差分
このページの2つのバージョン間の差分を表示します。
両方とも前のリビジョン前のリビジョン次のリビジョン | 前のリビジョン | ||
research:memos:kinematics:relativistic_kinematics [2022/01/04 17:51] – [TRIUMF Kinematics Handbook: Sec. V Relativistic Kinematics] kobayash | research:memos:kinematics:relativistic_kinematics [2022/01/09 12:16] (現在) – [TRIUMF Kinematics Handbook: Sec. V Relativistic Kinematics] kobayash | ||
---|---|---|---|
行 59: | 行 59: | ||
\end{align} N.B. $\theta_3^* = \theta_4^*$ |\begin{align} | \end{align} N.B. $\theta_3^* = \theta_4^*$ |\begin{align} | ||
\tan\theta_3 &= \frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{21}^*+\cos\theta_3^*\right)}\\ | \tan\theta_3 &= \frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{21}^*+\cos\theta_3^*\right)}\\ | ||
- | \tan\theta_4 &= \frac{1}{\gamma_2^*}\cot\frac{\theta_3^*}{2}\\ | + | \tan\theta_4 &= \frac{1}{\gamma_2^*}\cot\frac{\theta_3^*}{2} |
- | & | + | \end{align} N.B. $\theta_3^* = \theta_4^*$|\begin{align} |
- | \end{align}|\begin{align} | + | |
\tan\theta_3 = \frac{\sin\theta_3^*}{\gamma_2^*\left(1+\cos\theta_3^*\right)}\\ | \tan\theta_3 = \frac{\sin\theta_3^*}{\gamma_2^*\left(1+\cos\theta_3^*\right)}\\ | ||
- | \end{align}| | + | \end{align} |
| 8. lab to c.m. angle transformation ($\theta_\mathrm{lab} \rightarrow \theta_\mathrm{cm}$) |\begin{align} | | 8. lab to c.m. angle transformation ($\theta_\mathrm{lab} \rightarrow \theta_\mathrm{cm}$) |\begin{align} | ||
\cos\theta_3^*=-\frac{\delta_{23}^*(\gamma_2^*\tan\theta_3)^2}{(\gamma_2^*\tan\theta_3)^2+1}\pm\sqrt{\left(\frac{\delta_{23}^*(\gamma_2^*\tan\theta_3)^2}{(\gamma_2^*\tan\theta_3)^2+1}\right)^2-\frac{\delta_{23}^{*2}(\gamma_2^*\tan\theta_3)^2-1}{(\gamma_2^*\tan\theta_3)^2+1}} | \cos\theta_3^*=-\frac{\delta_{23}^*(\gamma_2^*\tan\theta_3)^2}{(\gamma_2^*\tan\theta_3)^2+1}\pm\sqrt{\left(\frac{\delta_{23}^*(\gamma_2^*\tan\theta_3)^2}{(\gamma_2^*\tan\theta_3)^2+1}\right)^2-\frac{\delta_{23}^{*2}(\gamma_2^*\tan\theta_3)^2-1}{(\gamma_2^*\tan\theta_3)^2+1}} | ||
行 97: | 行 96: | ||
\end{align}| | \end{align}| | ||
- | === Derivation of Quantity 1. Total c.m. energy === | + | ==== Derivation of Quantity 1. Total c.m. energy |
** The General Formula ** | ** The General Formula ** | ||
行 112: | 行 111: | ||
\end{align} | \end{align} | ||
- | === Derivation of Quantity 2. c.m. momentum before the interaction === | + | ==== Derivation of Quantity 2. c.m. momentum before the interaction |
** The General Formula ** | ** The General Formula ** | ||
行 168: | 行 167: | ||
\end{align} | \end{align} | ||
- | === Derivation of Quantity 3. c.m. momentum after the interaction === | + | ==== Derivation of Quantity 3. c.m. momentum after the interaction |
** The General Formula ** | ** The General Formula ** | ||
行 191: | 行 190: | ||
\end{align} | \end{align} | ||
- | === Derivation of Quantity 4. Velocity of the c.m. === | + | ==== Derivation of Quantity 4. Velocity of the c.m. ==== |
** The General Formula ** | ** The General Formula ** | ||
行 211: | 行 210: | ||
\end{align} | \end{align} | ||
- | === Derivation of Quantity 5. $\gamma$ of the c.m. === | + | ==== Derivation of Quantity 5. $\gamma$ of the c.m. ==== |
** The General Formula ** | ** The General Formula ** | ||
行 236: | 行 235: | ||
- | === Derivation of Quantity 6. Maximum lab scattering angle === | + | ==== Derivation of Quantity 6. Maximum lab scattering angle ==== |
** The General Formula ** | ** The General Formula ** | ||
行 293: | 行 292: | ||
Therefore, $\tan\theta_3$ becomes infinite at $\cos\theta_3^*=-1$. In that case, $\mathrm{3max}=90^\circ$. | Therefore, $\tan\theta_3$ becomes infinite at $\cos\theta_3^*=-1$. In that case, $\mathrm{3max}=90^\circ$. | ||
- | === Derivation of Quantity 7. c.m. to lab angle ($\theta_{\rm cm} \rightarrow \theta_{\rm lab}$) === | + | ==== Derivation of Quantity 7. c.m. to lab angle ($\theta_{\rm cm} \rightarrow \theta_{\rm lab}$) |
** The General Formula ** | ** The General Formula ** | ||
行 422: | 行 421: | ||
\end{align} | \end{align} | ||
- | === Derivation of Quantity 8. lab to c.m. angle transformation ($\theta_\mathrm{cm} \rightarrow \theta_\mathrm{lab}$) === | + | ==== Derivation of Quantity 8. lab to c.m. angle transformation ($\theta_\mathrm{cm} \rightarrow \theta_\mathrm{lab}$) |
** The General Formula ** | ** The General Formula ** | ||
行 481: | 行 480: | ||
\end{align} | \end{align} | ||
- | === Derivation of Quantity 9. Solid angle transformation (Jacobian) === | + | ==== Derivation of Quantity 9. Solid angle transformation (Jacobian) |
** The first formula of the General Formulae ** | ** The first formula of the General Formulae ** | ||
行 541: | 行 540: | ||
\end{align} | \end{align} | ||
- | === Derivation of Quantity 10. Relations between the $\gamma$ factors === | + | ==== Derivation of Quantity 10. Relations between the $\gamma$ factors |
** The first formula of the General Formulae ** | ** The first formula of the General Formulae ** | ||
行 635: | 行 634: | ||
- | === Derivation of Quantity 11. Lab quantity relations === | + | ==== Derivation of Quantity 11. Lab quantity relations |
** The first formula of the General Formulae ** | ** The first formula of the General Formulae ** | ||
行 726: | 行 725: | ||
- | === Derivation of Quantity 12. Maximum K.E. transfer to a stationary particle === | + | ==== Derivation of Quantity 12. Maximum K.E. transfer to a stationary particle |