rightarrow T_\mathrm{max} &= T_4 = \frac{4m_4m_1}{(m_1+m_2)^2}T_1\\ | ||
\end{align} | \end{align} | ||
- | ** The second formula | + | ** The second formula |
From the first formula, | From the first formula, | ||
\begin{align} | \begin{align} | ||
T_\mathrm{max} | T_\mathrm{max} | ||
- | &= \frac{2\boldsymbol{p}_1^2}{m_1(k_{12}+k_{21}+2\gamma_1)}\\ | + | & |
- | &= \frac{2m_1^2\boldsymbol{\beta}_1^2\gamma_1^2}{m_1(k_{12}+k_{21}+2\gamma_1)}\\ | + | & |
- | &= \frac{2m_1\boldsymbol{\beta}_1^2\gamma_1^2}{k_{12}+k_{21}+2\gamma_1}.\\ | + | & |
+ | & | ||
\end{align} | \end{align} | ||
- | By using $m_1=m_2/k_{21}$, | + | If $m_2/m_1 \ll 1$, |
\begin{align} | \begin{align} | ||
T_\mathrm{max} | T_\mathrm{max} | ||
- | &= \frac{2m_2\boldsymbol{\beta}_1^2\gamma_1^2}{k_{21}(k_{12}+k_{21}+2\gamma_1)}\\ | + | & |
- | &= \frac{2m_2\boldsymbol{\beta}_1^2\gamma_1^2}{1+k_{21}^2+2\gamma_1k_{21}}.\\ | + | &\approx |
\end{align} | \end{align} | ||
- | If $k_{21} = m2/m1 \ll 1$, | + | |
+ | ** Another derivation of the second formula for elastic scattering ** | ||
+ | |||
+ | If $m_2/m_1 \ll 1$, $|\boldsymbol{v}_\mathrm{cm}| \approx |\boldsymbol{v}_1|$. | ||
+ | Therefore, from the formula above, | ||
\begin{align} | \begin{align} | ||
T_\mathrm{max} | T_\mathrm{max} | ||
- | & | + | &= 2m_2 \boldsymbol{v}_\mathrm{cm}^2\\ |
- | & | + | & |
\end{align} | \end{align} | ||
- | ** Another derivation of the second | + | ** The formula |
- | If $m2/m1 \ll 1$, $|\boldsymbol{\beta}_\mathrm{cm}| \approx |\boldsymbol{\beta}_1|$ and $\gamma_\mathrm{cm} \approx \gamma_1$. | + | For N-N scattering, $m_1 = m_2 = m_\mathrm{N}$. Therefore, |
- | Therefore, from the formula above, | + | |
\begin{align} | \begin{align} | ||
T_\mathrm{max} | T_\mathrm{max} | ||
- | & | + | &=\frac{4m_1m_2}{(m_1+m_2)^2}T_1\\ |
- | &\approx 2m_2\boldsymbol{\beta}_1^2\gamma_1^2.\\ | + | & |
+ | &=\frac{4m_\mathrm{N}^2}{(2m_\mathrm{N})^2}T_1\\ | ||
+ | &=T_1 | ||
\end{align} | \end{align} | ||
- | |||
==== General memo ==== | ==== General memo ==== |