差分
このページの2つのバージョン間の差分を表示します。
両方とも前のリビジョン前のリビジョン次のリビジョン | 前のリビジョン | ||
research:memos:kinematics:non-relativistic_kinematics [2017/09/30 02:32] – [Formulae for Non-relativistic Kinematics] kobayash | research:memos:kinematics:non-relativistic_kinematics [2020/07/29 17:10] (現在) – [Formulae for Non-relativistic Kinematics] kobayash | ||
---|---|---|---|
行 8: | 行 8: | ||
{{: | {{: | ||
- | Adopt units where $c=1$. In the Laboratory System (Center of Mass System), mass, momentum, | + | Adopt units where $c=1$. In the Laboratory System (Center of Mass System), mass, momentum, |
In the following, the quantities $\delta_{ij}$ are defined by | In the following, the quantities $\delta_{ij}$ are defined by | ||
行 14: | 行 14: | ||
\delta_{ij} = |\boldsymbol{v}_i|/ | \delta_{ij} = |\boldsymbol{v}_i|/ | ||
\end{align} | \end{align} | ||
- | where the subscripts refer to the particles. | + | where the subscripts refer to the particles. |
+ | |||
+ | \begin{align} | ||
+ | \delta_{23}^* = \delta_{21}^* = |\boldsymbol{v}_2^*|/ | ||
+ | \end{align} | ||
|** Quantity **|** General Formula **|**Elastic Scattering**|**N-N Scattering (equal mass)**| | |** Quantity **|** General Formula **|**Elastic Scattering**|**N-N Scattering (equal mass)**| | ||
行 20: | 行 24: | ||
W | W | ||
&= m_1 + m_2\\ | &= m_1 + m_2\\ | ||
- | &= m_3 + m_4 | + | &= m_3 + m_4? |
\end{align}| Same as the General formula |\begin{align} | \end{align}| Same as the General formula |\begin{align} | ||
- | W= 2m_\mathrm{N} | + | W= 2m_\mathrm{N}? |
\end{align}| | \end{align}| | ||
| 2. c.m. momentum before the interaction |\begin{align} | | 2. c.m. momentum before the interaction |\begin{align} | ||
行 47: | 行 51: | ||
\end{align}| Same as the General formula | Same as the General formula | | \end{align}| Same as the General formula | Same as the General formula | | ||
| 6. Maximum lab scattering angle |\begin{align} | | 6. Maximum lab scattering angle |\begin{align} | ||
- | \tan\theta_{3\mathrm{max}} = \frac{1}{\gamma_2^*\sqrt{\delta_{23}^{*2}-1}}\\ | + | \tan\theta_{3\mathrm{max}} = \frac{1}{\sqrt{\delta_{23}^{*2}-1}}\\ |
\mathrm{For\ \ } \delta_{23}^* \ge 1\\ | \mathrm{For\ \ } \delta_{23}^* \ge 1\\ | ||
\mathrm{otherwise\ } \theta_{3\mathrm{max}} = 180^\circ | \mathrm{otherwise\ } \theta_{3\mathrm{max}} = 180^\circ | ||
行 54: | 行 58: | ||
\end{align}| | \end{align}| | ||
| 7. c.m. to lab angle ($\theta_{\rm cm} \rightarrow \theta_{\rm lab}$) |\begin{align} | | 7. c.m. to lab angle ($\theta_{\rm cm} \rightarrow \theta_{\rm lab}$) |\begin{align} | ||
- | \cos\theta_3 = \frac{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}{\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}} | + | \cos\theta_3 = \frac{\delta_{23}^*+\cos\theta_3^*}{\sqrt{\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2}} |
\end{align}|\begin{align} | \end{align}|\begin{align} | ||
- | \tan\theta_3 &= \frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{21}^*+\cos\theta_3^*\right)}\\ | + | \tan\theta_3 &= \frac{\sin\theta_3^*}{\delta_{21}^*+\cos\theta_3^*}\\ |
- | \tan\theta_4 & | + | \tan\theta_4 &= \cot\frac{\theta_3^*}{2} |
\end{align}|\begin{align} | \end{align}|\begin{align} | ||
- | \tan\theta_3 = \frac{\sin\theta_3^*}{\gamma_2^*\left(1+\cos\theta_3^*\right)}\\ | + | \tan\theta_3 = \frac{\sin\theta_3^*}{1+\cos\theta_3^*}\\ |
\end{align}| | \end{align}| | ||
- | | 8. lab to c.m. angle transformation ($\theta_\mathrm{cm} \rightarrow \theta_\mathrm{lab}$) |\begin{align} | + | | 8. lab to c.m. angle transformation ($\theta_\mathrm{lab} \rightarrow \theta_\mathrm{cm}$) |\begin{align} |
- | \cos\theta_3^*=\frac{\delta_{23}^*(\gamma_2^*\tan\theta_3)^2}{(\gamma_2^*\tan\theta_3)^2+1}\pm\sqrt{\left(\frac{\delta_{23}^*(\gamma_2^*\tan\theta_3)^2}{(\gamma_2^*\tan\theta_3)^2+1}\right)^2-\frac{\delta_{23}^{*2}(\gamma_2^*\tan\theta_3)^2-1}{(\gamma_2^*\tan\theta_3)^2+1}} | + | \cos\theta_3^*=-\frac{\delta_{23}^*\tan^2\theta_3}{\tan^2\theta_3+1}\pm\sqrt{\left(\frac{\delta_{23}^*\tan^2\theta_3}{\tan^2\theta_3+1}\right)^2-\frac{\delta_{23}^{*2}\tan^2\theta_3-1}{\tan^2\theta_3+1}} |
\end{align} Another solution (not written in the document) \begin{align} | \end{align} Another solution (not written in the document) \begin{align} | ||
- | \tan\theta_{\rm cm} = \frac{\sin\theta_{\rm lab}}{\gamma_{\rm cm}\left(\cos\theta_{\rm lab}-\beta_{\rm cm}/ | + | \tan\theta_{\rm cm} = \frac{\sin\theta_{\rm lab}}{\left(\cos\theta_{\rm lab}-v_{\rm cm}/ |
\end{align}||| | \end{align}||| | ||
| 9. Solid angle transformation (Jacobian) |\begin{align} | | 9. Solid angle transformation (Jacobian) |\begin{align} | ||
- | \frac{d\Omega_3}{d\Omega_3^*} &= \frac{\gamma_2^*(1+\delta_{23}^*\cos\theta_3^*)}{\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]^{3/ | + | \frac{d\Omega_3}{d\Omega_3^*} &= \frac{1+\delta_{23}^*\cos\theta_3^*}{\left[\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]^{3/ |
- | \frac{d\Omega_3}{d\Omega_3^*} &= \frac{\sin^3\theta_3}{\sin^3\theta_3^*}\gamma_2^*(1+\delta_{23}^*\cos\theta_3^*) | + | \frac{d\Omega_3}{d\Omega_3^*} &= \frac{\sin^3\theta_3}{\sin^3\theta_3^*}(1+\delta_{23}^*\cos\theta_3^*) |
\end{align}||\begin{align} | \end{align}||\begin{align} | ||
- | \frac{d\Omega_3}{d\Omega_3^*} = \frac{\gamma_2^*(1+\cos\theta_3^*)}{\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(1+\cos\theta_3^*\right)^2\right]^{3/ | + | \frac{d\Omega_3}{d\Omega_3^*} = \frac{1}{2^{3/2}\sqrt{1+\cos\theta_3^*}} |
\end{align}| | \end{align}| | ||
- | | 10. Relations between the $\gamma$ factors \\ N.B. $k_{12}=m_1/ | + | | 10. Relations between the $\gamma$ factors \\ N.B. $k_{12}=m_1/ |
- | &&(\gamma_1^{*2}-1) = k_{21}^2(\gamma_2^{*2}-1)\\ | + | | 11. Lab quantity relations |
- | && | + | 2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 |
- | &&\gamma_2^* = \frac{k_{21}+\gamma_1}{\sqrt{1+k_{21}^2+2\gamma_1k_{21}}}=\gamma_\mathrm{cm} | + | 2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) & |
\end{align}||\begin{align} | \end{align}||\begin{align} | ||
- | \gamma_1^* = \gamma_2^*\\ | + | |\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) |
- | \gamma_1^* = \sqrt{\frac{1+\gamma_1}{2}}\\ | + | \theta_3+\theta_4 |
- | \end{align}| | + | |
- | | 11. Lab quantity relations |\begin{align} | + | |
- | 2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 = m_4^2-m_1^2-m_2^2-m_3^2+2(E_1+m_2)E_3-2E_1m_2\\ | + | |
- | 2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) = m_3^2+m_4^2-m_1^2-m_2^2-2E_1m_2+2E_3E_4\\ | + | |
- | \end{align} The sign between $m_1$ and $m_2$ of the second formula is missing in the document.||\begin{align} | + | |
- | |\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) = T_3T_4 | + | |
\end{align}| | \end{align}| | ||
| 12. Maximum K.E. transfer to a stationary particle |\begin{align} | | 12. Maximum K.E. transfer to a stationary particle |\begin{align} | ||
+ | T_\mathrm{max}=\frac{\left[\sqrt{m_1m_4}\pm\sqrt{m_3(m_3+m_4-m_1)}\right]^2}{(m_3+m_4)^2}T_1 | ||
+ | \end{align}|\begin{align} | ||
T_\mathrm{max} | T_\mathrm{max} | ||
- | &= \frac{2\boldsymbol{p}_1^2}{m_1(k_{12}+k_{21}+2\gamma_1)}\\ | + | & =\frac{4m_1m_2}{(m_1+m_2)^2}T_1\\ |
- | & | + | &= 2m_2 \boldsymbol{v}_\mathrm{cm}^2\\ |
- | \end{align} | + | & |
+ | \end{align}|\begin{align} | ||
+ | T_\mathrm{max}=T_1 | ||
+ | \end{align}| | ||
=== Derivation of Quantity 1. Total c.m. energy === | === Derivation of Quantity 1. Total c.m. energy === | ||
** The General Formula ** | ** The General Formula ** | ||
- | They are definitions. | + | They are definitions? |
** The formula for N-N Scattering ** | ** The formula for N-N Scattering ** | ||
行 272: | 行 275: | ||
\cos\theta_3 | \cos\theta_3 | ||
&= \frac{1}{\sqrt{1+\left[\frac{\sin\theta_3^*}{\delta_{23}^*+\cos\theta_3^*}\right]^2}}\\ | &= \frac{1}{\sqrt{1+\left[\frac{\sin\theta_3^*}{\delta_{23}^*+\cos\theta_3^*}\right]^2}}\\ | ||
- | &= \frac{\delta_{23}^*+\cos\theta_3^*}{\sqrt{\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\\ | + | &= \frac{\delta_{23}^*+\cos\theta_3^*}{\sqrt{\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2}} |
- | &= \frac{\delta_{23}^*+\cos\theta_3^*}{\sqrt{\sin^2\theta_3^*+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*+\cos^2\theta_3^*}}\\ | + | |
- | &= \frac{\delta_{23}^*+\cos\theta_3^*}{\sqrt{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*}} | + | |
\end{align} | \end{align} | ||
行 297: | 行 298: | ||
\begin{align} | \begin{align} | ||
- | |\boldsymbol{v}_4|\cos\theta_4 & | + | |\boldsymbol{v}_4|\cos\theta_4 &= -|\boldsymbol{v}_4^*|\cos\theta_4^*+v_{\rm cm}\\ |
|\boldsymbol{v}_4|\sin\theta_4 &= |\boldsymbol{v}_4^*|\sin\theta_4^* | |\boldsymbol{v}_4|\sin\theta_4 &= |\boldsymbol{v}_4^*|\sin\theta_4^* | ||
\end{align} | \end{align} | ||
行 358: | 行 359: | ||
is | is | ||
\begin{align} | \begin{align} | ||
- | x=\frac{b}{a}\pm\sqrt{\left(\frac{b}{a}\right)^2-\frac{c}{a}}. | + | x=-\frac{b}{a}\pm\sqrt{\left(\frac{b}{a}\right)^2-\frac{c}{a}}. |
\end{align} | \end{align} | ||
Therefore, | Therefore, | ||
\begin{align} | \begin{align} | ||
- | \cos\theta_3^*=\frac{\delta_{23}^*\tan^2\theta_3}{\tan^2\theta_3+1}\pm\sqrt{\left(\frac{\delta_{23}^*\tan^2\theta_3}{\tan^2\theta_3+1}\right)^2-\frac{\delta_{23}^{*2}\tan^2\theta_3-1}{\tan^2\theta_3+1}}. | + | \cos\theta_3^*=-\frac{\delta_{23}^*\tan^2\theta_3}{\tan^2\theta_3+1}\pm\sqrt{\left(\frac{\delta_{23}^*\tan^2\theta_3}{\tan^2\theta_3+1}\right)^2-\frac{\delta_{23}^{*2}\tan^2\theta_3-1}{\tan^2\theta_3+1}}. |
\end{align} | \end{align} | ||
行 392: | 行 393: | ||
By using the Quantity 7. and $(f/ | By using the Quantity 7. and $(f/ | ||
\begin{align} | \begin{align} | ||
- | \frac{d(\cos\theta_3)}{d(\cos\theta_3^*)} | + | \frac{d\Omega_3}{d\Omega_3^*}=\frac{d(\cos\theta_3)}{d(\cos\theta_3^*)} |
- | &= \frac{d}{d(\cos\theta_3^*)}\left[\frac{\delta_{23}^*+\cos\theta_3^*}{\sqrt{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*}}\right]\\ | + | &= \frac{d}{d(\cos\theta_3^*)}\left[\frac{\delta_{23}^*+\cos\theta_3^*}{\sqrt{\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\right]\\ |
- | &= \left.\left[\frac{d\left(\delta_{23}^*+\cos\theta_3^*\right)}{d(\cos\theta_3^*)}\sqrt{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*}-\left(\delta_{23}^*+\cos\theta_3^*\right)\frac{d\sqrt{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*}}{d(\cos\theta_3^*)}\right]\right/ | + | &= \left.\left[\frac{d\left(\delta_{23}^*+\cos\theta_3^*\right)}{d(\cos\theta_3^*)}\sqrt{\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2}-\left(\delta_{23}^*+\cos\theta_3^*\right)\frac{d\sqrt{\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}{d(\cos\theta_3^*)}\right]\right/ |
- | &= \left.\left[\sqrt{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*}-\left(\delta_{23}^*+\cos\theta_3^*\right)\frac{1}{2\sqrt{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*}}\frac{d\left(1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*\right)}{d(\cos\theta_3^*)}\right]\right/ | + | &= \left.\left[\frac{d\left(\delta_{23}^*+\cos\theta_3^*\right)}{d(\cos\theta_3^*)}\sqrt{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*}-\left(\delta_{23}^*+\cos\theta_3^*\right)\frac{d\sqrt{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*}}{d(\cos\theta_3^*)}\right]\right/ |
- | &= \left.\left[\sqrt{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*}-\left(\delta_{23}^*+\cos\theta_3^*\right)\frac{1}{2\sqrt{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*}}\cdot 2\delta_{23}^{*}\right]\right/ | + | &= \left.\left[\sqrt{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*}-\left(\delta_{23}^*+\cos\theta_3^*\right)\frac{1}{2\sqrt{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*}}\frac{d\left(1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*\right)}{d(\cos\theta_3^*)}\right]\right/ |
- | &= \left.\left[\left[1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*\right]-\delta_{23}^{*}\left(\delta_{23}^*+\cos\theta_3^*\right)\right]\right/ | + | &= \left.\left[\sqrt{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*}-\left(\delta_{23}^*+\cos\theta_3^*\right)\frac{1}{2\sqrt{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*}}\cdot 2\delta_{23}^{*}\right]\right/ |
- | &= \left.\left[1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*-\delta_{23}^{*2}-\delta_{23}^{*}\cos\theta_3^*\right]\right/ | + | &= \left.\left[\left[1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*\right]-\delta_{23}^{*}\left(\delta_{23}^*+\cos\theta_3^*\right)\right]\right/ |
- | &= \frac{1+\delta_{23}^{*}\cos\theta_3^*}{\left[1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*\right]^{3/ | + | &= \left.\left[1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*-\delta_{23}^{*2}-\delta_{23}^{*}\cos\theta_3^*\right]\right/ |
+ | &= \frac{1+\delta_{23}^{*}\cos\theta_3^*}{\left[\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]^{3/ | ||
\end{align} | \end{align} | ||
行 406: | 行 408: | ||
From Quantity 7., | From Quantity 7., | ||
\begin{align} | \begin{align} | ||
- | \cos\theta_3 &= \frac{\delta_{23}^*+\cos\theta_3^*}{\sqrt{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*}}. | + | \cos\theta_3 |
+ | &= \frac{\delta_{23}^*+\cos\theta_3^*}{\sqrt{\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2}} | ||
\end{align} | \end{align} | ||
In general, $\sin\theta=\sqrt{1-\cos^2\theta}$. Therefore, | In general, $\sin\theta=\sqrt{1-\cos^2\theta}$. Therefore, | ||
\begin{align} | \begin{align} | ||
\sin\theta_3 | \sin\theta_3 | ||
- | &= \sqrt{1-\left[\frac{\delta_{23}^*+\cos\theta_3^*}{\sqrt{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*}}\right]^2}\\ | + | &= \sqrt{1-\left[\frac{\delta_{23}^*+\cos\theta_3^*}{\sqrt{\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\right]^2}\\ |
- | &= \sqrt{\frac{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*-\left(\delta_{23}^*+\cos\theta_3^*\right)^2}{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*}}\\ | + | &= \sqrt{\frac{\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2-\left(\delta_{23}^*+\cos\theta_3^*\right)^2}{\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\\ |
- | &= \sqrt{\frac{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*-\left(\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*+\cos^2\theta_3^*\right)}{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*}}\\ | + | &= \sqrt{\frac{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*-\left(\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*+\cos^2\theta_3^*\right)}{\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\\ |
- | &= \sqrt{\frac{1-\cos^2\theta_3^*}{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*}}\\ | + | &= \sqrt{\frac{1-\cos^2\theta_3^*}{\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\\ |
- | &= \sqrt{\frac{\sin^2\theta_3^*}{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*}}\\ | + | &= \sqrt{\frac{\sin^2\theta_3^*}{\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\\ |
- | &= \frac{\sin\theta_3^*}{\sqrt{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*}}\\ | + | &= \frac{\sin\theta_3^*}{\sqrt{\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\\ |
\Rightarrow \frac{\sin\theta_3}{\sin\theta_3^*} | \Rightarrow \frac{\sin\theta_3}{\sin\theta_3^*} | ||
- | &= \frac{1}{\sqrt{1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*}} | + | &= \frac{1}{\sqrt{\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2}} |
\end{align} | \end{align} | ||
By substituting this formula into the first formula of Quantity 9., | By substituting this formula into the first formula of Quantity 9., | ||
\begin{align} | \begin{align} | ||
\frac{d\Omega_3}{d\Omega_3^*} | \frac{d\Omega_3}{d\Omega_3^*} | ||
- | &= \frac{1+\delta_{23}^*\cos\theta_3^*}{\left[1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*\right]^{3/ | + | &= \frac{1+\delta_{23}^*\cos\theta_3^*}{\left[\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]^{3/ |
&= \frac{\sin^3\theta_3}{\sin^3\theta_3^*}(1+\delta_{23}^*\cos\theta_3^*)\\ | &= \frac{\sin^3\theta_3}{\sin^3\theta_3^*}(1+\delta_{23}^*\cos\theta_3^*)\\ | ||
\end{align} | \end{align} | ||
行 433: | 行 436: | ||
\begin{align} | \begin{align} | ||
- | \frac{d(\cos\theta_3)}{d(\cos\theta_3^*)} | + | \frac{d\Omega_3}{d\Omega_3^*} |
+ | &= \frac{1+\delta_{23}^{*}\cos\theta_3^*}{\left[\sin^2\theta_3^*+\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]^{3/ | ||
&= \frac{1+\delta_{23}^{*}\cos\theta_3^*}{\left[1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*\right]^{3/ | &= \frac{1+\delta_{23}^{*}\cos\theta_3^*}{\left[1+\delta_{23}^{*2}+2\delta_{23}^*\cos\theta_3^*\right]^{3/ | ||
&= \frac{1+\cos\theta_3^*}{\left[2+2\cos\theta_3^*\right]^{3/ | &= \frac{1+\cos\theta_3^*}{\left[2+2\cos\theta_3^*\right]^{3/ | ||
行 465: | 行 469: | ||
\begin{align} | \begin{align} | ||
2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 | 2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 | ||
- | &= \boldsymbol{p}_1^2 + \boldsymbol{p}_3^2 - \boldsymbol{p}_4^2\\ | + | &= \boldsymbol{p}_1^2 + \boldsymbol{p}_3^2 - \boldsymbol{p}_4^2. |
- | &= E_1^2 - m_1^2 + E_3^2 - m_3^2 - E_4^2 + m_4^2.\\ | + | |
- | \end{align} | + | |
- | From the law of conservation of energy, | + | |
- | \begin{align} | + | |
- | E_1+m_2& | + | |
- | E_4& | + | |
- | E_4^2& | + | |
- | \end{align} | + | |
- | By substituting this formula into the above formula, | + | |
- | \begin{align} | + | |
- | 2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 | + | |
- | &= m_4^2 - m_1^2 - m_2^2 - m_3^2+2(E_1+m_2)E_3-2E_1m_2.\\ | + | |
\end{align} | \end{align} | ||
行 491: | 行 483: | ||
2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) | 2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) | ||
& | & | ||
- | & | ||
\end{align} | \end{align} | ||
By substituting the first formula of the Quantity 11. Lab quantity relations into this formula, | By substituting the first formula of the Quantity 11. Lab quantity relations into this formula, | ||
\begin{align} | \begin{align} | ||
2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) | 2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) | ||
- | & | + | & |
- | & | + | & |
\end{align} | \end{align} | ||
- | By substituting | + | |
+ | ** The formula for N-N Scattering ** | ||
+ | |||
+ | From the law of conservation of energy, | ||
\begin{align} | \begin{align} | ||
- | 2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) | + | \frac{\boldsymbol{p}_1^2}{2m_1} = \frac{\boldsymbol{p}_3^2}{2m_3} |
- | &= m_3^2 + m_4^2 - m_1^2 - m_2^2+2(E_3+E_4)E_3-2E_1m_2 -2E_3^2\\ | + | |
- | &= m_3^2 + m_4^2 - m_1^2 - m_2^2-2E_1m_2+2E_3E_4\\ | + | |
\end{align} | \end{align} | ||
- | ** The formula for N-N Scattering ** | + | For N-N scattering, $m_1 = m_2 = m_3 = m_4 = m_\mathrm{N}$. Therefore, |
- | For N-N scattering, $m_1 = m_2 = m_3 = m_4 = m_\mathrm{N}$. Therefore, the second formula of the General Formulae becomes | + | \begin{align} |
+ | \boldsymbol{p}_1^2 | ||
+ | \end{align} | ||
+ | From this formula and the General formula, | ||
\begin{align} | \begin{align} | ||
2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) | 2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) | ||
- | & | + | &= \boldsymbol{p}_1^2 - \boldsymbol{p}_3^2 - \boldsymbol{p}_4^2\\ |
- | &= m_\mathrm{N}^2 + m_\mathrm{N}^2 - m_\mathrm{N}^2 - m_\mathrm{N}^2-2E_1m_\mathrm{N}+2E_3E_4\\ | + | & |
- | &= -2E_1m_\mathrm{N}+2E_3E_4\\ | + | |
- | \Rightarrow | + | |
- | |\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) | + | |
- | & | + | |
- | &= E_3E_4-m_\mathrm{N}(E_1+m_\mathrm{N})+m_\mathrm{N}^2\\ | + | |
\end{align} | \end{align} | ||
- | From the law of conservation of energy, $E_1+m_\mathrm{N}=E_3+E_4$. | + | Therefore, |
\begin{align} | \begin{align} | ||
- | |\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) | + | \cos(\theta_3+\theta_4) & |
- | & | + | \theta_3+\theta_4 |
- | &= E_3E_4-m_\mathrm{N}(E_3+E_4)+m_\mathrm{N}^2\\ | + | |
- | & | + | |
- | &= T_3T_4 | + | |
\end{align} | \end{align} | ||
- | |||
=== Derivation of Quantity 12. Maximum K.E. transfer to a stationary particle === | === Derivation of Quantity 12. Maximum K.E. transfer to a stationary particle === | ||
- | ** The first formula of the General | + | ** The General |
\begin{align} | \begin{align} | ||
- | \begin{pmatrix} | + | |\boldsymbol{v}_4|\cos\theta_4 |
- | E_4\\ | + | |\boldsymbol{v}_4|\sin\theta_4 |
- | |\boldsymbol{p}_4|\cos\theta_\mathrm{lab} | + | |
- | \end{pmatrix} | + | |
- | &= | + | |
- | \begin{pmatrix} | + | |
- | \gamma_\mathrm{cm} & \beta_\mathrm{cm}\gamma_\mathrm{cm}\\ | + | |
- | \beta_\mathrm{cm}\gamma_\mathrm{cm} & \gamma_\mathrm{cm} | + | |
- | \end{pmatrix} | + | |
- | \begin{pmatrix} | + | |
- | E_4^*\\ | + | |
- | -|\boldsymbol{p}_4^*|\cos\theta_\mathrm{cm} | + | |
- | \end{pmatrix}\\ | + | |
- | \Rightarrow E_4 & | + | |
\end{align} | \end{align} | ||
- | Therefore, $E_4$ becomes maximum at $\theta_\mathrm{cm}=\pi$. The maximum value is | + | By taking the squares for the both sides, |
\begin{align} | \begin{align} | ||
- | E_\mathrm{4max} & | + | |\boldsymbol{v}_4|^2\cos^2\theta_4 |
+ | |\boldsymbol{v}_4|^2\sin^2\theta_4 & | ||
\end{align} | \end{align} | ||
- | From this formula, | + | By adding each side, |
\begin{align} | \begin{align} | ||
- | T_\mathrm{max} | + | |\boldsymbol{v}_4|^2(\sin^2\theta_4+\cos^2\theta_4) |
- | & | + | \Rightarrow |\boldsymbol{v}_4|^2 |
- | &= \gamma_\mathrm{cm} (E_4^* + \beta_\mathrm{cm}|\boldsymbol{p}_4^*|) - m_4. | + | |
\end{align} | \end{align} | ||
- | For the elastic scattering, $m_4 = m_2$, $|\boldsymbol{p}_4^*| = |\boldsymbol{p}_2^*|$, and $|E_4^*| | + | Therefore, $|\boldsymbol{v}_4|$ becomes maximum at $\theta_4^* = \theta_\mathrm{cm}=180^\circ$. In this case, $\theta_4 |
\begin{align} | \begin{align} | ||
- | T_\mathrm{max} | + | T_1 & |
- | & | + | \boldsymbol{p}_1 &= \boldsymbol{p}_3 + \boldsymbol{p}_4. |
- | &= \gamma_\mathrm{cm} [m_2\gamma_2^* | + | |
\end{align} | \end{align} | ||
- | By using $|\boldsymbol{\beta}_2^*| = \beta_\mathrm{cm}$ and $\gamma_2^* = \gamma_\mathrm{cm}$, | + | |
+ | In general, | ||
\begin{align} | \begin{align} | ||
- | T_\mathrm{max} | + | \frac{\boldsymbol{p}_1^2}{2m_1} &= \frac{\boldsymbol{p}_3^2}{2m_3} + \frac{\boldsymbol{p}_4^2}{2m_4}\\ |
- | &= \gamma_\mathrm{cm} [m_2\gamma_\mathrm{cm} + \beta_\mathrm{cm}(m_2\beta_\mathrm{cm}\gamma_\mathrm{cm})] - m_2\\ | + | \Rightarrow \frac{\boldsymbol{p}_1^2}{m_1} |
- | & | + | |
\end{align} | \end{align} | ||
- | In general, | + | |
+ | By substituting | ||
\begin{align} | \begin{align} | ||
- | T_\mathrm{max} | + | \frac{\boldsymbol{p}_1^2}{m_1} |
- | & | + | &= \frac{(\boldsymbol{p}_1 - \boldsymbol{p}_4)^2}{m_3} |
- | &= m_2 (\gamma_\mathrm{cm}^2+\gamma_\mathrm{cm}^2-1) - m_2\\ | + | &= \frac{\boldsymbol{p}_1^2 - 2|\boldsymbol{p}_1||\boldsymbol{p}_4|\cos\theta_4 + \boldsymbol{p}_4^2}{m_3} |
- | & | + | &= \frac{\boldsymbol{p}_1^2 - 2|\boldsymbol{p}_1||\boldsymbol{p}_4| + \boldsymbol{p}_4^2}{m_3} + \frac{\boldsymbol{p}_4^2}{m_4}. |
- | &= 2m_2 \boldsymbol{\beta}_\mathrm{cm}^2\gamma_\mathrm{cm}^2.\\ | + | |
\end{align} | \end{align} | ||
- | By using Quantity 4. and 5., | + | |
+ | Therefore, by using $\boldsymbol{p}^2=|\boldsymbol{p}|^2$, | ||
\begin{align} | \begin{align} | ||
- | T_\mathrm{max} | + | \left(\frac{1}{m_3}+\frac{1}{m_4}\right)|\boldsymbol{p}_4|^2-\frac{2|\boldsymbol{p}_1|}{m_3}|\boldsymbol{p}_4|+\left(\frac{1}{m_3}-\frac{1}{m_1}\right)|\boldsymbol{p}_1|^2=0\\ |
- | &= 2m_2 \left(\frac{\boldsymbol{p}_1}{E_1+m_2}\right)^2\left(\frac{E_1+m_2}{W}\right)^2\\ | + | |
- | &= 2m_2 | + | |
\end{align} | \end{align} | ||
- | $W$ can be written as | + | In general, the solution of the equation |
\begin{align} | \begin{align} | ||
- | W | + | |\boldsymbol{p}_4| |
- | &= \sqrt{m_1^2+m_2^2+2m_2E_1}\\ | + | &=\frac{\frac{|\boldsymbol{p}_1|}{m_3}\pm\sqrt{\frac{|\boldsymbol{p}_1|^2}{m_3^2}-\left(\frac{1}{m_3}+\frac{1}{m_4}\right)\left(\frac{1}{m_3}-\frac{1}{m_1}\right)|\boldsymbol{p}_1|^2}}{\frac{1}{m_3}+\frac{1}{m_4}}\\ |
- | &= \sqrt{m_1^2+m_2^2+2m_2m_1\gamma_1}\\ | + | &=\frac{\frac{1}{m_3}\pm\sqrt{\frac{1}{m_3^2}-\left(\frac{1}{m_3}+\frac{1}{m_4}\right)\left(\frac{1}{m_3}-\frac{1}{m_1}\right)}}{\frac{1}{m_3}+\frac{1}{m_4}}|\boldsymbol{p}_1|\\ |
- | &= \sqrt{m_1m_2\left(\frac{m_1}{m_2}+\frac{m_2}{m_1}+2\gamma_1\right)}\\ | + | &=\frac{\frac{1}{m_3}\pm\sqrt{\frac{1}{m_3^2}-\left(\frac{1}{m_3^2}-\frac{1}{m_1m_3}-\frac{1}{m_1m_4}+\frac{1}{m_3m_4}\right)}}{\frac{1}{m_3}+\frac{1}{m_4}}|\boldsymbol{p}_1|\\ |
- | &= \sqrt{m_1m_2\left(k_{12}+k_{21}+2\gamma_1\right)}.\\ | + | &=\frac{\frac{1}{m_3}\pm\sqrt{\frac{1}{m_1m_3}+\frac{1}{m_1m_4}-\frac{1}{m_3m_4}}}{\frac{1}{m_3}+\frac{1}{m_4}}|\boldsymbol{p}_1|\\ |
+ | & | ||
+ | & | ||
+ | & | ||
\end{align} | \end{align} | ||
- | By substituting this formula into the former formula, | + | |
+ | The direction of $\boldsymbol{p}_4$ is the same as $\boldsymbol{p}_1$, then | ||
\begin{align} | \begin{align} | ||
- | T_\mathrm{max} | + | \boldsymbol{p}_4 |
- | & | + | & |
- | &= \frac{2\boldsymbol{p}_1^2}{m_1(k_{12}+k_{21}+2\gamma_1)}.\\ | + | |
\end{align} | \end{align} | ||
- | ** The second formula of the General Formulae ** | + | From $\boldsymbol{p}_3=\boldsymbol{p}_1-\boldsymbol{p}_4$, |
+ | \begin{align} | ||
+ | \boldsymbol{p}_3 | ||
+ | &= \boldsymbol{p}_1-\boldsymbol{p}_4\\ | ||
+ | &= \boldsymbol{p}_1-\frac{m_4\pm\sqrt{\frac{m_3m_4}{m_1}(m_3+m_4-m_1)}}{m_3+m_4}\boldsymbol{p}_1\\ | ||
+ | &= \frac{m_3+m_4-m_4\mp\sqrt{\frac{m_3m_4}{m_1}(m_3+m_4-m_1)}}{m_3+m_4}\boldsymbol{p}_1\\ | ||
+ | &= \frac{m_3\mp\sqrt{\frac{m_3m_4}{m_1}(m_3+m_4-m_1)}}{m_3+m_4}\boldsymbol{p}_1\\ | ||
+ | \end{align} | ||
+ | |||
+ | By using $T_4=\frac{|\boldsymbol{p}_4|^2}{2m_4}$ and $T_1=\frac{|\boldsymbol{p}_1|^2}{2m_1}$, | ||
- | From the first formula, | ||
\begin{align} | \begin{align} | ||
- | T_\mathrm{max} | + | T_4 |
- | &= \frac{2\boldsymbol{p}_1^2}{m_1(k_{12}+k_{21}+2\gamma_1)}\\ | + | & |
- | &= \frac{2m_1^2\boldsymbol{\beta}_1^2\gamma_1^2}{m_1(k_{12}+k_{21}+2\gamma_1)}\\ | + | &=\frac{1}{2m_4}\frac{\left[m_4\pm\sqrt{\frac{m_3m_4}{m_1}}\sqrt{m_3+m_4-m_1}\right]^2}{(m_3+m_4)^2}|\boldsymbol{p}_1|^2\\ |
- | &= \frac{2m_1\boldsymbol{\beta}_1^2\gamma_1^2}{k_{12}+k_{21}+2\gamma_1}.\\ | + | & |
+ | &=\frac{m_1}{m_4}\frac{\left[m_4\pm\sqrt{\frac{m_3m_4}{m_1}}\sqrt{m_3+m_4-m_1}\right]^2}{(m_3+m_4)^2}T_1\\ | ||
+ | & | ||
+ | &=\frac{\left[\sqrt{m_1m_4}\pm\sqrt{m_3(m_3+m_4-m_1)}\right]^2}{(m_3+m_4)^2}T_1. | ||
\end{align} | \end{align} | ||
- | By using $m_1=m_2/k_{21}$, | + | |
+ | As a result, | ||
+ | |||
+ | \begin{align} | ||
+ | T_\mathrm{max} = T_4 & | ||
+ | \end{align} | ||
+ | |||
+ | By the way, from $T_3=T_1-T_4$, | ||
+ | |||
+ | \begin{align} | ||
+ | T_3 | ||
+ | &= T_1-T_4\\ | ||
+ | &= T_1-\frac{\left[\sqrt{m_1m_4}\pm\sqrt{m_3(m_3+m_4-m_1)}\right]^2}{(m_3+m_4)^2}T_1\\ | ||
+ | &= T_1-\frac{\sqrt{m_1m_4}^2+\sqrt{m_3(m_3+m_4-m_1)}^2\pm2\sqrt{m_1m_4}\sqrt{m_3(m_3+m_4-m_1)}}{(m_3+m_4)^2}T_1\\ | ||
+ | &= T_1-\frac{m_1m_4+m_3(m_3+m_4-m_1)\pm2\sqrt{m_1m_4}\sqrt{m_3(m_3+m_4-m_1)}}{(m_3+m_4)^2}T_1\\ | ||
+ | &= T_1-\frac{m_1m_4-m_1m_3+m_3^2+m_3m_4\pm2\sqrt{m_1m_4}\sqrt{m_3(m_3+m_4-m_1)}}{(m_3+m_4)^2}T_1\\ | ||
+ | &= \frac{(m_3+m_4)^2 -m_1m_4+m_1m_3-m_3^2-m_3m_4\mp2\sqrt{m_1m_4}\sqrt{m_3(m_3+m_4-m_1)}}{(m_3+m_4)^2}T_1\\ | ||
+ | &= \frac{m_3^2+2m_3m_4+m_4^2-m_1m_4+m_1m_3-m_3^2-m_3m_4\mp2\sqrt{m_1m_4}\sqrt{m_3(m_3+m_4-m_1)}}{(m_3+m_4)^2}T_1\\ | ||
+ | &= \frac{m_1m_3+m_3m_4+m_4^2-m_1m_4\mp2\sqrt{m_1m_4}\sqrt{m_3(m_3+m_4-m_1)}}{(m_3+m_4)^2}T_1\\ | ||
+ | &= \frac{m_1m_3+m_4(m_3+m_4-m_1)\mp2\sqrt{m_1m_4}\sqrt{m_3(m_3+m_4-m_1)}}{(m_3+m_4)^2}T_1\\ | ||
+ | &= \frac{\sqrt{m_1m_3}^2+\sqrt{m_4(m_3+m_4-m_1)}^2\mp2\sqrt{m_1m_4}\sqrt{m_3(m_3+m_4-m_1)}}{(m_3+m_4)^2}T_1\\ | ||
+ | &= \frac{\left[\sqrt{m_1m_3}\mp\sqrt{m_4(m_3+m_4-m_1)}\right]^2}{(m_3+m_4)^2}T_1 | ||
+ | \end{align} | ||
+ | |||
+ | ** The first formula for elastic scattering ** | ||
+ | |||
+ | For elastic scattering, $m_3 = m_1$ and $m_4 = m_2$. Therefore, | ||
+ | \begin{align} | ||
+ | \boldsymbol{p}_4& | ||
+ | \boldsymbol{p}_3& | ||
+ | T_4& | ||
+ | & | ||
+ | & | ||
+ | T_3& | ||
+ | \end{align} | ||
+ | As a result, | ||
+ | |||
+ | \begin{align} | ||
+ | T_\mathrm{max}=T_4=\frac{4m_1m_2}{(m_1+m_2)^2}T_1 | ||
+ | \end{align} | ||
+ | |||
+ | |||
+ | |||
+ | ** Another derivation of the first formula for elastic scattering ** | ||
+ | |||
+ | From the above discussion, | ||
+ | |||
+ | \begin{align} | ||
+ | \frac{1}{2}m_1\boldsymbol{v}_1^2 = \frac{1}{2}m_1\boldsymbol{v}_3^2 + \frac{1}{2}m_2\boldsymbol{v}_4^2\\ | ||
+ | m_1\boldsymbol{v}_1 = m_1\boldsymbol{v}_3 + m_2\boldsymbol{v}_4\\ | ||
+ | \end{align} | ||
+ | |||
+ | From the second equation, | ||
+ | \begin{align} | ||
+ | \boldsymbol{v}_3 = \frac{m_1\boldsymbol{v}_1 - m_2\boldsymbol{v}_4}{m_1}. | ||
+ | \end{align} | ||
+ | |||
+ | By substituting this formula into the formula of the law of conservation of energy, | ||
+ | |||
+ | \begin{align} | ||
+ | \frac{1}{2}m_1\boldsymbol{v}_1^2 | ||
+ | &= \frac{1}{2}m_1\frac{(m_1\boldsymbol{v}_1 - m_2\boldsymbol{v}_4)^2}{m_1^2} + \frac{1}{2}m_2\boldsymbol{v}_4^2\\ | ||
+ | &= \frac{1}{2}m_1\frac{m_1^2\boldsymbol{v}_1^2 + m_2^2\boldsymbol{v}_4^2 - 2m_1m_2|\boldsymbol{v}_1||\boldsymbol{v}_4|}{m_1^2} + \frac{1}{2}m_2\boldsymbol{v}_4^2\\ | ||
+ | \Rightarrow 0 &= \frac{1}{2}m_1\frac{m_2^2\boldsymbol{v}_4^2 - 2m_1m_2|\boldsymbol{v}_1||\boldsymbol{v}_4|}{m_1^2} + \frac{1}{2}m_2\boldsymbol{v}_4^2 \\ | ||
+ | \Rightarrow 0 &= \frac{m_2|\boldsymbol{v}_4| - 2m_1|\boldsymbol{v}_1|}{m_1} + |\boldsymbol{v}_4| \\ | ||
+ | \Rightarrow 2|\boldsymbol{v}_1| &= \left(\frac{m_2}{m_1}+1\right)|\boldsymbol{v}_4|\\ | ||
+ | \Rightarrow |\boldsymbol{v}_4| | ||
+ | &= 2\frac{1}{\frac{m_2}{m_1}+1}|\boldsymbol{v}_1|\\ | ||
+ | &= \frac{2m_1}{m_1+m_2}|\boldsymbol{v}_1|\\ | ||
+ | \Rightarrow \boldsymbol{v}_4^2 &= \frac{4m_1^2}{(m_1+m_2)^2}\boldsymbol{v}_1^2\\ | ||
+ | \Rightarrow \frac{1}{2}m_4\boldsymbol{v}_4^2 &= \frac{4m_4m_1}{(m_1+m_2)^2}\frac{1}{2}m_1\boldsymbol{v}_1^2\\ | ||
+ | \Rightarrow T_\mathrm{max} &= T_4 = \frac{4m_4m_1}{(m_1+m_2)^2}T_1\\ | ||
+ | \end{align} | ||
+ | |||
+ | ** The second formula for elastic scattering ** | ||
+ | |||
+ | From the first formula, | ||
\begin{align} | \begin{align} | ||
T_\mathrm{max} | T_\mathrm{max} | ||
- | &= \frac{2m_2\boldsymbol{\beta}_1^2\gamma_1^2}{k_{21}(k_{12}+k_{21}+2\gamma_1)}\\ | + | & |
- | &= \frac{2m_2\boldsymbol{\beta}_1^2\gamma_1^2}{1+k_{21}^2+2\gamma_1k_{21}}.\\ | + | & |
+ | &=\frac{2m_2m_1^2\boldsymbol{v}_1^2}{(m_1+m_2)^2}\\ | ||
+ | & | ||
\end{align} | \end{align} | ||
- | If $k_{21} = m2/m1 \ll 1$, | + | If $m_2/m_1 \ll 1$, |
\begin{align} | \begin{align} | ||
T_\mathrm{max} | T_\mathrm{max} | ||
- | &= \frac{2m_2\boldsymbol{\beta}_1^2\gamma_1^2}{1+k_{21}^2+2\gamma_1k_{21}}\\ | + | & |
- | & | + | & |
\end{align} | \end{align} | ||
- | ** Another derivation of the second formula | + | ** Another derivation of the second formula |
- | If $m2/m1 \ll 1$, $|\boldsymbol{\beta}_\mathrm{cm}| \approx |\boldsymbol{\beta}_1|$ and $\gamma_\mathrm{cm} \approx \gamma_1$. | + | If $m_2/m_1 \ll 1$, $|\boldsymbol{v}_\mathrm{cm}| \approx |\boldsymbol{v}_1|$. |
Therefore, from the formula above, | Therefore, from the formula above, | ||
\begin{align} | \begin{align} | ||
T_\mathrm{max} | T_\mathrm{max} | ||
- | &= 2m_2 \boldsymbol{\beta}_\mathrm{cm}^2\gamma_\mathrm{cm}^2\\ | + | &= 2m_2 \boldsymbol{v}_\mathrm{cm}^2\\ |
- | & | + | & |
\end{align} | \end{align} | ||
+ | ** The formula for N-N scattering ** | ||
+ | |||
+ | For N-N scattering, $m_1 = m_2 = m_\mathrm{N}$. Therefore, | ||
+ | \begin{align} | ||
+ | T_\mathrm{max} | ||
+ | & | ||
+ | & | ||
+ | & | ||
+ | &=T_1 | ||
+ | \end{align} | ||
==== General memo ==== | ==== General memo ==== |