差分
このページの2つのバージョン間の差分を表示します。
両方とも前のリビジョン前のリビジョン | |||
research:memos:reduces_transition_probability [2020/04/01 23:21] – [Reduced matrix element of the electric operator for wave functions in a spherically symmetric potential] kobayash | research:memos:reduces_transition_probability [2020/04/01 23:25] (現在) – [Reduced matrix element of the electric operator for wave functions in a spherically symmetric potential] kobayash | ||
---|---|---|---|
行 87: | 行 87: | ||
=&\ e^2 \frac{2\lambda+1}{4\pi}\left\langle j_1 \frac{1}{2} \lambda 0 \left| j_2 \frac{1}{2}\right.\right\rangle^2 | =&\ e^2 \frac{2\lambda+1}{4\pi}\left\langle j_1 \frac{1}{2} \lambda 0 \left| j_2 \frac{1}{2}\right.\right\rangle^2 | ||
\left(\frac{\hbar}{m\omega}\right)^{\lambda}\frac{(n_1-1)!\Gamma(n_2+l_2+1/ | \left(\frac{\hbar}{m\omega}\right)^{\lambda}\frac{(n_1-1)!\Gamma(n_2+l_2+1/ | ||
- | \binom{\lambda}{n_1-n_2}^2 | + | \binom{\lambda}{n_1-n_2}^2. |
+ | \end{align} | ||
+ | |||
+ | |||
+ | If $l_1+\lambda=l_2$ and $\lambda=1$, | ||
+ | |||
+ | |||
+ | \begin{align} | ||
+ | B(E\lambda; j_1 \rightarrow j_2) | ||
+ | =&\ e^2 \frac{2+1}{4\pi}\left\langle j_1 \frac{1}{2} 1 0 \left| j_2 \frac{1}{2}\right.\right\rangle^2 | ||
+ | \frac{\hbar}{m\omega}\frac{(n_1-1)!\Gamma(n_2+l_2+1/ | ||
+ | \binom{1}{n_1-n_2}^2\\ | ||
+ | =&\ e^2 \frac{3}{4\pi}\left\langle j_1 \frac{1}{2} 1 0 \left| j_2 \frac{1}{2}\right.\right\rangle^2 | ||
+ | \frac{\hbar}{m\omega}\frac{(n_1-1)!\Gamma(n_2+l_2+1/ | ||
\end{align} | \end{align} | ||