差分
このページの2つのバージョン間の差分を表示します。
両方とも前のリビジョン前のリビジョン | |||
softwares:root:convolution_by_gaussian [2018/06/16 13:46] – kobayash | softwares:root:convolution_by_gaussian [2018/06/16 13:50] (現在) – kobayash | ||
---|---|---|---|
行 11: | 行 11: | ||
y = F^{-1}(x) = \sqrt{2}\sigma\ \mathrm{erf}^{-1}\left(2x - 1\right) + \mu, | y = F^{-1}(x) = \sqrt{2}\sigma\ \mathrm{erf}^{-1}\left(2x - 1\right) + \mu, | ||
\end{align} where $ 0 < x < 1$. Fortunately, | \end{align} where $ 0 < x < 1$. Fortunately, | ||
- | * At first, we have to obtain the integral of the normal (Gaussian) distribution $f(t; | + | * At first, we have to obtain the integral |
F(x) = \int_{-\infty}^x f(t; | F(x) = \int_{-\infty}^x f(t; | ||
\end{align} where $ 0 < F(x) < 1$. The derivation is the following. Assuming $T=\frac{t-\mu}{\sqrt{2}\sigma}$, | \end{align} where $ 0 < F(x) < 1$. The derivation is the following. Assuming $T=\frac{t-\mu}{\sqrt{2}\sigma}$, | ||
行 23: | 行 23: | ||
F(x) = \frac{1}{2}\left[1+\mathrm{erf}\left(\frac{x-\mu}{\sqrt{2}\sigma}\right)\right]. | F(x) = \frac{1}{2}\left[1+\mathrm{erf}\left(\frac{x-\mu}{\sqrt{2}\sigma}\right)\right]. | ||
\end{align} By the way, $F(x)$ can vary in $ 0 < F(x) < 1$, because $\mathrm{erf}(x)$ can vary in $-1 < \mathrm{erf}(x) < 1$. (In fact, this is trivial, because the $f(x; | \end{align} By the way, $F(x)$ can vary in $ 0 < F(x) < 1$, because $\mathrm{erf}(x)$ can vary in $-1 < \mathrm{erf}(x) < 1$. (In fact, this is trivial, because the $f(x; | ||
- | * Then the inverse function | + | * Then the inverse function, $F^{-1}(x)$, |
\mathrm{erf}\left(\frac{x-\mu}{\sqrt{2}\sigma}\right) &= 2F(x) - 1\\ | \mathrm{erf}\left(\frac{x-\mu}{\sqrt{2}\sigma}\right) &= 2F(x) - 1\\ | ||
\Rightarrow \mathrm{erf}^{-1}\left[\mathrm{erf}\left(\frac{x-\mu}{\sqrt{2}\sigma}\right)\right] &= \mathrm{erf}^{-1}\left[2F(x) - 1\right]\\ | \Rightarrow \mathrm{erf}^{-1}\left[\mathrm{erf}\left(\frac{x-\mu}{\sqrt{2}\sigma}\right)\right] &= \mathrm{erf}^{-1}\left[2F(x) - 1\right]\\ |