差分
このページの2つのバージョン間の差分を表示します。
両方とも前のリビジョン前のリビジョン次のリビジョン | 前のリビジョン | ||
research:memos:reduces_transition_probability [2020/04/01 22:25] – [Definition] kobayash | research:memos:reduces_transition_probability [2020/04/01 23:25] (現在) – [Reduced matrix element of the electric operator for wave functions in a spherically symmetric potential] kobayash | ||
---|---|---|---|
行 28: | 行 28: | ||
$ is a unit vector, and $e$ is elementary charge. The $e_q$ are the electric charges for the proton ($q=p$) and neutron ($q=n$) in units of $e$. For example, for free nucleon, $e_p = 1$ for proton and $e_n=0$ for neutron (Brown' | $ is a unit vector, and $e$ is elementary charge. The $e_q$ are the electric charges for the proton ($q=p$) and neutron ($q=n$) in units of $e$. For example, for free nucleon, $e_p = 1$ for proton and $e_n=0$ for neutron (Brown' | ||
- | ==== Reduced matrix element of the electric operator ==== | + | ==== Reduced matrix element of the electric operator |
From Bohr & Mottelson Vol. I, Eq. (3C-34), | From Bohr & Mottelson Vol. I, Eq. (3C-34), | ||
行 36: | 行 36: | ||
\end{align} | \end{align} | ||
- | For wave functions | + | For the radial part of wave function $R_{nl}(r)$ in a spherically symmetric potential |
+ | |||
+ | \begin{align} | ||
+ | R_{nl}(r)& | ||
+ | N_{nl} &= \sqrt{\frac{2(2\nu)^{l+3/ | ||
+ | \nu &= \frac{m\omega}{2\hbar}\\ | ||
+ | N &= 2(n-1)+l\\ | ||
+ | E_{nl}& | ||
+ | n & | ||
+ | \end{align} | ||
+ | |||
+ | $\langle j_2 \left| r^\lambda \right| j_1 \rangle$ is | ||
+ | |||
+ | \begin{align} | ||
+ | \langle j_2 \left| r^\lambda \right| j_1 \rangle | ||
+ | =&\ (-1)^{n_1+n_2}\left(\frac{\hbar}{m\omega}\right)^{\frac{\lambda}{2}}\sqrt{\frac{(n_1-1)!(n_2-1)!}{\Gamma(n_1+l_1+1/ | ||
+ | & | ||
+ | \sum_{k=0}^{\min(n_1-1, | ||
+ | \end{align} | ||
+ | |||
+ | Therefore, | ||
+ | |||
+ | \begin{align} | ||
+ | B(E\lambda; j_1 \rightarrow j_2) | ||
+ | =&\ e^2 \frac{2\lambda+1}{4\pi}\left\langle j_1 \frac{1}{2} \lambda 0 \left| j_2 \frac{1}{2}\right.\right\rangle^2 | ||
+ | \left[(-1)^{n_1+n_2}\left(\frac{\hbar}{m\omega}\right)^{\frac{\lambda}{2}}\sqrt{\frac{(n_1-1)!(n_2-1)!}{\Gamma(n_1+l_1+1/ | ||
+ | & \left.\times\Gamma\left(\frac{l_1+l_2+\lambda+3}{2}\right) | ||
+ | \sum_{k=0}^{\min(n_1-1, | ||
+ | =&\ e^2 \frac{2\lambda+1}{4\pi}\left\langle j_1 \frac{1}{2} \lambda 0 \left| j_2 \frac{1}{2}\right.\right\rangle^2 | ||
+ | \left(\frac{\hbar}{m\omega}\right)^{\lambda}\frac{(n_1-1)!(n_2-1)!}{\Gamma(n_1+l_1+1/ | ||
+ | & \times\left[\Gamma\left(\frac{l_1+l_2+\lambda+3}{2}\right) | ||
+ | \sum_{k=0}^{\min(n_1-1, | ||
+ | \end{align} | ||
+ | |||
+ | If $l_1+\lambda=l_2$, | ||
+ | |||
+ | \begin{align} | ||
+ | \langle{j_2}\left|r^\lambda\right|{j_1}\rangle | ||
+ | = (-1)^{n_1+n_2}\left(\frac{\hbar}{m\omega}\right)^{\frac{l_2-l_1}{2}}\sqrt{\frac{(n_1-1)!\Gamma(n_2+l_2+1/ | ||
+ | \binom{l_2-l_1}{n_1-n_2}. | ||
+ | \end{align} | ||
+ | |||
+ | Therefore, | ||
+ | |||
+ | \begin{align} | ||
+ | B(E\lambda; j_1 \rightarrow j_2) | ||
+ | =&\ e^2 \frac{2\lambda+1}{4\pi}\left\langle j_1 \frac{1}{2} \lambda 0 \left| j_2 \frac{1}{2}\right.\right\rangle^2 | ||
+ | \left[(-1)^{n_1+n_2}\left(\frac{\hbar}{m\omega}\right)^{\frac{l_2-l_1}{2}}\sqrt{\frac{(n_1-1)!\Gamma(n_2+l_2+1/ | ||
+ | \binom{l_2-l_1}{n_1-n_2}\right]^2\\ | ||
+ | =&\ e^2 \frac{2\lambda+1}{4\pi}\left\langle j_1 \frac{1}{2} \lambda 0 \left| j_2 \frac{1}{2}\right.\right\rangle^2 | ||
+ | \left(\frac{\hbar}{m\omega}\right)^{\lambda}\frac{(n_1-1)!\Gamma(n_2+l_2+1/ | ||
+ | \binom{\lambda}{n_1-n_2}^2. | ||
+ | \end{align} | ||
+ | |||
+ | |||
+ | If $l_1+\lambda=l_2$ and $\lambda=1$, | ||
+ | |||
+ | |||
+ | \begin{align} | ||
+ | B(E\lambda; j_1 \rightarrow j_2) | ||
+ | =&\ e^2 \frac{2+1}{4\pi}\left\langle j_1 \frac{1}{2} 1 0 \left| j_2 \frac{1}{2}\right.\right\rangle^2 | ||
+ | \frac{\hbar}{m\omega}\frac{(n_1-1)!\Gamma(n_2+l_2+1/ | ||
+ | \binom{1}{n_1-n_2}^2\\ | ||
+ | =&\ e^2 \frac{3}{4\pi}\left\langle j_1 \frac{1}{2} 1 0 \left| j_2 \frac{1}{2}\right.\right\rangle^2 | ||
+ | \frac{\hbar}{m\omega}\frac{(n_1-1)!\Gamma(n_2+l_2+1/ | ||
+ | \end{align} | ||
+ | |||
==== For wave functions in a spherically symmetric potential ==== | ==== For wave functions in a spherically symmetric potential ==== |