差分

このページの2つのバージョン間の差分を表示します。

この比較画面へのリンク

両方とも前のリビジョン前のリビジョン
次のリビジョン
前のリビジョン
research:memos:kinematics:non-relativistic_kinematics [2017/10/26 22:50] – [Formulae for Non-relativistic Kinematics] kobayashresearch:memos:kinematics:non-relativistic_kinematics [2020/07/29 17:10] (現在) – [Formulae for Non-relativistic Kinematics] kobayash
行 65: 行 65:
 \tan\theta_3 = \frac{\sin\theta_3^*}{1+\cos\theta_3^*}\\ \tan\theta_3 = \frac{\sin\theta_3^*}{1+\cos\theta_3^*}\\
 \end{align}| \end{align}|
-| 8. lab to c.m. angle transformation ($\theta_\mathrm{cm} \rightarrow \theta_\mathrm{lab}$) |\begin{align} +| 8. lab to c.m. angle transformation ($\theta_\mathrm{lab} \rightarrow \theta_\mathrm{cm}$) |\begin{align} 
-\cos\theta_3^*=\frac{\delta_{23}^*\tan^2\theta_3}{\tan^2\theta_3+1}\pm\sqrt{\left(\frac{\delta_{23}^*\tan^2\theta_3}{\tan^2\theta_3+1}\right)^2-\frac{\delta_{23}^{*2}\tan^2\theta_3-1}{\tan^2\theta_3+1}}+\cos\theta_3^*=-\frac{\delta_{23}^*\tan^2\theta_3}{\tan^2\theta_3+1}\pm\sqrt{\left(\frac{\delta_{23}^*\tan^2\theta_3}{\tan^2\theta_3+1}\right)^2-\frac{\delta_{23}^{*2}\tan^2\theta_3-1}{\tan^2\theta_3+1}}
 \end{align} Another solution (not written in the document) \begin{align} \end{align} Another solution (not written in the document) \begin{align}
 \tan\theta_{\rm cm} = \frac{\sin\theta_{\rm lab}}{\left(\cos\theta_{\rm lab}-v_{\rm cm}/|\boldsymbol{v}_3|\right)} \tan\theta_{\rm cm} = \frac{\sin\theta_{\rm lab}}{\left(\cos\theta_{\rm lab}-v_{\rm cm}/|\boldsymbol{v}_3|\right)}
行 359: 行 359:
 is is
 \begin{align} \begin{align}
-x=\frac{b}{a}\pm\sqrt{\left(\frac{b}{a}\right)^2-\frac{c}{a}}.+x=-\frac{b}{a}\pm\sqrt{\left(\frac{b}{a}\right)^2-\frac{c}{a}}.
 \end{align} \end{align}
 Therefore, Therefore,
 \begin{align} \begin{align}
-\cos\theta_3^*=\frac{\delta_{23}^*\tan^2\theta_3}{\tan^2\theta_3+1}\pm\sqrt{\left(\frac{\delta_{23}^*\tan^2\theta_3}{\tan^2\theta_3+1}\right)^2-\frac{\delta_{23}^{*2}\tan^2\theta_3-1}{\tan^2\theta_3+1}}.+\cos\theta_3^*=-\frac{\delta_{23}^*\tan^2\theta_3}{\tan^2\theta_3+1}\pm\sqrt{\left(\frac{\delta_{23}^*\tan^2\theta_3}{\tan^2\theta_3+1}\right)^2-\frac{\delta_{23}^{*2}\tan^2\theta_3-1}{\tan^2\theta_3+1}}.
 \end{align} \end{align}
  
research/memos/kinematics/non-relativistic_kinematics.1509025839.txt.gz · 最終更新: 2017/10/26 22:50 by kobayash
CC Attribution-Share Alike 4.0 International
Driven by DokuWiki Recent changes RSS feed Valid CSS Valid XHTML 1.0