差分
このページの2つのバージョン間の差分を表示します。
| 両方とも前のリビジョン前のリビジョン次のリビジョン | 前のリビジョン | ||
| research:memos:reduces_transition_probability [2020/04/01 23:17] – kobayash | research:memos:reduces_transition_probability [2020/04/01 23:25] (現在) – [Reduced matrix element of the electric operator for wave functions in a spherically symmetric potential] kobayash | ||
|---|---|---|---|
| 行 73: | 行 73: | ||
| \begin{align} | \begin{align} | ||
| - | &\langle{n_2l_2}\left|r^\lambda\right|{n_1l_1}\rangle\\ | + | \langle{j_2}\left|r^\lambda\right|{j_1}\rangle |
| - | &= (-1)^{n_1+n_2}\left(\frac{\hbar}{m\omega}\right)^{\frac{l_2-l_1}{2}}\sqrt{\frac{(n_1-1)!\Gamma(n_2+l_2+1/ | + | = (-1)^{n_1+n_2}\left(\frac{\hbar}{m\omega}\right)^{\frac{l_2-l_1}{2}}\sqrt{\frac{(n_1-1)!\Gamma(n_2+l_2+1/ |
| \binom{l_2-l_1}{n_1-n_2}. | \binom{l_2-l_1}{n_1-n_2}. | ||
| \end{align} | \end{align} | ||
| 行 83: | 行 83: | ||
| B(E\lambda; j_1 \rightarrow j_2) | B(E\lambda; j_1 \rightarrow j_2) | ||
| =&\ e^2 \frac{2\lambda+1}{4\pi}\left\langle j_1 \frac{1}{2} \lambda 0 \left| j_2 \frac{1}{2}\right.\right\rangle^2 | =&\ e^2 \frac{2\lambda+1}{4\pi}\left\langle j_1 \frac{1}{2} \lambda 0 \left| j_2 \frac{1}{2}\right.\right\rangle^2 | ||
| - | & \times\left[(-1)^{n_1+n_2}\left(\frac{\hbar}{m\omega}\right)^{\frac{l_2-l_1}{2}}\sqrt{\frac{(n_1-1)!\Gamma(n_2+l_2+1/ | + | \left[(-1)^{n_1+n_2}\left(\frac{\hbar}{m\omega}\right)^{\frac{l_2-l_1}{2}}\sqrt{\frac{(n_1-1)!\Gamma(n_2+l_2+1/ |
| - | \binom{l_2-l_1}{n_1-n_2}\right]^2 | + | \binom{l_2-l_1}{n_1-n_2}\right]^2\\ |
| - | \\ | + | =&\ e^2 \frac{2\lambda+1}{4\pi}\left\langle j_1 \frac{1}{2} \lambda 0 \left| j_2 \frac{1}{2}\right.\right\rangle^2 |
| + | \left(\frac{\hbar}{m\omega}\right)^{\lambda}\frac{(n_1-1)!\Gamma(n_2+l_2+1/ | ||
| + | \binom{\lambda}{n_1-n_2}^2. | ||
| + | \end{align} | ||
| + | |||
| + | |||
| + | If $l_1+\lambda=l_2$ and $\lambda=1$, | ||
| + | |||
| + | |||
| + | \begin{align} | ||
| + | B(E\lambda; j_1 \rightarrow j_2) | ||
| + | =&\ e^2 \frac{2+1}{4\pi}\left\langle j_1 \frac{1}{2} 1 0 \left| j_2 \frac{1}{2}\right.\right\rangle^2 | ||
| + | \frac{\hbar}{m\omega}\frac{(n_1-1)!\Gamma(n_2+l_2+1/ | ||
| + | \binom{1}{n_1-n_2}^2\\ | ||
| + | =&\ e^2 \frac{3}{4\pi}\left\langle j_1 \frac{1}{2} 1 0 \left| j_2 \frac{1}{2}\right.\right\rangle^2 | ||
| + | \frac{\hbar}{m\omega}\frac{(n_1-1)!\Gamma(n_2+l_2+1/ | ||
| \end{align} | \end{align} | ||
