差分
このページの2つのバージョン間の差分を表示します。
| 両方とも前のリビジョン前のリビジョン次のリビジョン | 前のリビジョン | ||
| research:memos:reduces_transition_probability [2020/03/28 15:20] – [Special cases] kobayash | research:memos:reduces_transition_probability [2020/04/01 23:25] (現在) – [Reduced matrix element of the electric operator for wave functions in a spherically symmetric potential] kobayash | ||
|---|---|---|---|
| 行 27: | 行 27: | ||
| where $Y^\lambda_\mu(\hat{\boldsymbol{r}})(=Y^\lambda_\mu(\theta, | where $Y^\lambda_\mu(\hat{\boldsymbol{r}})(=Y^\lambda_\mu(\theta, | ||
| $ is a unit vector, and $e$ is elementary charge. The $e_q$ are the electric charges for the proton ($q=p$) and neutron ($q=n$) in units of $e$. For example, for free nucleon, $e_p = 1$ for proton and $e_n=0$ for neutron (Brown' | $ is a unit vector, and $e$ is elementary charge. The $e_q$ are the electric charges for the proton ($q=p$) and neutron ($q=n$) in units of $e$. For example, for free nucleon, $e_p = 1$ for proton and $e_n=0$ for neutron (Brown' | ||
| + | |||
| + | ==== Reduced matrix element of the electric operator for wave functions in a spherically symmetric potential | ||
| + | From Bohr & Mottelson Vol. I, Eq. (3C-34), | ||
| + | |||
| + | \begin{align} | ||
| + | B(E\lambda; j_1 \rightarrow j_2) = e^2 \frac{2\lambda+1}{4\pi} \left\langle j_2 \left| r^\lambda \right| j_1 \right\rangle^2 | ||
| + | \left\langle j_1 \frac{1}{2} \lambda 0 \left| j_2 \frac{1}{2}\right.\right\rangle^2. | ||
| + | \end{align} | ||
| + | |||
| + | For the radial part of wave function $R_{nl}(r)$ in a spherically symmetric potential | ||
| + | |||
| + | \begin{align} | ||
| + | R_{nl}(r)& | ||
| + | N_{nl} &= \sqrt{\frac{2(2\nu)^{l+3/ | ||
| + | \nu &= \frac{m\omega}{2\hbar}\\ | ||
| + | N &= 2(n-1)+l\\ | ||
| + | E_{nl}& | ||
| + | n & | ||
| + | \end{align} | ||
| + | |||
| + | $\langle j_2 \left| r^\lambda \right| j_1 \rangle$ is | ||
| + | |||
| + | \begin{align} | ||
| + | \langle j_2 \left| r^\lambda \right| j_1 \rangle | ||
| + | =&\ (-1)^{n_1+n_2}\left(\frac{\hbar}{m\omega}\right)^{\frac{\lambda}{2}}\sqrt{\frac{(n_1-1)!(n_2-1)!}{\Gamma(n_1+l_1+1/ | ||
| + | & | ||
| + | \sum_{k=0}^{\min(n_1-1, | ||
| + | \end{align} | ||
| + | |||
| + | Therefore, | ||
| + | |||
| + | \begin{align} | ||
| + | B(E\lambda; j_1 \rightarrow j_2) | ||
| + | =&\ e^2 \frac{2\lambda+1}{4\pi}\left\langle j_1 \frac{1}{2} \lambda 0 \left| j_2 \frac{1}{2}\right.\right\rangle^2 | ||
| + | \left[(-1)^{n_1+n_2}\left(\frac{\hbar}{m\omega}\right)^{\frac{\lambda}{2}}\sqrt{\frac{(n_1-1)!(n_2-1)!}{\Gamma(n_1+l_1+1/ | ||
| + | & \left.\times\Gamma\left(\frac{l_1+l_2+\lambda+3}{2}\right) | ||
| + | \sum_{k=0}^{\min(n_1-1, | ||
| + | =&\ e^2 \frac{2\lambda+1}{4\pi}\left\langle j_1 \frac{1}{2} \lambda 0 \left| j_2 \frac{1}{2}\right.\right\rangle^2 | ||
| + | \left(\frac{\hbar}{m\omega}\right)^{\lambda}\frac{(n_1-1)!(n_2-1)!}{\Gamma(n_1+l_1+1/ | ||
| + | & \times\left[\Gamma\left(\frac{l_1+l_2+\lambda+3}{2}\right) | ||
| + | \sum_{k=0}^{\min(n_1-1, | ||
| + | \end{align} | ||
| + | |||
| + | If $l_1+\lambda=l_2$, | ||
| + | |||
| + | \begin{align} | ||
| + | \langle{j_2}\left|r^\lambda\right|{j_1}\rangle | ||
| + | = (-1)^{n_1+n_2}\left(\frac{\hbar}{m\omega}\right)^{\frac{l_2-l_1}{2}}\sqrt{\frac{(n_1-1)!\Gamma(n_2+l_2+1/ | ||
| + | \binom{l_2-l_1}{n_1-n_2}. | ||
| + | \end{align} | ||
| + | |||
| + | Therefore, | ||
| + | |||
| + | \begin{align} | ||
| + | B(E\lambda; j_1 \rightarrow j_2) | ||
| + | =&\ e^2 \frac{2\lambda+1}{4\pi}\left\langle j_1 \frac{1}{2} \lambda 0 \left| j_2 \frac{1}{2}\right.\right\rangle^2 | ||
| + | \left[(-1)^{n_1+n_2}\left(\frac{\hbar}{m\omega}\right)^{\frac{l_2-l_1}{2}}\sqrt{\frac{(n_1-1)!\Gamma(n_2+l_2+1/ | ||
| + | \binom{l_2-l_1}{n_1-n_2}\right]^2\\ | ||
| + | =&\ e^2 \frac{2\lambda+1}{4\pi}\left\langle j_1 \frac{1}{2} \lambda 0 \left| j_2 \frac{1}{2}\right.\right\rangle^2 | ||
| + | \left(\frac{\hbar}{m\omega}\right)^{\lambda}\frac{(n_1-1)!\Gamma(n_2+l_2+1/ | ||
| + | \binom{\lambda}{n_1-n_2}^2. | ||
| + | \end{align} | ||
| + | |||
| + | |||
| + | If $l_1+\lambda=l_2$ and $\lambda=1$, | ||
| + | |||
| + | |||
| + | \begin{align} | ||
| + | B(E\lambda; j_1 \rightarrow j_2) | ||
| + | =&\ e^2 \frac{2+1}{4\pi}\left\langle j_1 \frac{1}{2} 1 0 \left| j_2 \frac{1}{2}\right.\right\rangle^2 | ||
| + | \frac{\hbar}{m\omega}\frac{(n_1-1)!\Gamma(n_2+l_2+1/ | ||
| + | \binom{1}{n_1-n_2}^2\\ | ||
| + | =&\ e^2 \frac{3}{4\pi}\left\langle j_1 \frac{1}{2} 1 0 \left| j_2 \frac{1}{2}\right.\right\rangle^2 | ||
| + | \frac{\hbar}{m\omega}\frac{(n_1-1)!\Gamma(n_2+l_2+1/ | ||
| + | \end{align} | ||
| + | |||
| + | |||
| ==== For wave functions in a spherically symmetric potential ==== | ==== For wave functions in a spherically symmetric potential ==== | ||
| 行 331: | 行 408: | ||
| &= (-1)^{n_1+n_2}\left(\frac{\hbar}{m\omega}\right)^{\frac{l_2-l_1}{2}}\sqrt{\frac{(n_1-1)!(n_2-1)!}{\Gamma(n_1+l_1+1/ | &= (-1)^{n_1+n_2}\left(\frac{\hbar}{m\omega}\right)^{\frac{l_2-l_1}{2}}\sqrt{\frac{(n_1-1)!(n_2-1)!}{\Gamma(n_1+l_1+1/ | ||
| \Gamma\left(l_2+\frac{3}{2}\right) | \Gamma\left(l_2+\frac{3}{2}\right) | ||
| - | \sum_{k=0}^{n_1-1}\binom{\lambda}{n_1-k-1}\binom{0}{n_2-k-1}\binom{k+l_2+\frac{1}{2}}{k}\\ | + | \sum_{k=0}^{n_1-1}\binom{l_2-l_1}{n_1-k-1}\binom{0}{n_2-k-1}\binom{k+l_2+\frac{1}{2}}{k}\\ |
| &=0. | &=0. | ||
| \end{align} | \end{align} | ||
| 行 341: | 行 418: | ||
| &= (-1)^{n_1+n_2}\left(\frac{\hbar}{m\omega}\right)^{\frac{l_2-l_1}{2}}\sqrt{\frac{(n_1-1)!(n_2-1)!}{\Gamma(n_1+l_1+1/ | &= (-1)^{n_1+n_2}\left(\frac{\hbar}{m\omega}\right)^{\frac{l_2-l_1}{2}}\sqrt{\frac{(n_1-1)!(n_2-1)!}{\Gamma(n_1+l_1+1/ | ||
| \Gamma\left(l_2+\frac{3}{2}\right) | \Gamma\left(l_2+\frac{3}{2}\right) | ||
| - | \sum_{k=0}^{n_2-1}\binom{\lambda}{n_1-k-1}\binom{0}{n_2-k-1}\binom{k+l_2+\frac{1}{2}}{k}\\ | + | \sum_{k=0}^{n_2-1}\binom{l_2-l_1}{n_1-k-1}\binom{0}{n_2-k-1}\binom{k+l_2+\frac{1}{2}}{k}\\ |
| &= (-1)^{n_1+n_2}\left(\frac{\hbar}{m\omega}\right)^{\frac{l_2-l_1}{2}}\sqrt{\frac{(n_1-1)!(n_2-1)!}{\Gamma(n_1+l_1+1/ | &= (-1)^{n_1+n_2}\left(\frac{\hbar}{m\omega}\right)^{\frac{l_2-l_1}{2}}\sqrt{\frac{(n_1-1)!(n_2-1)!}{\Gamma(n_1+l_1+1/ | ||
| \Gamma\left(l_2+\frac{3}{2}\right) | \Gamma\left(l_2+\frac{3}{2}\right) | ||
| 行 351: | 行 428: | ||
| \Gamma\left(l_2+\frac{3}{2}\right) | \Gamma\left(l_2+\frac{3}{2}\right) | ||
| \binom{l_2-l_1}{n_1-n_2}\frac{\Gamma(n_2+l_2+1/ | \binom{l_2-l_1}{n_1-n_2}\frac{\Gamma(n_2+l_2+1/ | ||
| + | &= (-1)^{n_1+n_2}\left(\frac{\hbar}{m\omega}\right)^{\frac{l_2-l_1}{2}}\sqrt{\frac{(n_1-1)!\Gamma(n_2+l_2+1/ | ||
| + | \binom{l_2-l_1}{n_1-n_2}. | ||
| \end{align} | \end{align} | ||
| + | |||
| + | Another derivation is the follows. | ||
| + | |||
| + | \begin{align} | ||
| + | \langle{n_2l_2}\left|r^\lambda\right|{n_1l_1}\rangle | ||
| + | = \left(\frac{\hbar}{m\omega}\right)^{\frac{l_2-l_1}{2}}\sqrt{\frac{(n_1-1)!(n_2-1)!}{\Gamma(n_1+l_1+1/ | ||
| + | \int_0^{\infty}t^{l_2+\frac{1}{2}}e^{-t}L_{n_1-1}^{l_1+\frac{1}{2}}(t)L_{n_2-1}^{l_2+\frac{1}{2}}(t)dt. | ||
| + | \end{align} | ||
| + | |||
| + | From Eq. (18) of [[https:// | ||
| + | |||
| + | \begin{align} | ||
| + | & | ||
| + | =\frac{\Gamma(\beta+1)}{\sigma^{\beta+1}}\binom{n+\beta}{n}\frac{(\alpha-\beta)_{m-n}}{(m-n)!}\\ | ||
| + | & | ||
| + | \end{align} | ||
| + | |||
| + | From http:// | ||
| + | |||
| + | \begin{align} | ||
| + | \binom{n}{k}=\frac{(-1)^k(-n)_k}{k!}. | ||
| + | \end{align} | ||
| + | ([[https:// | ||
| + | |||
| + | Therefore, | ||
| + | |||
| + | \begin{align} | ||
| + | & | ||
| + | =(-1)^{m+n}\frac{\Gamma(\beta+1)}{\sigma^{\beta+1}}\binom{n+\beta}{n}\binom{\alpha-\beta}{m-n}\\ | ||
| + | & | ||
| + | \end{align} | ||
| + | |||
| + | Using this formula, | ||
| + | |||
| + | \begin{align} | ||
| + | \int_0^{\infty}t^{l_2+\frac{1}{2}}e^{-t}L_{n_1-1}^{l_1+\frac{1}{2}}(t)L_{n_2-1}^{l_2+\frac{1}{2}}(t)dt | ||
| + | & | ||
| + | \end{align} | ||
| + | |||
| + | and | ||
| + | |||
| + | \begin{align} | ||
| + | & | ||
| + | &= (-1)^{n1+n2}\left(\frac{\hbar}{m\omega}\right)^{\frac{l_2-l_1}{2}}\sqrt{\frac{(n_1-1)!(n_2-1)!}{\Gamma(n_1+l_1+1/ | ||
| + | \Gamma\left(l_2+\frac{3}{2}\right) | ||
| + | \binom{n_2+l_2-\frac{1}{2}}{n_2-1}\binom{l_2-l_1}{n_1-n_2}\\ | ||
| + | &= (-1)^{n1+n2}\left(\frac{\hbar}{m\omega}\right)^{\frac{l_2-l_1}{2}}\sqrt{\frac{(n_1-1)!\Gamma(n_2+l_2+1/ | ||
| + | \binom{l_2-l_1}{n_1-n_2}. | ||
| + | \end{align} | ||
| + | |||
| + | ==== $n_1=2,\ n_2=1,\ l_1=0,\ l_2=1,\ \lambda=1$ ==== | ||
| + | |||
| + | From wolfram alpha, | ||
| + | < | ||
| + | n1 = 2, n2 = 1, l1 = 0, l2=1, lambda = 1, Integrate[x^((l1+l2+lamda+1)/ | ||
| + | n1 = 2, n2 = 1, l1 = 0, l2=1, Gamma[l2+3/ | ||
| + | </ | ||
| ==== Backup ==== | ==== Backup ==== | ||
