文書の過去の版を表示しています。
目次
Non-relativistic kinematics
References
- TRIUMF Relativistic Handbook, Section V Relativistic Kinematics
Formulae for Non-relativistic Kinematics
Two Body Kinematics Formulae
Adopt units where $c=1$. In the Laboratory System (Center of Mass System), mass, momentum, total energy, and velocity of the $i$-th particle are $m_i$, $\boldsymbol{p}_i$, and $E_i$, and $\boldsymbol{\beta}_i$ ($m_i^*$, $\boldsymbol{p}_i^*$, $E_i^*$, and $\boldsymbol{\beta}_i^*$), respectively.
In the following, the quantities $\delta_{ij}$ are defined by \begin{align} \delta_{ij} = |\boldsymbol{\beta}_i|/|\boldsymbol{\beta}_j|, \end{align} where the subscripts refer to the particles.
Quantity | General Formula | Elastic Scattering | N-N Scattering (equal mass) |
1. Total c.m. energy (invariant mass) | \begin{align} W &= \sqrt{m_1^2+m_2^2+2m_2E_1}\\ &= \sqrt{(E_1+m_2)^2-\boldsymbol{p}_1^2}\\ &= \sqrt{(E_3+E_4)^2-(\boldsymbol{p}_3+\boldsymbol{p}_4)^2}\\ \end{align} | Same as the General formula | \begin{align} W= \sqrt{2(m_\mathrm{N}^2+m_\mathrm{N}E_1)} \end{align} |
2. c.m. momentum before the interaction | \begin{align} |\boldsymbol{p}_1^{*}| = \frac{1}{2W}\sqrt{\left[W^2-\left(m_1+m_2\right)^2\right]\left[W^2-\left(m_1-m_2\right)^2\right]} \end{align} | Same as the General formula | \begin{align} |\boldsymbol{p}_1'| = \frac{1}{2}\sqrt{W^2-4m_\mathrm{N}^2} \end{align} |
3. c.m. momentum after the interaction | \begin{align} |\boldsymbol{p}_3^{*}| = \frac{1}{2W}\sqrt{\left[W^2-\left(m_3+m_4\right)^2\right]\left[W^2-\left(m_3-m_4\right)^2\right]} \end{align} | \begin{align} |\boldsymbol{p}_3^{*}| = |\boldsymbol{p}_1^{*}| \end{align} | \begin{align} |\boldsymbol{p}_3'| = |\boldsymbol{p}_1'| = \frac{1}{2}\sqrt{W^2-4m_\mathrm{N}^2} \end{align} |
4. Velocity of the c.m. | \begin{align} \boldsymbol{\beta}_2^* = \boldsymbol{\beta}_{\rm cm} = \frac{\boldsymbol{p}_1}{E_1+m_2} \end{align} | Same as the General formula | Same as the General formula |
5. $\gamma$ of the c.m. | \begin{align} \gamma_2^* = \gamma_\mathrm{cm} = \frac{E_1+m_2}{W} \end{align} | Same as the General formula | Same as the General formula |
6. Maximum lab scattering angle | \begin{align} \tan\theta_{3\mathrm{max}} = \frac{1}{\gamma_2^*\sqrt{\delta_{23}^{*2}-1}}\\ \mathrm{For\ \ } \delta_{23}^* \ge 1\\ \mathrm{otherwise\ } \theta_{3\mathrm{max}} = 180^\circ \end{align} | Same as the General formula | \begin{align} \theta_{3\mathrm{max}} = 90^\circ \end{align} |
7. c.m. to lab angle ($\theta_{\rm cm} \rightarrow \theta_{\rm lab}$) | \begin{align} \cos\theta_3 = \frac{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}{\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}} \end{align} | \begin{align} \tan\theta_3 &= \frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{21}^*+\cos\theta_3^*\right)}\\ \tan\theta_4 &= \frac{1}{\gamma_2^*}\cot\frac{\theta_3^*}{2} \end{align} | \begin{align} \tan\theta_3 = \frac{\sin\theta_3^*}{\gamma_2^*\left(1+\cos\theta_3^*\right)}\\ \end{align} |
8. lab to c.m. angle transformation ($\theta_\mathrm{cm} \rightarrow \theta_\mathrm{lab}$) | \begin{align} \cos\theta_3^*=\frac{\delta_{23}^*(\gamma_2^*\tan\theta_3)^2}{(\gamma_2^*\tan\theta_3)^2+1}\pm\sqrt{\left(\frac{\delta_{23}^*(\gamma_2^*\tan\theta_3)^2}{(\gamma_2^*\tan\theta_3)^2+1}\right)^2-\frac{\delta_{23}^{*2}(\gamma_2^*\tan\theta_3)^2-1}{(\gamma_2^*\tan\theta_3)^2+1}} \end{align} Another solution (not written in the document) \begin{align} \tan\theta_{\rm cm} = \frac{\sin\theta_{\rm lab}}{\gamma_{\rm cm}\left(\cos\theta_{\rm lab}-\beta_{\rm cm}/|\boldsymbol{\beta}_3|\right)} \end{align} | ||
9. Solid angle transformation (Jacobian) | \begin{align} \frac{d\Omega_3}{d\Omega_3^*} &= \frac{\gamma_2^*(1+\delta_{23}^*\cos\theta_3^*)}{\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]^{3/2}}\\ \frac{d\Omega_3}{d\Omega_3^*} &= \frac{\sin^3\theta_3}{\sin^3\theta_3^*}\gamma_2^*(1+\delta_{23}^*\cos\theta_3^*) \end{align} | \begin{align} \frac{d\Omega_3}{d\Omega_3^*} = \frac{\gamma_2^*(1+\cos\theta_3^*)}{\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(1+\cos\theta_3^*\right)^2\right]^{3/2}} \end{align} | |
10. Relations between the $\gamma$ factors N.B. $k_{12}=m_1/m_2$ | \begin{align} &&(\gamma_1^{*2}-1) = k_{21}^2(\gamma_2^{*2}-1)\\ &&\gamma_1^* = \frac{k_{12}+\gamma_1}{\sqrt{1+k_{12}^2+2\gamma_1k_{12}}}\\ &&\gamma_2^* = \frac{k_{21}+\gamma_1}{\sqrt{1+k_{21}^2+2\gamma_1k_{21}}}=\gamma_\mathrm{cm} \end{align} | \begin{align} \gamma_1^* = \gamma_2^*\\ \gamma_1^* = \sqrt{\frac{1+\gamma_1}{2}}\\ \end{align} | |
11. Lab quantity relations | \begin{align} 2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 = m_4^2-m_1^2-m_2^2-m_3^2+2(E_1+m_2)E_3-2E_1m_2\\ 2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) = m_3^2+m_4^2-m_1^2-m_2^2-2E_1m_2+2E_3E_4\\ \end{align} The sign between $m_1$ and $m_2$ of the second formula is missing in the document. | \begin{align} |\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) = T_3T_4 \end{align} | |
12. Maximum K.E. transfer to a stationary particle | \begin{align} T_\mathrm{max} &= \frac{2\boldsymbol{p}_1^2}{m_1(k_{12}+k_{21}+2\gamma_1)}\\ &\approx 2m_2\boldsymbol{\beta}_1^2\gamma_1^2 \end{align} The formula in the document is wrong? | Empty |
Derivation of Quantity 1. Total c.m. energy
The General Formula
They are definitions.
The formula for N-N Scattering
Assuming $m_1=m_2=m_\mathrm{N}$, \begin{align} W &= \sqrt{m_1^2+m_2^2+2m_2E_1}\\ &= \sqrt{m_\mathrm{N}^2+m_\mathrm{N}^2+2m_\mathrm{N}E_1}\\ &= \sqrt{2(m_\mathrm{N}^2+m_\mathrm{N}E_1)} \end{align}
Derivation of Quantity 2. c.m. momentum before the interaction
The General Formula
In the center of mass frame, $\boldsymbol{p}_1^*+\boldsymbol{p}_2^*=0$. Therefore, \begin{align} W &= \sqrt{(E_1^*+E_2^*)^2-(\boldsymbol{p}_1^*+\boldsymbol{p}_2^*)^2}\\ &= E_1^*+E_2^*. \end{align} By using the following equations \begin{align} |\boldsymbol{p}_1| &= |\boldsymbol{p}_2|,\\ E_1^{*2} &= \boldsymbol{p}_1^{*2}+m_1^2,\\ E_2^{*2} &= \boldsymbol{p}_2^{*2}+m_2^2=\boldsymbol{p}_1^{*2}+m_2^2, \end{align} $W$ can be written as \begin{align} W &= E_1^*+E_2^*\\ &= \sqrt{\boldsymbol{p}_1^{*2}+m_1^2}+\sqrt{\boldsymbol{p}_1^{*2}+m_2^2} \end{align} By making square for both sides, \begin{align} W^2 &= \boldsymbol{p}_1^{*2}+m_1^2+\boldsymbol{p}_1^{*2}+m_2^2+2\sqrt{\left(\boldsymbol{p}_1^{*2}+m_1^2\right)\left(\boldsymbol{p}_1^{*2}+m_2^2\right)}\\ &= 2\boldsymbol{p}_1^{*2}+m_1^2+m_2^2+2\sqrt{\boldsymbol{p}_1^{*4}+\boldsymbol{p}_1^{*2}\left(m_1^2+m_2^2\right)+m_1^2m_2^2}\\ W^2-2\boldsymbol{p}_1^{*2}-\left(m_1^2+m_2^2\right) &= 2\sqrt{\boldsymbol{p}_1^{*4}+\boldsymbol{p}_1^{*2}\left(m_1^2+m_2^2\right)+m_1^2m_2^2}.\\ \end{align} Again by making square for both sides, \begin{align} \left[W^2-2\boldsymbol{p}_1^{*2}-\left(m_1^2+m_2^2\right)\right]^2 &= 4\left[\boldsymbol{p}_1^{*4}+\boldsymbol{p}_1^{*2}\left(m_1^2+m_2^2\right)+m_1^2m_2^2\right]\\ W^4+4\boldsymbol{p}_1^{*4}+\left(m_1^2+m_2^2\right)^2-4W^2\boldsymbol{p}_1^{*2}-2W^2\left(m_1^2+m_2^2\right)+4\boldsymbol{p}_1^{*2}\left(m_1^2+m_2^2\right)&= 4\boldsymbol{p}_1^{*4}+4\boldsymbol{p}_1^{*2}\left(m_1^2+m_2^2\right)+4m_1^2m_2^2\\ W^4+\left(m_1^2+m_2^2\right)^2-4W^2\boldsymbol{p}_1^{*2}-2W^2\left(m_1^2+m_2^2\right)&= 4m_1^2m_2^2\\ 4W^2\boldsymbol{p}_1^{*2} &= W^4-2W^2\left(m_1^2+m_2^2\right)+\left(m_1^2+m_2^2\right)^2-4m_1^2m_2^2\\ &= W^4-2W^2\left(m_1^2+m_2^2\right)+\left(m_1^2-m_2^2\right)^2\\ &= W^4-W^2\left[\left(m_1+m_2\right)^2+\left(m_1-m_2\right)^2\right]+\left(m_1^2-m_2^2\right)^2\\ &= \left[W^2-\left(m_1+m_2\right)^2\right]\left[W^2-\left(m_1-m_2\right)^2\right]\\ \boldsymbol{p}_1^{*2} &= \frac{1}{4W^2}\left[W^2-\left(m_1+m_2\right)^2\right]\left[W^2-\left(m_1-m_2\right)^2\right]\\ |\boldsymbol{p}_1^{*}| &= \frac{1}{2W}\sqrt{\left[W^2-\left(m_1+m_2\right)^2\right]\left[W^2-\left(m_1-m_2\right)^2\right]}\\ \end{align}
The formula for N-N Scattering
Assuming $m_1=m_2=m_\mathrm{N}$, from the general formula,
\begin{align} |\boldsymbol{p}_1'| = &= \frac{1}{2W}\sqrt{\left[W^2-\left(m_1+m_2\right)^2\right]\left[W^2-\left(m_1-m_2\right)^2\right]}\\ &= \frac{1}{2W}\sqrt{\left[W^2-\left(m_\mathrm{N}+m_\mathrm{N}\right)^2\right]\left[W^2-\left(m_\mathrm{N}-m_\mathrm{N}\right)^2\right]}\\ &= \frac{1}{2W}\sqrt{\left[W^2-(2m_\mathrm{N})^2\right]W^2}\\ &= \frac{1}{2}\sqrt{W^2-4m_\mathrm{N}^2}\\ \end{align}
Derivation of Quantity 3. c.m. momentum after the interaction
The General Formula
It is almost the same as the derivation of Quantity 2.
The formula for Elastic Scattering
For the elastic scattering, $m_1 = m_3$ and $m_2 = m_4$. Therefore, \begin{align} |\boldsymbol{p}_3^{*}| &= \frac{1}{2W}\sqrt{\left[W^2-\left(m_3+m_4\right)^2\right]\left[W^2-\left(m_3-m_4\right)^2\right]}\\ &= \frac{1}{2W}\sqrt{\left[W^2-\left(m_1+m_2\right)^2\right]\left[W^2-\left(m_1-m_2\right)^2\right]}\\ &= |\boldsymbol{p}_1^{*}| \end{align}
The formula for N-N Scattering
For N-N scattering, $m_1 = m_2 = m_3 = m_4 = m_\mathrm{N}$. Therefore,
\begin{align} |\boldsymbol{p}_3'| = |\boldsymbol{p}_1'| = \frac{1}{2}\sqrt{W^2-4m_\mathrm{N}^2} \end{align}
Derivation of Quantity 4. Velocity of the c.m.
The General Formula
From the notes below, the velocity of the c.m. $\boldsymbol{\beta}_{\rm cm}$ of two moving particles is written as
\begin{align} \boldsymbol{\beta}_{\rm cm} = \frac{\boldsymbol{p}_1+\boldsymbol{p}_2}{E_1+E_2}. \end{align}
If the second particle is not moving, $\boldsymbol{p}_2=0$ and $E_2=m_2$. Therefore, \begin{align} \boldsymbol{\beta}_{\rm cm} = \frac{\boldsymbol{p}_1}{E_1+m_2}. \end{align}
In the center of mass system, $\boldsymbol{\beta}_\mathrm{cm}=\boldsymbol{\beta}_2^*$. As a result,
\begin{align} \boldsymbol{\beta}_2^* = \boldsymbol{\beta}_{\rm cm} = \frac{\boldsymbol{p}_1}{E_1+m_2} \end{align}
Derivation of Quantity 5. $\gamma$ of the c.m.
The General Formula
In general, \begin{align} \gamma = \frac{1}{\sqrt{1-|\boldsymbol{\beta}|^2}}. \end{align}
Therefore,
\begin{align} \gamma_2^* &= \frac{1}{\sqrt{1-|\boldsymbol{\beta}_2^*|^2}}\\ &= \frac{1}{\sqrt{1-\left|\frac{\boldsymbol{p}_1}{E_1+m_2}\right|^2}}\\ &= \frac{E_1+m_2}{\sqrt{(E_1+m_2)^2-\boldsymbol{p}_1^2}}\\ &= \frac{E_1+m_2}{W}. \end{align}
In the center of the mass system, $\boldsymbol{\beta}_2^*=\boldsymbol{\beta}_\mathrm{cm}$ and $\gamma_2^* = \gamma_\mathrm{cm}$. As a result,
\begin{align} \gamma_2^* = \gamma_\mathrm{cm} = \frac{E_1+m_2}{W}. \end{align}
Derivation of Quantity 6. Maximum lab scattering angle
The General Formula
From a equation in the derivation of Quantity 7.,
\begin{align} \tan\theta_3 &= \frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}.\\ \end{align}
By differentiating this equation,
\begin{align} \frac{d(\tan\theta_3)}{d\theta_3^*} &= \frac{\cos\theta_3^*[\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)]-\sin\theta_3^*\gamma_2^*(-\sin\theta_3^*)}{\left[\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\right]^2}\\ &= \frac{\gamma_2^*[\delta_{23}^*\cos^2\theta_3^*+\cos^2\theta_3^*+\cos^2\theta_3^*]}{\left[\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\right]^2}\\ &= \frac{\gamma_2^*[\delta_{23}^*\cos\theta_3^*+1]}{\left[\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\right]^2}.\\ \end{align}
If $\delta_{23}^*< 1$, $\frac{d(\tan\theta_3)}{d\theta_3^*}>0$. Therefore, the $\tan\theta_3$ becomes maximum and reaches zero at $\theta_3^*=180^\circ$. In this case, $\theta_{3\mathrm{max}} = 180^\circ$.
If $\delta_{23}^*\ge 1$ and $\cos\theta_3^*=-1/\delta_{23}^*$, $\frac{d(\tan\theta_3)}{d\theta_3^*}=0$. Therefore, the $\tan\theta_3$ becomes maximum at \begin{align} \cos\theta_3^*=-1/\delta_{23}^*. \end{align}
By substituting this formula into the formula of $\tan\theta_3$,
\begin{align} \tan\theta_3 &= \frac{\sqrt{1-(1/\delta_{23}^*)^2}}{\gamma_2^*\left(\delta_{23}^*-1/\delta_{23}^*\right)}\\ &= \frac{\sqrt{\delta_{23}^{*2}-1}}{\gamma_2^*\left(\delta_{23}^{*2}-1\right)}\\ &= \frac{1}{\gamma_2^*\sqrt{\delta_{23}^{*2}-1}}.\\ \end{align}
The formula for N-N Scattering
For N-N scattering, $m_1 = m_2 = m_3 = m_4 = m_\mathrm{N}$, and
\begin{align} |\boldsymbol{p}_3'| = |\boldsymbol{p}_1'| = |\boldsymbol{p}_2'|\\ |\boldsymbol{\beta}_3'| = |\boldsymbol{\beta}_1'| = |\boldsymbol{\beta}_2'|\\ \end{align} Therefore, \begin{align} \delta_{23}^* = 1 \end{align}
From a equation in the derivation of Quantity 7.,
\begin{align} \tan\theta_3 &= \frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}.\\ &= \frac{\sin\theta_3^*}{\gamma_2^*\left(1+\cos\theta_3^*\right)}. \end{align}
Therefore, $\tan\theta_3$ becomes infinite at $\cos\theta_3^*=-1$. In that case, $\mathrm{3max}=90^\circ$.
Derivation of Quantity 7. c.m. to lab angle ($\theta_{\rm cm} \rightarrow \theta_{\rm lab}$)
The General Formula
\begin{align} \begin{pmatrix} E_3\\ |\boldsymbol{p}_3|\cos\theta_{\rm lab} \end{pmatrix} &= \begin{pmatrix} \gamma_{\rm cm} & \beta_{\rm cm}\gamma_{\rm cm}\\ \beta_{\rm cm}\gamma_{\rm cm} & \gamma_{\rm cm} \end{pmatrix} \begin{pmatrix} E_3^*\\ |\boldsymbol{p}_3^*|\cos\theta_{\rm cm} \end{pmatrix}\\ |\boldsymbol{p}_3|\cos\theta_{\rm lab} &= \gamma_{\rm cm}\left(|\boldsymbol{p}_3^*|\cos\theta_{\rm cm}+\beta_{\rm cm}E_3^*\right)\\ |\boldsymbol{p}_3|\sin\theta_{\rm lab} &= |\boldsymbol{p}_3^*|\sin\theta_{\rm cm} \end{align}
Therefore,
\begin{align} \frac{|\boldsymbol{p}_3|\sin\theta_{\rm lab}}{|\boldsymbol{p}_3|\cos\theta_{\rm lab}} &= \frac{|\boldsymbol{p}_3^*|\sin\theta_{\rm cm}}{\gamma_{\rm cm}\left(|\boldsymbol{p}_3^*|\cos\theta_{\rm cm}+\beta_{\rm cm}E_3^*\right)}\\ \tan\theta_{\rm lab} &= \frac{\sin\theta_{\rm cm}}{\gamma_{\rm cm}\left(\cos\theta_{\rm cm}+\beta_{\rm cm}(E_3^*/|\boldsymbol{p}_3^*|)\right)}\\ \tan\theta_{\rm lab} &= \frac{\sin\theta_{\rm cm}}{\gamma_{\rm cm}\left(\cos\theta_{\rm cm}+\beta_{\rm cm}/|\boldsymbol{\beta}_3^*|\right)}\\ \end{align} In the center of mass system, $\beta_\mathrm{cm}=|\boldsymbol{\beta}_2^*|$. Therefore, \begin{align} \beta_{\rm cm}/|\boldsymbol{\beta}_3^*| &= |\boldsymbol{\beta}_2^*|/|\boldsymbol{\beta}_3^*|\\ &= \delta_{23}^*. \end{align} By using this formula, $\gamma_\mathrm{cm}=\gamma_2^*$, $\theta_\mathrm{cm}=\theta_3^*$, and $\theta_\mathrm{lab}=\theta_3$, \begin{align} \tan\theta_3 &= \frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}.\\ \end{align}
By using the relation $\cos\theta=1/\sqrt{1+\tan^2\theta}$, \begin{align} \cos\theta_3 &= \frac{1}{\sqrt{1+\left[\frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}\right]^2}}\\ &= \frac{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}{\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}} \end{align}
The first formula for Elastic Scattering
For elastic scattering, $m_1 = m_3$ and $|\boldsymbol{p}_3^*| = |\boldsymbol{p}_1^*|$. Therefore,
\begin{align} |\boldsymbol{\beta}_3^*| = |\boldsymbol{\beta}_1^*|\\ \delta_{23}^* = \delta_{21}^* \end{align}
From a equation in the derivation of Quantity 7.,
\begin{align} \tan\theta_3 &= \frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}.\\ &= \frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{21}^*+\cos\theta_3^*\right)}.\\ \end{align}
The second formula for Elastic Scattering
\begin{align} \begin{pmatrix} E_4\\ |\boldsymbol{p}_4|\cos\theta_4 \end{pmatrix} &= \begin{pmatrix} \gamma_{\rm cm} & \beta_{\rm cm}\gamma_{\rm cm}\\ \beta_{\rm cm}\gamma_{\rm cm} & \gamma_{\rm cm} \end{pmatrix} \begin{pmatrix} E_4^*\\ -|\boldsymbol{p}_4^*|\cos\theta_4^* \end{pmatrix}\\ |\boldsymbol{p}_4|\cos\theta_4 &= \gamma_{\rm cm}\left(\beta_{\rm cm}E_4^*-|\boldsymbol{p}_4^*|\cos\theta_4^*\right)\\ |\boldsymbol{p}_4|\sin\theta_4 &= |\boldsymbol{p}_4^*|\sin\theta_4^* \end{align}
Therefore,
\begin{align} \frac{|\boldsymbol{p}_4|\sin\theta_4}{|\boldsymbol{p}_4|\cos\theta_4} &= \frac{|\boldsymbol{p}_4^*|\sin\theta_4^*}{\gamma_{\rm cm}\left(\beta_{\rm cm}E_4^*-|\boldsymbol{p}_4^*|\cos\theta_4\right)}\\ \tan\theta_4 &= \frac{\sin\theta_4^*}{\gamma_{\rm cm}\left(\beta_{\rm cm}(E_4^*/|\boldsymbol{p}_4^*|)-\cos\theta_4^*\right)}\\ \tan\theta_4 &= \frac{\sin\theta_4^*}{\gamma_{\rm cm}\left(\beta_{\rm cm}/|\boldsymbol{\beta}_4^*|-\cos\theta_4^*\right)}\\ \end{align}
By using $\theta_4^* = \theta_3^*$, $\beta_{\rm cm} = |\boldsymbol{\beta}_2^*|$ and $\gamma_{\rm cm} = \gamma_2^*$, \begin{align} \tan\theta_4 = \frac{\sin\theta_3^*}{\gamma_2^*\left(|\boldsymbol{\beta}_2^*|/|\boldsymbol{\beta}_4^*|-\cos\theta_3^*\right)} \end{align}
For elastic scattering, $m_2=m_4$, $|\boldsymbol{p}_2^*|=|\boldsymbol{p}_4^*|$, and $|\boldsymbol{\beta}_2^*|=|\boldsymbol{\beta}_4^*|$. Therefore, \begin{align} \tan\theta_4 = \frac{\sin\theta_3^*}{\gamma_2^*(1-\cos\theta_3^*)} \end{align}
In general, $\cot\dfrac{x}{2} = \dfrac{\sin x}{1-\cos x}$. Therefore,
\begin{align} \tan\theta_4 = \frac{1}{\gamma_2^*}\cot\frac{\theta_3^*}{2} \end{align}
The formula for N-N Scattering
From an equation in the derivation of Quantity 6., $\delta_{23}^* = 1$. From this equation and an equation in the derivation of Quantity 7.,
\begin{align} \tan\theta_3 &= \frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}.\\ &= \frac{\sin\theta_3^*}{\gamma_2^*\left(1+\cos\theta_3^*\right)}.\\ \end{align}
Derivation of Quantity 8. lab to c.m. angle transformation ($\theta_\mathrm{cm} \rightarrow \theta_\mathrm{lab}$)
The General Formula
From an equation in the derivation of Quantity 7., \begin{align} \tan\theta_3 &= \frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}.\\ \end{align}
By taking the square of the formula, \begin{align} \tan^2\theta_3 &= \frac{\sin^2\theta_3^*}{\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}\\ &= \frac{1-\cos^2\theta_3^*}{\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2},\\ &\Rightarrow (\gamma_2^*\tan\theta_3)^2\left(\delta_{23}^*+\cos\theta_3^*\right)^2=1-\cos^2\theta_3^*\\ &\Rightarrow \left[(\gamma_2^*\tan\theta_3)^2+1\right]\cos\theta_3^{*2}+2\delta_{23}^*(\gamma_2^*\tan\theta_3)^2\cos\theta_3^*+\delta_{23}^{*2}(\gamma_2^*\tan\theta_3)^2-1=0\\ \end{align}
In general, the solution of the equation \begin{align} ax^2+2bx+c=0 \end{align} is \begin{align} x=\frac{b}{a}\pm\sqrt{\left(\frac{b}{a}\right)^2-\frac{c}{a}}. \end{align} Therefore, \begin{align} \cos\theta_3^*=\frac{\delta_{23}^*(\gamma_2^*\tan\theta_3)^2}{(\gamma_2^*\tan\theta_3)^2+1}\pm\sqrt{\left(\frac{\delta_{23}^*(\gamma_2^*\tan\theta_3)^2}{(\gamma_2^*\tan\theta_3)^2+1}\right)^2-\frac{\delta_{23}^{*2}(\gamma_2^*\tan\theta_3)^2-1}{(\gamma_2^*\tan\theta_3)^2+1}}. \end{align}
The another solution
\begin{align} \begin{pmatrix} E_3^*\\ |\boldsymbol{p}_3^*|\cos\theta_{\rm cm} \end{pmatrix} &= \begin{pmatrix} \gamma_{\rm cm} & -\beta_{\rm cm}\gamma_{\rm cm}\\ -\beta_{\rm cm}\gamma_{\rm cm} & \gamma_{\rm cm} \end{pmatrix} \begin{pmatrix} E_3\\ |\boldsymbol{p}_3|\cos\theta_{\rm lab} \end{pmatrix}\\ |\boldsymbol{p}_3^*|\cos\theta_{\rm cm} &= \gamma_{\rm cm}\left(|\boldsymbol{p}_3|\cos\theta_{\rm lab}-\beta_{\rm cm}E_3\right)\\ |\boldsymbol{p}_3^*|\sin\theta_{\rm cm} &= |\boldsymbol{p}_3|\sin\theta_{\rm lab} \end{align}
Therefore,
\begin{align} \frac{|\boldsymbol{p}_3^*|\sin\theta_{\rm cm}}{|\boldsymbol{p}_3^*|\cos\theta_{\rm cm}} &= \frac{|\boldsymbol{p}_3|\sin\theta_{\rm lab}}{\gamma_{\rm cm}\left(|\boldsymbol{p}_3|\cos\theta_{\rm lab}-\beta_{\rm cm}E_3\right)}\\ \tan\theta_{\rm cm} &= \frac{\sin\theta_{\rm lab}}{\gamma_{\rm cm}\left(\cos\theta_{\rm lab}-\beta_{\rm cm}(E_3/|\boldsymbol{p}_3|)\right)}\\ \tan\theta_{\rm cm} &= \frac{\sin\theta_{\rm lab}}{\gamma_{\rm cm}\left(\cos\theta_{\rm lab}-\beta_{\rm cm}/|\boldsymbol{\beta}_3|\right)}\\ \end{align}
Derivation of Quantity 9. Solid angle transformation (Jacobian)
The first formula of the General Formulae
\begin{align} \frac{d\Omega_3}{d\Omega_3^*} &= \frac{\sin\theta_3d\theta_3d\phi}{\sin\theta_3^*d\theta_3^*d\phi}\\ &= \frac{\sin\theta_3d\theta_3}{\sin\theta_3^*d\theta_3^*}\\ &= \frac{d(\cos\theta_3)}{d(\cos\theta_3^*)}\\ \end{align} By using the Quantity 7. and $(f/g)'=(f'g-fg')/g^2$, \begin{align} \frac{d(\cos\theta_3)}{d(\cos\theta_3^*)} &= \frac{d}{d(\cos\theta_3^*)}\left[\frac{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}{\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\right]\\ &= \left.\left[\frac{d\left[\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\right]}{d(\cos\theta_3^*)}\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}-\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\frac{d\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}{d(\cos\theta_3^*)}\right]\right/\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]\\ &= \left.\left[\gamma_2^*\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}-\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\frac{1}{2\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\frac{d\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]}{d(\cos\theta_3^*)}\right]\right/\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]\\ &= \left.\left[\gamma_2^*\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}-\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\frac{1}{2\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\frac{d\left[1-\cos^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^{*2}+2\delta_{23}^{*}\cos\theta_3^*+\cos^2\theta_3^*\right)\right]}{d(\cos\theta_3^*)}\right]\right/\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]\\ &= \left.\left[\gamma_2^*\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}-\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\frac{1}{2\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\frac{d\left[(\gamma_2^{*2}-1)\cos^2\theta_3^*+2\delta_{23}^{*}\gamma_2^{*2}\cos\theta_3^*+\delta_{23}^{*2}\gamma_2^{*2}+1\right]}{d(\cos\theta_3^*)}\right]\right/\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]\\ &= \left.\left[\gamma_2^*\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}-\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\frac{1}{2\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\left[2(\gamma_2^{*2}-1)\cos\theta_3^*+2\delta_{23}^{*}\gamma_2^{*2}\right]\right]\right/\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]\\ &= \left.\left[\gamma_2^*\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]-\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\left[(\gamma_2^{*2}-1)\cos\theta_3^*+\delta_{23}^{*}\gamma_2^{*2}\right]\right]\right/\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]^{3/2}\\ &= \gamma_2^*\left.\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2-\left(\delta_{23}^*+\cos\theta_3^*\right)\left[(\gamma_2^{*2}-1)\cos\theta_3^*+\delta_{23}^{*}\gamma_2^{*2}\right]\right]\right/\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]^{3/2}\\ &= \gamma_2^*\left.\left[(\gamma_2^{*2}-1)\cos^2\theta_3^*+2\delta_{23}^{*}\gamma_2^{*2}\cos\theta_3^*+\delta_{23}^{*2}\gamma_2^{*2}+1-\left[(\gamma_2^{*2}-1)\cos^2\theta_3^*+\delta_{23}^{*}\gamma_2^{*2}\cos\theta_3^*+\delta_{23}^{*}(\gamma_2^{*2}-1)\cos\theta_3^*+\delta_{23}^{*2}\gamma_2^{*2}\right]\right]\right/\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]^{3/2}\\ &= \gamma_2^*\left.\left[(\gamma_2^{*2}-1)\cos^2\theta_3^*+2\delta_{23}^{*}\gamma_2^{*2}\cos\theta_3^*+\delta_{23}^{*2}\gamma_2^{*2}+1-\left[(\gamma_2^{*2}-1)\cos^2\theta_3^*+2\delta_{23}^{*}\gamma_2^{*2}\cos\theta_3^*-\delta_{23}^{*}\cos\theta_3^*+\delta_{23}^{*2}\gamma_2^{*2}\right]\right]\right/\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]^{3/2}\\ &= \frac{\gamma_2^*(1+\delta_{23}^{*}\cos\theta_3^*)}{\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]^{3/2}} \end{align}
The second formula of the General Formulae
From Quantity 7., \begin{align} \cos\theta_3 &= \frac{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}{\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}. \end{align} In general, $\sin\theta=\sqrt{1-\cos^2\theta}$. Therefore, \begin{align} \sin\theta_3 &= \sqrt{1-\left[\frac{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}{\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\right]^2}\\ &= \sqrt{\frac{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2-\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\\ &= \sqrt{\frac{\sin^2\theta_3^*}{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\\ &= \frac{\sin\theta_3^*}{\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\\ \Rightarrow \frac{\sin\theta_3}{\sin\theta_3^*} &= \frac{1}{\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}} \end{align} By substituting this formula into the first formula of Quantity 9., \begin{align} \frac{d\Omega_3}{d\Omega_3^*} &= \frac{\gamma_2^*(1+\delta_{23}^*\cos\theta_3^*)}{\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]^{3/2}}\\ &= \frac{\sin^3\theta_3}{\sin^3\theta_3^*}\gamma_2^*(1+\delta_{23}^*\cos\theta_3^*)\\ \end{align}
The formula for N-N Scattering
From an equation in the derivation of Quantity 6., $\delta_{23}^* = 1$. Therefore, the first formula of the General Formulae of Quantity 9. can be written as
\begin{align} \frac{d(\cos\theta_3)}{d(\cos\theta_3^*)} &= \frac{\gamma_2^*(1+\delta_{23}^{*}\cos\theta_3^*)}{\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]^{3/2}} &= \frac{\gamma_2^*(1+\cos\theta_3^*)}{\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(1+\cos\theta_3^*\right)^2\right]^{3/2}} \end{align}
Derivation of Quantity 10. Relations between the $\gamma$ factors
The first formula of the General Formulae
In general,
\begin{align} |\boldsymbol{p}|=m\gamma|\boldsymbol{\beta}|=m\sqrt{\gamma^2-1}. \end{align} On the other hand, in the Center of mass system, \begin{align} |\boldsymbol{p}_1^*|=|\boldsymbol{p}_2^*|. \end{align} Therefore, \begin{align} m_1\sqrt{\gamma_1^{*2}-1}=m_2\sqrt{\gamma_2^{*2}-1}\\ \Rightarrow m_1^2(\gamma_1^{*2}-1)=m_2^2(\gamma_2^{*2}-1)\\ \Rightarrow (\gamma_1^{*2}-1)=k_{21}^2(\gamma_2^{*2}-1). \end{align}
The third formula of the General Formulae
From Quantity 1. and 5.,
\begin{align} \gamma_2^* &= \gamma_\mathrm{cm}\\ &= \frac{E_1+m_2}{W}\\ &= \frac{E_1+m_2}{\sqrt{m_1^2+m_2^2+2m_2E_1}}\\ &= \frac{m_1\gamma_1+m_2}{\sqrt{m_1^2+m_2^2+2m_1m_2\gamma_1}}. \end{align} Then, by using $k_{12}=m_1/m_2$,
\begin{align} \gamma_2^* = \frac{k_{21}+\gamma_1}{\sqrt{1+k_{21}^2+2\gamma_1k_{21}}} \end{align}
The second formula of the General Formulae
By substituting the third formula into the first formula,
\begin{align} (\gamma_1^{*2}-1) &= k_{21}^2\left[\frac{(k_{21}+\gamma_1)^2}{1+k_{21}^2+2\gamma_1k_{21}}-1\right]\\ &= k_{21}^2\left[\frac{k_{21}^2+\gamma_1^2+2\gamma_1k_{21}}{1+k_{21}^2+2\gamma_1k_{21}}-1\right]\\ &= k_{21}^2\frac{k_{21}^2+\gamma_1^2+2\gamma_1k_{21}-(1+k_{21}^2+2\gamma_1k_{21})}{1+k_{21}^2+2\gamma_1k_{21}}\\ &= k_{21}^2\frac{\gamma_1^2-1}{1+k_{21}^2+2\gamma_1k_{21}}\\ &= \frac{\gamma_1^2-1}{(1/k_{21})^2+1+2\gamma_1(1/k_{21})}\\ &= \frac{\gamma_1^2-1}{1+k_{12}^2+2\gamma_1k_{12}}\\ \Leftrightarrow \gamma_1^{*2} &= \frac{\gamma_1^2-1}{1+k_{12}^2+2\gamma_1k_{12}}+1\\ &= \frac{\gamma_1^2-1+(1+k_{12}^2+2\gamma_1k_{12})}{1+k_{12}^2+2\gamma_1k_{12}}\\ &= \frac{\gamma_1^2+k_{12}^2+2\gamma_1k_{12}}{1+k_{12}^2+2\gamma_1k_{12}}\\ &= \frac{(k_{12}+\gamma_1)^2}{1+k_{12}^2+2\gamma_1k_{12}}\\ \end{align}
Then,
\begin{align} \gamma_1^* = \frac{k_{12}+\gamma_1}{\sqrt{1+k_{12}^2+2\gamma_1k_{12}}} \end{align}
The formulae for N-N Scattering
For N-N scattering, $m_1 = m_2 = m_\mathrm{N}$. Therefore,
\begin{align} k_{12} &= \frac{m_1}{m_2}\\ &= \frac{m_\mathrm{N}}{m_\mathrm{N}}\\ &= 1\\ \end{align}
Similarly, $k_{21} = 1$. As a result, from the first formula of the General Formulae,
\begin{align} (\gamma_1^{*2}-1)=k_{21}^2(\gamma_2^{*2}-1)\\ \Rightarrow \gamma_1^{*2}-1=\gamma_2^{*2}-1\\ \Rightarrow \gamma_1^*=\gamma_2^*. \end{align}
And, from the second formula of the General Formulae,
\begin{align} \gamma_1^* &= \frac{k_{12}+\gamma_1}{\sqrt{1+k_{12}^2+2\gamma_1k_{12}}}\\ &= \frac{1+\gamma_1}{\sqrt{1+1+2\gamma_1}}\\ &= \frac{1+\gamma_1}{\sqrt{2(1+\gamma_1)}}\\ &= \sqrt{\frac{1+\gamma_1}{2}}\\ \end{align}
Derivation of Quantity 11. Lab quantity relations
The first formula of the General Formulae
From the law of conservation of momentum, \begin{align} &&|\boldsymbol{p}_1| = |\boldsymbol{p}_3|\cos\theta_3 + |\boldsymbol{p}_4|\cos\theta_4,\\ &&|\boldsymbol{p}_3|\sin\theta_3 = |\boldsymbol{p}_4|\sin\theta_4.\\ \end{align} By moving $|\boldsymbol{p}_3|\cos\theta_3$ to left and making squares for the both sides of each formula, \begin{align} \boldsymbol{p}_1^2 + \boldsymbol{p}_3^2\cos^2\theta_3 -2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 &= \boldsymbol{p}_4^2\cos^2\theta_4,\\ \boldsymbol{p}_3^2\sin^2\theta_3 &= \boldsymbol{p}_4^2\sin^2\theta_4.\\ \end{align} By summing these formulae, \begin{align} \boldsymbol{p}_1^2 + (\boldsymbol{p}_3^2\cos^2\theta_3+\boldsymbol{p}_3^2\sin^2\theta_3) -2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 &= \boldsymbol{p}_4^2\cos^2\theta_4+\boldsymbol{p}_4^2\sin^2\theta_4,\\ \boldsymbol{p}_1^2 + \boldsymbol{p}_3^2 -2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 &= \boldsymbol{p}_4^2.\\ \end{align}
(N.B. This formula can be obtained directly by taking square of the both sides of the relation $\boldsymbol{p}_1=\boldsymbol{p}_3+\boldsymbol{p}_4 \Leftrightarrow \boldsymbol{p}_1-\boldsymbol{p}_3=\boldsymbol{p}_4$)
Then, \begin{align} 2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 &= \boldsymbol{p}_1^2 + \boldsymbol{p}_3^2 - \boldsymbol{p}_4^2\\ &= E_1^2 - m_1^2 + E_3^2 - m_3^2 - E_4^2 + m_4^2.\\ \end{align} From the law of conservation of energy, \begin{align} E_1+m_2&=E_3+E_4,\\ E_4&=E_1+m_2-E_3,\\ E_4^2&=E_1^2+m_2^2+E_3^2-2(E_1+m_2)E_3+2E_1m_2.\\ \end{align} By substituting this formula into the above formula, \begin{align} 2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 &= m_4^2 - m_1^2 - m_2^2 - m_3^2+2(E_1+m_2)E_3-2E_1m_2.\\ \end{align}
The second formula of the General Formulae
From the law of conservation of momentum in the direction of $\boldsymbol{p}_3$, \begin{align} |\boldsymbol{p}_1|\cos\theta_3 &= |\boldsymbol{p}_3|+|\boldsymbol{p}_4|\cos(\theta_3+\theta_4)\\ \Rightarrow 2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 &= 2\boldsymbol{p}_3^2+2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4)\\ \Rightarrow 2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) &= 2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3-2\boldsymbol{p}_3^2\\ &= 2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3-2E_3^2+2m_3^2.\\ \end{align} By substituting the first formula of the Quantity 11. Lab quantity relations into this formula, \begin{align} 2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) &= m_4^2 - m_1^2 - m_2^2 - m_3^2+2(E_1+m_2)E_3-2E_1m_2 -2E_3^2+2m_3^2\\ &= m_3^2 + m_4^2 - m_1^2 - m_2^2+2(E_1+m_2)E_3-2E_1m_2 -2E_3^2\\ \end{align} By substituting the $E_1+m_2=E_3+E_4$ into the formula, \begin{align} 2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) &= m_3^2 + m_4^2 - m_1^2 - m_2^2+2(E_3+E_4)E_3-2E_1m_2 -2E_3^2\\ &= m_3^2 + m_4^2 - m_1^2 - m_2^2-2E_1m_2+2E_3E_4\\ \end{align}
The formula for N-N Scattering
For N-N scattering, $m_1 = m_2 = m_3 = m_4 = m_\mathrm{N}$. Therefore, the second formula of the General Formulae becomes
\begin{align} 2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) &= m_3^2 + m_4^2 - m_1^2 - m_2^2+2(E_3+E_4)E_3-2E_1m_2 -2E_3^2\\ &= m_\mathrm{N}^2 + m_\mathrm{N}^2 - m_\mathrm{N}^2 - m_\mathrm{N}^2-2E_1m_\mathrm{N}+2E_3E_4\\ &= -2E_1m_\mathrm{N}+2E_3E_4\\ \Rightarrow |\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) &= -E_1m_\mathrm{N}+E_3E_4\\ &= E_3E_4-m_\mathrm{N}(E_1+m_\mathrm{N})+m_\mathrm{N}^2\\ \end{align}
From the law of conservation of energy, $E_1+m_\mathrm{N}=E_3+E_4$. Therefore, \begin{align} |\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) &= E_3E_4-m_\mathrm{N}(E_1+m_\mathrm{N})+m_\mathrm{N}^2\\ &= E_3E_4-m_\mathrm{N}(E_3+E_4)+m_\mathrm{N}^2\\ &= (E_3-m_\mathrm{N})(E_4-m_\mathrm{N})\\ &= T_3T_4 \end{align}
Derivation of Quantity 12. Maximum K.E. transfer to a stationary particle
The first formula of the General Formulae \begin{align} \begin{pmatrix} E_4\\ |\boldsymbol{p}_4|\cos\theta_\mathrm{lab} \end{pmatrix} &= \begin{pmatrix} \gamma_\mathrm{cm} & \beta_\mathrm{cm}\gamma_\mathrm{cm}\\ \beta_\mathrm{cm}\gamma_\mathrm{cm} & \gamma_\mathrm{cm} \end{pmatrix} \begin{pmatrix} E_4^*\\ -|\boldsymbol{p}_4^*|\cos\theta_\mathrm{cm} \end{pmatrix}\\ \Rightarrow E_4 &= \gamma_\mathrm{cm} (E_4^* - \beta_\mathrm{cm}|\boldsymbol{p}_4^*|\cos\theta_\mathrm{cm}) \end{align}
Therefore, $E_4$ becomes maximum at $\theta_\mathrm{cm}=\pi$. The maximum value is \begin{align} E_\mathrm{4max} &= \gamma_\mathrm{cm} (E_4^* + \beta_\mathrm{cm}|\boldsymbol{p}_4^*|). \end{align}
From this formula, \begin{align} T_\mathrm{max} &= E_\mathrm{4max} - m_4\\ &= \gamma_\mathrm{cm} (E_4^* + \beta_\mathrm{cm}|\boldsymbol{p}_4^*|) - m_4. \end{align}
For the elastic scattering, $m_4 = m_2$, $|\boldsymbol{p}_4^*| = |\boldsymbol{p}_2^*|$, and $|E_4^*| = |E_2^*|$. Then, \begin{align} T_\mathrm{max} &= \gamma_\mathrm{cm} (E_2^* + \beta_\mathrm{cm}|\boldsymbol{p}_2^*|) - m_2\\ &= \gamma_\mathrm{cm} [m_2\gamma_2^* + \beta_\mathrm{cm}(m_2|\boldsymbol{\beta}_2^*|\gamma_2^*)] - m_2. \end{align} By using $|\boldsymbol{\beta}_2^*| = \beta_\mathrm{cm}$ and $\gamma_2^* = \gamma_\mathrm{cm}$, \begin{align} T_\mathrm{max} &= \gamma_\mathrm{cm} [m_2\gamma_\mathrm{cm} + \beta_\mathrm{cm}(m_2\beta_\mathrm{cm}\gamma_\mathrm{cm})] - m_2\\ &= m_2\gamma_\mathrm{cm}^2 (1+\beta_\mathrm{cm}^2) - m_2.\\ \end{align} In general, $|\boldsymbol{\beta}| = \sqrt{\gamma^2-1}/\gamma$. Therefore, \begin{align} T_\mathrm{max} &= m_2\gamma_\mathrm{cm}^2 \left(1+\frac{\gamma_\mathrm{cm}^2-1}{\gamma_\mathrm{cm}^2}\right) - m_2\\ &= m_2 (\gamma_\mathrm{cm}^2+\gamma_\mathrm{cm}^2-1) - m_2\\ &= 2m_2 (\gamma_\mathrm{cm}^2-1)\\ &= 2m_2 \boldsymbol{\beta}_\mathrm{cm}^2\gamma_\mathrm{cm}^2.\\ \end{align} By using Quantity 4. and 5., \begin{align} T_\mathrm{max} &= 2m_2 \left(\frac{\boldsymbol{p}_1}{E_1+m_2}\right)^2\left(\frac{E_1+m_2}{W}\right)^2\\ &= 2m_2 \frac{\boldsymbol{p}_1^2}{W^2}.\\ \end{align}
$W$ can be written as \begin{align} W &= \sqrt{m_1^2+m_2^2+2m_2E_1}\\ &= \sqrt{m_1^2+m_2^2+2m_2m_1\gamma_1}\\ &= \sqrt{m_1m_2\left(\frac{m_1}{m_2}+\frac{m_2}{m_1}+2\gamma_1\right)}\\ &= \sqrt{m_1m_2\left(k_{12}+k_{21}+2\gamma_1\right)}.\\ \end{align} By substituting this formula into the former formula, \begin{align} T_\mathrm{max} &= 2m_2 \frac{\boldsymbol{p}_1^2}{m_1m_2\left(k_{12}+k_{21}+2\gamma_1\right)}\\ &= \frac{2\boldsymbol{p}_1^2}{m_1(k_{12}+k_{21}+2\gamma_1)}.\\ \end{align}
The second formula of the General Formulae
From the first formula, \begin{align} T_\mathrm{max} &= \frac{2\boldsymbol{p}_1^2}{m_1(k_{12}+k_{21}+2\gamma_1)}\\ &= \frac{2m_1^2\boldsymbol{\beta}_1^2\gamma_1^2}{m_1(k_{12}+k_{21}+2\gamma_1)}\\ &= \frac{2m_1\boldsymbol{\beta}_1^2\gamma_1^2}{k_{12}+k_{21}+2\gamma_1}.\\ \end{align} By using $m_1=m_2/k_{21}$, \begin{align} T_\mathrm{max} &= \frac{2m_2\boldsymbol{\beta}_1^2\gamma_1^2}{k_{21}(k_{12}+k_{21}+2\gamma_1)}\\ &= \frac{2m_2\boldsymbol{\beta}_1^2\gamma_1^2}{1+k_{21}^2+2\gamma_1k_{21}}.\\ \end{align} If $k_{21} = m2/m1 \ll 1$, \begin{align} T_\mathrm{max} &= \frac{2m_2\boldsymbol{\beta}_1^2\gamma_1^2}{1+k_{21}^2+2\gamma_1k_{21}}\\ &\approx 2m_2\boldsymbol{\beta}_1^2\gamma_1^2.\\ \end{align}
Another derivation of the second formula of the General Formulae
If $m2/m1 \ll 1$, $|\boldsymbol{\beta}_\mathrm{cm}| \approx |\boldsymbol{\beta}_1|$ and $\gamma_\mathrm{cm} \approx \gamma_1$. Therefore, from the formula above, \begin{align} T_\mathrm{max} &= 2m_2 \boldsymbol{\beta}_\mathrm{cm}^2\gamma_\mathrm{cm}^2\\ &\approx 2m_2\boldsymbol{\beta}_1^2\gamma_1^2.\\ \end{align}
General memo
Lorentz transformation
\begin{align} E^*&=\gamma_0(E-\boldsymbol{p}\cdot\boldsymbol{\beta}_0)\\ \boldsymbol{p}^*&=\boldsymbol{p}+\boldsymbol{\beta}_0\gamma_0\left[\frac{\gamma_0}{\gamma_0+1}\boldsymbol{\beta}_0\cdot\boldsymbol{p}-E\right] \end{align}
Beam axis
$\boldsymbol{p}$ can be written as \begin{align} \boldsymbol{p} = p_{||}\boldsymbol{e}_{||} +p_{T}\boldsymbol{e}_T, \end{align} where $\boldsymbol{e}_{||}$ ($\boldsymbol{e}_T$) is a unit vector parallel (perpendicular) to $\boldsymbol{\beta}_0$, and $p_{||}$ ($p_T$) is the component of $\boldsymbol{p}$ parallel (perpendicular) to $\boldsymbol{\beta}_0$. Similarly, \begin{align} \boldsymbol{p}^* = p_{||}^*\boldsymbol{e}_{||} +p_{T}^*\boldsymbol{e}_T. \end{align} From the equation of $\boldsymbol{p}$, \begin{align} \boldsymbol{\beta}_0\cdot\boldsymbol{p} &= (\beta_0 \boldsymbol{e}_{||}) \cdot (p_{||}\boldsymbol{e}_{||} +p_{T}\boldsymbol{e}_T)\\ &= \beta_0 p_{||} \boldsymbol{e}_{||} \cdot \boldsymbol{e}_{||} + \beta_0 p_{T} \boldsymbol{e}_{||} \cdot \boldsymbol{e}_T\\ &= \beta_0 p_{||}. \end{align}
By using these equations, \begin{align} E^* &=\gamma_0(E-\boldsymbol{p}\cdot\boldsymbol{\beta}_0)\\ &=\gamma_0(E-p_{||}\beta_0)\\ \boldsymbol{p}^*&=\boldsymbol{p}+\boldsymbol{\beta}_0\gamma_0\left[\frac{\gamma_0}{\gamma_0+1}\boldsymbol{\beta}_0\cdot\boldsymbol{p}-E\right]\\ p_{||}^*\boldsymbol{e}_{||} +p_{T}^*\boldsymbol{e}_T &= p_{||}\boldsymbol{e}_{||} +p_{T}\boldsymbol{e}_T + \beta_0 \boldsymbol{e}_{||}\gamma_0\left[\frac{\gamma_0}{\gamma_0+1}\beta_0 p_{||}-E\right]\\ &= p_{||}\boldsymbol{e}_{||} +p_{T}\boldsymbol{e}_T + \left[\frac{(\gamma_0\beta_0)^2}{\gamma_0+1} p_{||}-\beta_0 \gamma_0 E\right]\boldsymbol{e}_{||}\\ &= p_{||}\boldsymbol{e}_{||} +p_{T}\boldsymbol{e}_T + \left[\frac{\gamma_0^2-1}{\gamma_0+1} p_{||}-\beta_0 \gamma_0 E\right]\boldsymbol{e}_{||}\\ &= p_{||}\boldsymbol{e}_{||} +p_{T}\boldsymbol{e}_T + \left[(\gamma_0-1) p_{||}-\beta_0 \gamma_0 E\right]\boldsymbol{e}_{||}\\ &= \left(\gamma_0 p_{||}-\beta_0 \gamma_0 E\right)\boldsymbol{e}_{||} +p_{T}\boldsymbol{e}_T.\\ \end{align} Finally, \begin{align} \begin{pmatrix} E^*\\ p_{||}^*\\ p_T^*\\ \end{pmatrix} = \begin{pmatrix} \gamma_0 & -\beta_0\gamma_0 & 0 \\ -\beta_0\gamma_0 & \gamma_0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} E\\ p_{||}\\ p_T\\ \end{pmatrix} \end{align}
Special case
The special case where $\boldsymbol{\beta}_0 = \beta_0 \boldsymbol{k}$, with $\boldsymbol{k}$ the unit vector along the $z$-direction, can be written
\begin{align} E^*&=\gamma_0E-\beta_0\gamma_0p_z\\ \boldsymbol{p}^*&=\boldsymbol{p}+\beta_0\boldsymbol{k}\gamma_0\left[\frac{\gamma_0}{\gamma_0+1}\beta_0 \boldsymbol{k}\cdot\boldsymbol{p}-E\right]\\ &=\boldsymbol{p}+\beta_0\boldsymbol{k}\gamma_0\left[\frac{\gamma_0}{\gamma_0+1}\beta_0 p_z-E\right]\\ &=\boldsymbol{p}+\left[\frac{(\beta_0\gamma_0)^2}{\gamma_0+1}p_z-\beta_0\gamma_0E\right]\boldsymbol{k}\\ &=\boldsymbol{p}+\left[\frac{\gamma_0^2-1}{\gamma_0+1}p_z-\beta_0\gamma_0E\right]\boldsymbol{k}\\ &=\boldsymbol{p}+\left[(\gamma_0-1)p_z-\beta_0\gamma_0E\right]\boldsymbol{k}\\ p_x^*\boldsymbol{i}+p_y^*\boldsymbol{j}+p_z^*\boldsymbol{k}&=p_x\boldsymbol{i}+p_y\boldsymbol{j}+p_z\boldsymbol{k}+\left[(\gamma_0-1)p_z-\beta_0\gamma_0E\right]\boldsymbol{k}\\ p_x^*\boldsymbol{i}+p_y^*\boldsymbol{j}+p_z^*\boldsymbol{k}&=p_x\boldsymbol{i}+p_y\boldsymbol{j}+(\gamma_0 p_z-\beta_0\gamma_0E)\boldsymbol{k}\\ p_x^* &= p_x \\ p_y^* &= p_y \\ p_z^* &= \gamma_0 p_z-\beta_0\gamma_0E \end{align}
\begin{align} \begin{pmatrix} E^*\\ p_x^*\\ p_y^*\\ p_z^* \end{pmatrix} = \begin{pmatrix} \gamma_0 & 0 & 0 & -\beta_0\gamma_0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\beta_0\gamma_0 & 0 & 0 & \gamma_0 \end{pmatrix} \begin{pmatrix} E\\ p_x\\ p_y\\ p_z \end{pmatrix} \end{align}
Velocity of the center of mass $\boldsymbol{\beta}_{\rm cm}$
In the center of mass frame, the sum of the momenta of the particles ($\boldsymbol{p}_1^* + \boldsymbol{p}_2^*$) should be $0$. Therefore, $\boldsymbol{\beta}_{\rm cm}$ can be obtained by solving the following equation for $\boldsymbol{\beta}_0$. \begin{align} 0 &= \boldsymbol{p}_1^* + \boldsymbol{p}_2^*\\ &= \boldsymbol{p}_1+\boldsymbol{\beta}_0\gamma_0\left[\frac{\gamma_0}{\gamma_0+1}\boldsymbol{\beta}_0\cdot\boldsymbol{p}_1-E_1\right] + \boldsymbol{p}_2+\boldsymbol{\beta}_0\gamma_0\left[\frac{\gamma_0}{\gamma_0+1}\boldsymbol{\beta}_0\cdot\boldsymbol{p}_2-E_2\right]\\ \end{align} The equation can be rearranged as below. \begin{align} \boldsymbol{p}_1 + \boldsymbol{p}_2 = -\boldsymbol{\beta}_0\gamma_0\left[\frac{\gamma_0}{\gamma_0+1}\boldsymbol{\beta}_0\cdot(\boldsymbol{p}_1+\boldsymbol{p}_2)-(E_1+E_2)\right] \end{align} This equation means that the direction of $\boldsymbol{\beta}_0$ is the same as that of $(\boldsymbol{p}_1 + \boldsymbol{p}_2)$. (Note that $\boldsymbol{\beta}_0\cdot(\boldsymbol{p}_1+\boldsymbol{p}_2)$ is a scalar term and has no direction.) Therefore, the unit vector $\widehat{\boldsymbol{\beta}_0}$ along the direction of $\boldsymbol{\beta}_0$ is \begin{align} \widehat{\boldsymbol{\beta}_0} = \frac{\boldsymbol{\beta}_0}{\beta_0} = \frac{\boldsymbol{p}_1 + \boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}. \end{align} The magnitude $\beta_0=|\boldsymbol{\beta}_0|$ of the vector $\boldsymbol{\beta}_0$ can be calculated by making inner product of $\boldsymbol{\beta}_0$ and $(\boldsymbol{p}_1 + \boldsymbol{p}_2)$ as below. \begin{align} \boldsymbol{\beta}_0\cdot(\boldsymbol{p}_1 + \boldsymbol{p}_2) &= -\boldsymbol{\beta}_0\cdot\boldsymbol{\beta}_0\gamma_0\left[\frac{\gamma_0}{\gamma_0+1}\boldsymbol{\beta}_0\cdot(\boldsymbol{p}_1+\boldsymbol{p}_2)-(E_1+E_2)\right]\\ &= -\beta_0^2\gamma_0\left[\frac{\gamma_0}{\gamma_0+1}\boldsymbol{\beta}_0\cdot(\boldsymbol{p}_1+\boldsymbol{p}_2)-(E_1+E_2)\right]\\ &= -\frac{(\beta_0\gamma_0)^2}{\gamma_0+1}\boldsymbol{\beta}_0\cdot(\boldsymbol{p}_1+\boldsymbol{p}_2)+\beta_0^2\gamma_0(E_1+E_2)\\ \beta_0^2\gamma_0(E_1+E_2) &= \left[1+\frac{(\beta_0\gamma_0)^2}{\gamma_0+1}\right]\boldsymbol{\beta}_0\cdot(\boldsymbol{p}_1 + \boldsymbol{p}_2)\\ &= \left[1+\frac{\gamma_0^2-1}{\gamma_0+1}\right]\boldsymbol{\beta}_0\cdot(\boldsymbol{p}_1 + \boldsymbol{p}_2)\\ &= \left[1+(\gamma_0-1)\right]\boldsymbol{\beta}_0\cdot(\boldsymbol{p}_1 + \boldsymbol{p}_2)\\ &= \gamma_0\boldsymbol{\beta}_0\cdot(\boldsymbol{p}_1 + \boldsymbol{p}_2)\\ \beta_0^2(E_1+E_2) &= \boldsymbol{\beta}_0\cdot(\boldsymbol{p}_1 + \boldsymbol{p}_2)\\ \beta_0(E_1+E_2) &= \left(\frac{\boldsymbol{\beta}_0}{\beta_0}\right)\cdot(\boldsymbol{p}_1 + \boldsymbol{p}_2)\\ &= \left(\frac{\boldsymbol{p}_1 + \boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\right)\cdot(\boldsymbol{p}_1 + \boldsymbol{p}_2)\\ &= \frac{(\boldsymbol{p}_1 + \boldsymbol{p}_2)\cdot(\boldsymbol{p}_1 + \boldsymbol{p}_2)}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\\ &= \frac{|\boldsymbol{p}_1 + \boldsymbol{p}_2|^2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\\ &=|\boldsymbol{p}_1 + \boldsymbol{p}_2|\\ \beta_0&=\frac{|\boldsymbol{p}_1 + \boldsymbol{p}_2|}{E_1+E_2}. \end{align} Therefore, \begin{align} \widehat{\boldsymbol{\beta}_{\rm cm}} = \frac{\boldsymbol{\beta}_{\rm cm}}{\beta_{\rm cm}} = \frac{\boldsymbol{p}_1 + \boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|},\\ \beta_{\rm cm} = \frac{|\boldsymbol{p}_1 + \boldsymbol{p}_2|}{E_1+E_2}. \end{align} As a result, \begin{align} \boldsymbol{\beta}_{\rm cm} = \beta_{\rm cm}\widehat{\boldsymbol{\beta}_{\rm cm}} = \frac{\boldsymbol{p}_1 + \boldsymbol{p}_2}{E_1+E_2}. \end{align} In other words, \begin{align} \boldsymbol{\beta}_{\rm cm} = \frac{E_1\boldsymbol{\beta}_1 + E_2\boldsymbol{\beta}_2}{E_1+E_2}. \end{align}
N.B. In Galilean transformation (non-relativistic limit), \begin{align} \boldsymbol{\beta}_{\rm cm} = \frac{m_1\boldsymbol{\beta}_1 + m_2\boldsymbol{\beta}_2}{m_1+m_2}. \end{align}
The total center of mass energy $W$, $\gamma_{\rm cm}$ and $\boldsymbol{\beta}_{\rm cm}\gamma_{\rm cm}$
\begin{align} W &= \sqrt{(E_1+E_2)^2-(\boldsymbol{p}_1+\boldsymbol{p}_2)^2}\\ \gamma_{\rm cm} &= \frac{1}{\sqrt{1-\beta_{\rm cm}^2}}\\ &= \frac{1}{\sqrt{1-\left(\frac{\boldsymbol{p}_1 + \boldsymbol{p}_2}{E_1+E_2}\right)^2}}\\ &= \frac{E_1+E_2}{\sqrt{(E_1+E_2)^2-(\boldsymbol{p}_1 + \boldsymbol{p}_2)^2}}\\ &= \frac{E_1+E_2}{W}\\ \boldsymbol{\beta}_{\rm cm}\gamma_{\rm cm} &= \frac{\boldsymbol{p}_1 + \boldsymbol{p}_2}{E_1+E_2} \frac{E_1+E_2}{W} \\ &= \frac{\boldsymbol{p}_1 + \boldsymbol{p}_2}{W} \\ \beta_{\rm cm}\gamma_{\rm cm} &= \frac{|\boldsymbol{p}_1 + \boldsymbol{p}_2|}{W} \end{align}
The momentum $\boldsymbol{p}_1^*$ in the center of mass frame
\begin{align} \boldsymbol{p}_1^* &= \boldsymbol{p}_1+\boldsymbol{\beta}_{\rm cm}\gamma_{\rm cm}\left[\frac{\gamma_{\rm cm}}{\gamma_{\rm cm}+1}\boldsymbol{\beta}_{\rm cm}\cdot\boldsymbol{p}_1-E_1\right]\\ &= \boldsymbol{p}_1+\beta_{\rm cm}\widehat{\boldsymbol{\beta}_{\rm cm}}\gamma_{\rm cm}\left[\frac{\gamma_{\rm cm}}{\gamma_{\rm cm}+1}\beta_{\rm cm}\widehat{\boldsymbol{\beta}_{\rm cm}}\cdot\boldsymbol{p}_1-E_1\right]\\ &= \boldsymbol{p}_1+\widehat{\boldsymbol{\beta}_{\rm cm}}\left[\frac{(\beta_{\rm cm}\gamma_{\rm cm})^2}{\gamma_{\rm cm}+1}\widehat{\boldsymbol{\beta}_{\rm cm}}\cdot\boldsymbol{p}_1-\beta_{\rm cm}\gamma_{\rm cm}E_1\right]\\ &= \boldsymbol{p}_1+\widehat{\boldsymbol{\beta}_{\rm cm}}\left[(\gamma_{\rm cm}-1)\widehat{\boldsymbol{\beta}_{\rm cm}}\cdot\boldsymbol{p}_1-\beta_{\rm cm}\gamma_{\rm cm}E_1\right]\\ &= \boldsymbol{p}_1+\frac{\boldsymbol{p}_1+\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\left[\left(\frac{E_1+E_2}{W}-1\right)\frac{\boldsymbol{p}_1+\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\cdot\boldsymbol{p}_1-\frac{|\boldsymbol{p}_1+\boldsymbol{p}_2|}{W}E_1\right]\\ &= \boldsymbol{p}_1+\frac{\boldsymbol{p}_1+\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\left[\frac{E_1+E_2}{W}\frac{\boldsymbol{p}_1+\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\cdot\boldsymbol{p}_1-\frac{\boldsymbol{p}_1+\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\cdot\boldsymbol{p}_1-\frac{|\boldsymbol{p}_1+\boldsymbol{p}_2|}{W}E_1\right]\\ &= \boldsymbol{p}_1+\frac{\boldsymbol{p}_1+\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\left[\frac{E_1+E_2}{W}\frac{\boldsymbol{p}_1^2+\boldsymbol{p}_1\cdot\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}-\frac{\boldsymbol{p}_1^2+\boldsymbol{p}_1\cdot\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}-\frac{|\boldsymbol{p}_1+\boldsymbol{p}_2|}{W}E_1\right]\\ &= \boldsymbol{p}_1+\frac{\boldsymbol{p}_1+\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\left[\frac{(E_1+E_2)(\boldsymbol{p}_1^2+\boldsymbol{p}_1\cdot\boldsymbol{p}_2)-E_1|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}{W|\boldsymbol{p}_1+\boldsymbol{p}_2|}-\frac{\boldsymbol{p}_1^2+\boldsymbol{p}_1\cdot\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\right]\\ &= \boldsymbol{p}_1+\frac{\boldsymbol{p}_1+\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\left[\frac{E_1(\boldsymbol{p}_1^2+\boldsymbol{p}_1\cdot\boldsymbol{p}_2)+E_2(\boldsymbol{p}_1^2+\boldsymbol{p}_1\cdot\boldsymbol{p}_2)-E_1(\boldsymbol{p}_1^2+\boldsymbol{p}_2^2+2\boldsymbol{p}_1\cdot\boldsymbol{p}_2)}{W|\boldsymbol{p}_1+\boldsymbol{p}_2|}-\frac{\boldsymbol{p}_1^2+\boldsymbol{p}_1\cdot\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\right]\\ &= \boldsymbol{p}_1+\frac{\boldsymbol{p}_1+\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\left[\frac{\boldsymbol{p}_1^2E_2-\boldsymbol{p}_2^2E_1+(E_2-E_1)\boldsymbol{p}_1\cdot\boldsymbol{p}_2}{W|\boldsymbol{p}_1+\boldsymbol{p}_2|}-\frac{\boldsymbol{p}_1^2+\boldsymbol{p}_1\cdot\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\right]\\ &= \frac{\left[\boldsymbol{p}_1^2E_2-\boldsymbol{p}_2^2E_1+(E_2-E_1)\boldsymbol{p}_1\cdot\boldsymbol{p}_2\right](\boldsymbol{p}_1+\boldsymbol{p}_2)}{W|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}+\boldsymbol{p}_1-\frac{(\boldsymbol{p}_1^2+\boldsymbol{p}_1\cdot\boldsymbol{p}_2)(\boldsymbol{p}_1+\boldsymbol{p}_2)}{|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}\\ &= \frac{\left[\boldsymbol{p}_1^2E_2-\boldsymbol{p}_2^2E_1+(E_2-E_1)\boldsymbol{p}_1\cdot\boldsymbol{p}_2\right](\boldsymbol{p}_1+\boldsymbol{p}_2)}{W|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}+\frac{|\boldsymbol{p}_1+\boldsymbol{p}_2|^2\boldsymbol{p}_1-(\boldsymbol{p}_1^2+\boldsymbol{p}_1\cdot\boldsymbol{p}_2)\boldsymbol{p}_1-(\boldsymbol{p}_1^2+\boldsymbol{p}_1\cdot\boldsymbol{p}_2)\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}\\ &= \frac{\left[\boldsymbol{p}_1^2E_2-\boldsymbol{p}_2^2E_1+(E_2-E_1)\boldsymbol{p}_1\cdot\boldsymbol{p}_2\right](\boldsymbol{p}_1+\boldsymbol{p}_2)}{W|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}+\frac{(\boldsymbol{p}_1^2+\boldsymbol{p}_2^2+2\boldsymbol{p}_1\cdot\boldsymbol{p}_2)\boldsymbol{p}_1-(\boldsymbol{p}_1^2+\boldsymbol{p}_1\cdot\boldsymbol{p}_2)\boldsymbol{p}_1-(\boldsymbol{p}_1^2+\boldsymbol{p}_1\cdot\boldsymbol{p}_2)\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}\\ &= \frac{\left[\boldsymbol{p}_1^2E_2-\boldsymbol{p}_2^2E_1+(E_2-E_1)\boldsymbol{p}_1\cdot\boldsymbol{p}_2\right](\boldsymbol{p}_1+\boldsymbol{p}_2)}{W|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}+\frac{\boldsymbol{p}_2^2\boldsymbol{p}_1-\boldsymbol{p}_1^2\boldsymbol{p}_2+\boldsymbol{p}_1\cdot\boldsymbol{p}_2(\boldsymbol{p}_1-\boldsymbol{p}_2)}{|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}\\ &= \frac{\left[\boldsymbol{p}_1^2E_2-\boldsymbol{p}_2^2E_1+(E_2-E_1)\cdot\frac{1}{2}\left(|\boldsymbol{p}_1+\boldsymbol{p}_2|^2-\boldsymbol{p}_1^2-\boldsymbol{p}_2^2\right)\right](\boldsymbol{p}_1+\boldsymbol{p}_2)}{W|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}+\frac{\boldsymbol{p}_2^2\boldsymbol{p}_1-\boldsymbol{p}_1^2\boldsymbol{p}_2+\frac{1}{2}\left(|\boldsymbol{p}_1+\boldsymbol{p}_2|^2-\boldsymbol{p}_1^2-\boldsymbol{p}_2^2\right)(\boldsymbol{p}_1-\boldsymbol{p}_2)}{|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}\\ &= \frac{\left[\boldsymbol{p}_1^2E_2-\boldsymbol{p}_2^2E_1-\frac{1}{2}(E_2-E_1)(\boldsymbol{p}_1^2+\boldsymbol{p}_2^2)+\frac{1}{2}(E_2-E_1)|\boldsymbol{p}_1+\boldsymbol{p}_2|^2\right](\boldsymbol{p}_1+\boldsymbol{p}_2)}{W|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}+\frac{\boldsymbol{p}_2^2\boldsymbol{p}_1-\boldsymbol{p}_1^2\boldsymbol{p}_2-\frac{1}{2}(\boldsymbol{p}_1^2+\boldsymbol{p}_2^2)(\boldsymbol{p}_1-\boldsymbol{p}_2)+\frac{1}{2}|\boldsymbol{p}_1+\boldsymbol{p}_2|^2(\boldsymbol{p}_1-\boldsymbol{p}_2)}{|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}\\ &= \frac{\left[\frac{1}{2}\boldsymbol{p}_1^2E_2-\frac{1}{2}\boldsymbol{p}_2^2E_1+\frac{1}{2}\boldsymbol{p}_1^2E_1-\frac{1}{2}\boldsymbol{p}_2^2E_2+\frac{1}{2}(E_2-E_1)|\boldsymbol{p}_1+\boldsymbol{p}_2|^2\right](\boldsymbol{p}_1+\boldsymbol{p}_2)}{W|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}+\frac{\frac{1}{2}\boldsymbol{p}_2^2\boldsymbol{p}_1-\frac{1}{2}\boldsymbol{p}_1^2\boldsymbol{p}_2-\frac{1}{2}\boldsymbol{p}_1^2\boldsymbol{p}_1+\frac{1}{2}\boldsymbol{p}_2^2\boldsymbol{p}_2+\frac{1}{2}|\boldsymbol{p}_1+\boldsymbol{p}_2|^2(\boldsymbol{p}_1-\boldsymbol{p}_2)}{|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}\\ &= \frac{\left[(E_1+E_2)(\boldsymbol{p}_1^2-\boldsymbol{p}_2^2)+(E_2-E_1)|\boldsymbol{p}_1+\boldsymbol{p}_2|^2\right](\boldsymbol{p}_1+\boldsymbol{p}_2)}{2W|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}+\frac{(\boldsymbol{p}_2^2-\boldsymbol{p}_1^2)(\boldsymbol{p}_1+\boldsymbol{p}_2)+|\boldsymbol{p}_1+\boldsymbol{p}_2|^2(\boldsymbol{p}_1-\boldsymbol{p}_2)}{2|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}\\ &= \frac{\left[(E_1+E_2)(\boldsymbol{p}_1^2-\boldsymbol{p}_2^2)+(E_2-E_1)|\boldsymbol{p}_1+\boldsymbol{p}_2|^2\right](\boldsymbol{p}_1+\boldsymbol{p}_2)+W(\boldsymbol{p}_2^2-\boldsymbol{p}_1^2)(\boldsymbol{p}_1+\boldsymbol{p}_2)}{2W|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}+\frac{1}{2}(\boldsymbol{p}_1-\boldsymbol{p}_2)\\ &= \frac{(E_1+E_2-W)(\boldsymbol{p}_1^2-\boldsymbol{p}_2^2)+(E_2-E_1)|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}{2W|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}(\boldsymbol{p}_1+\boldsymbol{p}_2)+\frac{1}{2}(\boldsymbol{p}_1-\boldsymbol{p}_2)\\ &= \frac{(E_1+E_2-W)(\boldsymbol{p}_1^2-\boldsymbol{p}_2^2)(\boldsymbol{p}_1+\boldsymbol{p}_2)+(E_2-E_1)|\boldsymbol{p}_1+\boldsymbol{p}_2|^2(\boldsymbol{p}_1+\boldsymbol{p}_2)+W|\boldsymbol{p}_1+\boldsymbol{p}_2|^2(\boldsymbol{p}_1-\boldsymbol{p}_2)}{2W|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}\\ &= \frac{\left[(E_1+E_2-W)(\boldsymbol{p}_1^2-\boldsymbol{p}_2^2)+(E_2-E_1+W)|\boldsymbol{p}_1+\boldsymbol{p}_2|^2\right]\boldsymbol{p}_1+\left[(E_1+E_2-W)(\boldsymbol{p}_1^2-\boldsymbol{p}_2^2)+(E_2-E_1-W)|\boldsymbol{p}_1+\boldsymbol{p}_2|^2\right]\boldsymbol{p}_2}{2W|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}\\ &= \frac{\left[(E_1+E_2-W)(E_1^2-m_1^2-E_2^2+m_2^2)+(E_2-E_1+W)\left[(E_1+E_2)^2-W^2\right]\right]\boldsymbol{p}_1+\left[(E_1+E_2-W)(E_1^2-m_1^2-E_2^2+m_2^2)+(E_2-E_1-W)\left[(E_1+E_2)^2-W^2\right]\right]\boldsymbol{p}_2}{2W\left[(E_1+E_2)^2-W^2\right]}\\ &= \frac{\left[(E_1+E_2-W)(E_1^2-m_1^2-E_2^2+m_2^2)+(E_2-E_1+W)(E_1+E_2+W)(E_1+E_2-W)\right]\boldsymbol{p}_1+\left[(E_1+E_2-W)(E_1^2-m_1^2-E_2^2+m_2^2)+(E_2-E_1-W)(E_1+E_2+W)(E_1+E_2-W)\right]\boldsymbol{p}_2}{2W(E_1+E_2+W)(E_1+E_2-W)}\\ &= \frac{\left[(E_1^2-m_1^2-E_2^2+m_2^2)+(E_2-E_1+W)(E_1+E_2+W)\right]\boldsymbol{p}_1+\left[(E_1^2-m_1^2-E_2^2+m_2^2)+(E_2-E_1-W)(E_1+E_2+W)\right]\boldsymbol{p}_2}{2W(E_1+E_2+W)}\\ &= \frac{\left(m_2^2-m_1^2+2E_2W+W^2\right)\boldsymbol{p}_1+\left(m_2^2-m_1^2-2E_1W-W^2\right)\boldsymbol{p}_2}{2W(E_1+E_2+W)}\\ \end{align}