文書の過去の版を表示しています。


Non-relativistic kinematics

References

Formulae for Non-relativistic Kinematics

Two Body Kinematics Formulae

Adopt units where $c=1$. In the Laboratory System (Center of Mass System), mass, momentum, total energy, and velocity of the $i$-th particle are $m_i$, $\boldsymbol{p}_i$, and $E_i$, and $\boldsymbol{\beta}_i$ ($m_i^*$, $\boldsymbol{p}_i^*$, $E_i^*$, and $\boldsymbol{v}_i^*$), respectively.

In the following, the quantities $\delta_{ij}$ are defined by \begin{align} \delta_{ij} = |\boldsymbol{v}_i|/|\boldsymbol{v}_j|, \end{align} where the subscripts refer to the particles.

Quantity General Formula Elastic ScatteringN-N Scattering (equal mass)
1. Total c.m. energy (invariant mass) \begin{align} W &= \sqrt{m_1^2+m_2^2+2m_2E_1}\\ &= \sqrt{(E_1+m_2)^2-\boldsymbol{p}_1^2}\\ &= \sqrt{(E_3+E_4)^2-(\boldsymbol{p}_3+\boldsymbol{p}_4)^2}\\ \end{align} Same as the General formula \begin{align} W= \sqrt{2(m_\mathrm{N}^2+m_\mathrm{N}E_1)} \end{align}
2. c.m. momentum before the interaction \begin{align} |\boldsymbol{p}_1^{*}| = \frac{1}{2W}\sqrt{\left[W^2-\left(m_1+m_2\right)^2\right]\left[W^2-\left(m_1-m_2\right)^2\right]} \end{align} Same as the General formula \begin{align} |\boldsymbol{p}_1'| = \frac{1}{2}\sqrt{W^2-4m_\mathrm{N}^2} \end{align}
3. c.m. momentum after the interaction \begin{align} |\boldsymbol{p}_3^{*}| = \frac{1}{2W}\sqrt{\left[W^2-\left(m_3+m_4\right)^2\right]\left[W^2-\left(m_3-m_4\right)^2\right]} \end{align}\begin{align} |\boldsymbol{p}_3^{*}| = |\boldsymbol{p}_1^{*}| \end{align}\begin{align} |\boldsymbol{p}_3'| = |\boldsymbol{p}_1'| = \frac{1}{2}\sqrt{W^2-4m_\mathrm{N}^2} \end{align}
4. Velocity of the c.m. \begin{align} \boldsymbol{\beta}_2^* = \boldsymbol{\beta}_{\rm cm} = \frac{\boldsymbol{p}_1}{E_1+m_2} \end{align} Same as the General formula Same as the General formula
5. $\gamma$ of the c.m. \begin{align} \gamma_2^* = \gamma_\mathrm{cm} = \frac{E_1+m_2}{W} \end{align} Same as the General formula Same as the General formula
6. Maximum lab scattering angle \begin{align} \tan\theta_{3\mathrm{max}} = \frac{1}{\gamma_2^*\sqrt{\delta_{23}^{*2}-1}}\\ \mathrm{For\ \ } \delta_{23}^* \ge 1\\ \mathrm{otherwise\ } \theta_{3\mathrm{max}} = 180^\circ \end{align} Same as the General formula \begin{align} \theta_{3\mathrm{max}} = 90^\circ \end{align}
7. c.m. to lab angle ($\theta_{\rm cm} \rightarrow \theta_{\rm lab}$) \begin{align} \cos\theta_3 = \frac{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}{\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}} \end{align}\begin{align} \tan\theta_3 &= \frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{21}^*+\cos\theta_3^*\right)}\\ \tan\theta_4 &= \frac{1}{\gamma_2^*}\cot\frac{\theta_3^*}{2} \end{align}\begin{align} \tan\theta_3 = \frac{\sin\theta_3^*}{\gamma_2^*\left(1+\cos\theta_3^*\right)}\\ \end{align}
8. lab to c.m. angle transformation ($\theta_\mathrm{cm} \rightarrow \theta_\mathrm{lab}$) \begin{align} \cos\theta_3^*=\frac{\delta_{23}^*(\gamma_2^*\tan\theta_3)^2}{(\gamma_2^*\tan\theta_3)^2+1}\pm\sqrt{\left(\frac{\delta_{23}^*(\gamma_2^*\tan\theta_3)^2}{(\gamma_2^*\tan\theta_3)^2+1}\right)^2-\frac{\delta_{23}^{*2}(\gamma_2^*\tan\theta_3)^2-1}{(\gamma_2^*\tan\theta_3)^2+1}} \end{align} Another solution (not written in the document) \begin{align} \tan\theta_{\rm cm} = \frac{\sin\theta_{\rm lab}}{\gamma_{\rm cm}\left(\cos\theta_{\rm lab}-\beta_{\rm cm}/|\boldsymbol{\beta}_3|\right)} \end{align}
9. Solid angle transformation (Jacobian) \begin{align} \frac{d\Omega_3}{d\Omega_3^*} &= \frac{\gamma_2^*(1+\delta_{23}^*\cos\theta_3^*)}{\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]^{3/2}}\\ \frac{d\Omega_3}{d\Omega_3^*} &= \frac{\sin^3\theta_3}{\sin^3\theta_3^*}\gamma_2^*(1+\delta_{23}^*\cos\theta_3^*) \end{align}\begin{align} \frac{d\Omega_3}{d\Omega_3^*} = \frac{\gamma_2^*(1+\cos\theta_3^*)}{\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(1+\cos\theta_3^*\right)^2\right]^{3/2}} \end{align}
10. Relations between the $\gamma$ factors
N.B. $k_{12}=m_1/m_2$
\begin{align} &&(\gamma_1^{*2}-1) = k_{21}^2(\gamma_2^{*2}-1)\\ &&\gamma_1^* = \frac{k_{12}+\gamma_1}{\sqrt{1+k_{12}^2+2\gamma_1k_{12}}}\\ &&\gamma_2^* = \frac{k_{21}+\gamma_1}{\sqrt{1+k_{21}^2+2\gamma_1k_{21}}}=\gamma_\mathrm{cm} \end{align}\begin{align} \gamma_1^* = \gamma_2^*\\ \gamma_1^* = \sqrt{\frac{1+\gamma_1}{2}}\\ \end{align}
11. Lab quantity relations \begin{align} 2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 = m_4^2-m_1^2-m_2^2-m_3^2+2(E_1+m_2)E_3-2E_1m_2\\ 2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) = m_3^2+m_4^2-m_1^2-m_2^2-2E_1m_2+2E_3E_4\\ \end{align} The sign between $m_1$ and $m_2$ of the second formula is missing in the document.\begin{align} |\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) = T_3T_4 \end{align}
12. Maximum K.E. transfer to a stationary particle \begin{align} T_\mathrm{max} &= \frac{2\boldsymbol{p}_1^2}{m_1(k_{12}+k_{21}+2\gamma_1)}\\ &\approx 2m_2\boldsymbol{\beta}_1^2\gamma_1^2 \end{align} The formula in the document is wrong? Empty

Derivation of Quantity 1. Total c.m. energy

The General Formula

They are definitions.

The formula for N-N Scattering

Assuming $m_1=m_2=m_\mathrm{N}$, \begin{align} W &= \sqrt{m_1^2+m_2^2+2m_2E_1}\\ &= \sqrt{m_\mathrm{N}^2+m_\mathrm{N}^2+2m_\mathrm{N}E_1}\\ &= \sqrt{2(m_\mathrm{N}^2+m_\mathrm{N}E_1)} \end{align}

Derivation of Quantity 2. c.m. momentum before the interaction

The General Formula

In the center of mass frame, $\boldsymbol{p}_1^*+\boldsymbol{p}_2^*=0$. Therefore, \begin{align} W &= \sqrt{(E_1^*+E_2^*)^2-(\boldsymbol{p}_1^*+\boldsymbol{p}_2^*)^2}\\ &= E_1^*+E_2^*. \end{align} By using the following equations \begin{align} |\boldsymbol{p}_1| &= |\boldsymbol{p}_2|,\\ E_1^{*2} &= \boldsymbol{p}_1^{*2}+m_1^2,\\ E_2^{*2} &= \boldsymbol{p}_2^{*2}+m_2^2=\boldsymbol{p}_1^{*2}+m_2^2, \end{align} $W$ can be written as \begin{align} W &= E_1^*+E_2^*\\ &= \sqrt{\boldsymbol{p}_1^{*2}+m_1^2}+\sqrt{\boldsymbol{p}_1^{*2}+m_2^2} \end{align} By making square for both sides, \begin{align} W^2 &= \boldsymbol{p}_1^{*2}+m_1^2+\boldsymbol{p}_1^{*2}+m_2^2+2\sqrt{\left(\boldsymbol{p}_1^{*2}+m_1^2\right)\left(\boldsymbol{p}_1^{*2}+m_2^2\right)}\\ &= 2\boldsymbol{p}_1^{*2}+m_1^2+m_2^2+2\sqrt{\boldsymbol{p}_1^{*4}+\boldsymbol{p}_1^{*2}\left(m_1^2+m_2^2\right)+m_1^2m_2^2}\\ W^2-2\boldsymbol{p}_1^{*2}-\left(m_1^2+m_2^2\right) &= 2\sqrt{\boldsymbol{p}_1^{*4}+\boldsymbol{p}_1^{*2}\left(m_1^2+m_2^2\right)+m_1^2m_2^2}.\\ \end{align} Again by making square for both sides, \begin{align} \left[W^2-2\boldsymbol{p}_1^{*2}-\left(m_1^2+m_2^2\right)\right]^2 &= 4\left[\boldsymbol{p}_1^{*4}+\boldsymbol{p}_1^{*2}\left(m_1^2+m_2^2\right)+m_1^2m_2^2\right]\\ W^4+4\boldsymbol{p}_1^{*4}+\left(m_1^2+m_2^2\right)^2-4W^2\boldsymbol{p}_1^{*2}-2W^2\left(m_1^2+m_2^2\right)+4\boldsymbol{p}_1^{*2}\left(m_1^2+m_2^2\right)&= 4\boldsymbol{p}_1^{*4}+4\boldsymbol{p}_1^{*2}\left(m_1^2+m_2^2\right)+4m_1^2m_2^2\\ W^4+\left(m_1^2+m_2^2\right)^2-4W^2\boldsymbol{p}_1^{*2}-2W^2\left(m_1^2+m_2^2\right)&= 4m_1^2m_2^2\\ 4W^2\boldsymbol{p}_1^{*2} &= W^4-2W^2\left(m_1^2+m_2^2\right)+\left(m_1^2+m_2^2\right)^2-4m_1^2m_2^2\\ &= W^4-2W^2\left(m_1^2+m_2^2\right)+\left(m_1^2-m_2^2\right)^2\\ &= W^4-W^2\left[\left(m_1+m_2\right)^2+\left(m_1-m_2\right)^2\right]+\left(m_1^2-m_2^2\right)^2\\ &= \left[W^2-\left(m_1+m_2\right)^2\right]\left[W^2-\left(m_1-m_2\right)^2\right]\\ \boldsymbol{p}_1^{*2} &= \frac{1}{4W^2}\left[W^2-\left(m_1+m_2\right)^2\right]\left[W^2-\left(m_1-m_2\right)^2\right]\\ |\boldsymbol{p}_1^{*}| &= \frac{1}{2W}\sqrt{\left[W^2-\left(m_1+m_2\right)^2\right]\left[W^2-\left(m_1-m_2\right)^2\right]}\\ \end{align}

The formula for N-N Scattering

Assuming $m_1=m_2=m_\mathrm{N}$, from the general formula,

\begin{align} |\boldsymbol{p}_1'| = &= \frac{1}{2W}\sqrt{\left[W^2-\left(m_1+m_2\right)^2\right]\left[W^2-\left(m_1-m_2\right)^2\right]}\\ &= \frac{1}{2W}\sqrt{\left[W^2-\left(m_\mathrm{N}+m_\mathrm{N}\right)^2\right]\left[W^2-\left(m_\mathrm{N}-m_\mathrm{N}\right)^2\right]}\\ &= \frac{1}{2W}\sqrt{\left[W^2-(2m_\mathrm{N})^2\right]W^2}\\ &= \frac{1}{2}\sqrt{W^2-4m_\mathrm{N}^2}\\ \end{align}

Derivation of Quantity 3. c.m. momentum after the interaction

The General Formula

It is almost the same as the derivation of Quantity 2.

The formula for Elastic Scattering

For the elastic scattering, $m_1 = m_3$ and $m_2 = m_4$. Therefore, \begin{align} |\boldsymbol{p}_3^{*}| &= \frac{1}{2W}\sqrt{\left[W^2-\left(m_3+m_4\right)^2\right]\left[W^2-\left(m_3-m_4\right)^2\right]}\\ &= \frac{1}{2W}\sqrt{\left[W^2-\left(m_1+m_2\right)^2\right]\left[W^2-\left(m_1-m_2\right)^2\right]}\\ &= |\boldsymbol{p}_1^{*}| \end{align}

The formula for N-N Scattering

For N-N scattering, $m_1 = m_2 = m_3 = m_4 = m_\mathrm{N}$. Therefore,

\begin{align} |\boldsymbol{p}_3'| = |\boldsymbol{p}_1'| = \frac{1}{2}\sqrt{W^2-4m_\mathrm{N}^2} \end{align}

Derivation of Quantity 4. Velocity of the c.m.

The General Formula

From the notes below, the velocity of the c.m. $\boldsymbol{\beta}_{\rm cm}$ of two moving particles is written as

\begin{align} \boldsymbol{\beta}_{\rm cm} = \frac{\boldsymbol{p}_1+\boldsymbol{p}_2}{E_1+E_2}. \end{align}

If the second particle is not moving, $\boldsymbol{p}_2=0$ and $E_2=m_2$. Therefore, \begin{align} \boldsymbol{\beta}_{\rm cm} = \frac{\boldsymbol{p}_1}{E_1+m_2}. \end{align}

In the center of mass system, $\boldsymbol{\beta}_\mathrm{cm}=\boldsymbol{\beta}_2^*$. As a result,

\begin{align} \boldsymbol{\beta}_2^* = \boldsymbol{\beta}_{\rm cm} = \frac{\boldsymbol{p}_1}{E_1+m_2} \end{align}

Derivation of Quantity 5. $\gamma$ of the c.m.

The General Formula

In general, \begin{align} \gamma = \frac{1}{\sqrt{1-|\boldsymbol{\beta}|^2}}. \end{align}

Therefore,

\begin{align} \gamma_2^* &= \frac{1}{\sqrt{1-|\boldsymbol{\beta}_2^*|^2}}\\ &= \frac{1}{\sqrt{1-\left|\frac{\boldsymbol{p}_1}{E_1+m_2}\right|^2}}\\ &= \frac{E_1+m_2}{\sqrt{(E_1+m_2)^2-\boldsymbol{p}_1^2}}\\ &= \frac{E_1+m_2}{W}. \end{align}

In the center of the mass system, $\boldsymbol{\beta}_2^*=\boldsymbol{\beta}_\mathrm{cm}$ and $\gamma_2^* = \gamma_\mathrm{cm}$. As a result,

\begin{align} \gamma_2^* = \gamma_\mathrm{cm} = \frac{E_1+m_2}{W}. \end{align}

Derivation of Quantity 6. Maximum lab scattering angle

The General Formula

From a equation in the derivation of Quantity 7.,

\begin{align} \tan\theta_3 &= \frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}.\\ \end{align}

By differentiating this equation,

\begin{align} \frac{d(\tan\theta_3)}{d\theta_3^*} &= \frac{\cos\theta_3^*[\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)]-\sin\theta_3^*\gamma_2^*(-\sin\theta_3^*)}{\left[\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\right]^2}\\ &= \frac{\gamma_2^*[\delta_{23}^*\cos^2\theta_3^*+\cos^2\theta_3^*+\cos^2\theta_3^*]}{\left[\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\right]^2}\\ &= \frac{\gamma_2^*[\delta_{23}^*\cos\theta_3^*+1]}{\left[\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\right]^2}.\\ \end{align}

If $\delta_{23}^*< 1$, $\frac{d(\tan\theta_3)}{d\theta_3^*}>0$. Therefore, the $\tan\theta_3$ becomes maximum and reaches zero at $\theta_3^*=180^\circ$. In this case, $\theta_{3\mathrm{max}} = 180^\circ$.

If $\delta_{23}^*\ge 1$ and $\cos\theta_3^*=-1/\delta_{23}^*$, $\frac{d(\tan\theta_3)}{d\theta_3^*}=0$. Therefore, the $\tan\theta_3$ becomes maximum at \begin{align} \cos\theta_3^*=-1/\delta_{23}^*. \end{align}

By substituting this formula into the formula of $\tan\theta_3$,

\begin{align} \tan\theta_3 &= \frac{\sqrt{1-(1/\delta_{23}^*)^2}}{\gamma_2^*\left(\delta_{23}^*-1/\delta_{23}^*\right)}\\ &= \frac{\sqrt{\delta_{23}^{*2}-1}}{\gamma_2^*\left(\delta_{23}^{*2}-1\right)}\\ &= \frac{1}{\gamma_2^*\sqrt{\delta_{23}^{*2}-1}}.\\ \end{align}

The formula for N-N Scattering

For N-N scattering, $m_1 = m_2 = m_3 = m_4 = m_\mathrm{N}$, and

\begin{align} |\boldsymbol{p}_3'| = |\boldsymbol{p}_1'| = |\boldsymbol{p}_2'|\\ |\boldsymbol{\beta}_3'| = |\boldsymbol{\beta}_1'| = |\boldsymbol{\beta}_2'|\\ \end{align} Therefore, \begin{align} \delta_{23}^* = 1 \end{align}

From a equation in the derivation of Quantity 7.,

\begin{align} \tan\theta_3 &= \frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}.\\ &= \frac{\sin\theta_3^*}{\gamma_2^*\left(1+\cos\theta_3^*\right)}. \end{align}

Therefore, $\tan\theta_3$ becomes infinite at $\cos\theta_3^*=-1$. In that case, $\mathrm{3max}=90^\circ$.

Derivation of Quantity 7. c.m. to lab angle ($\theta_{\rm cm} \rightarrow \theta_{\rm lab}$)

The General Formula

\begin{align} \begin{pmatrix} E_3\\ |\boldsymbol{p}_3|\cos\theta_{\rm lab} \end{pmatrix} &= \begin{pmatrix} \gamma_{\rm cm} & \beta_{\rm cm}\gamma_{\rm cm}\\ \beta_{\rm cm}\gamma_{\rm cm} & \gamma_{\rm cm} \end{pmatrix} \begin{pmatrix} E_3^*\\ |\boldsymbol{p}_3^*|\cos\theta_{\rm cm} \end{pmatrix}\\ |\boldsymbol{p}_3|\cos\theta_{\rm lab} &= \gamma_{\rm cm}\left(|\boldsymbol{p}_3^*|\cos\theta_{\rm cm}+\beta_{\rm cm}E_3^*\right)\\ |\boldsymbol{p}_3|\sin\theta_{\rm lab} &= |\boldsymbol{p}_3^*|\sin\theta_{\rm cm} \end{align}

Therefore,

\begin{align} \frac{|\boldsymbol{p}_3|\sin\theta_{\rm lab}}{|\boldsymbol{p}_3|\cos\theta_{\rm lab}} &= \frac{|\boldsymbol{p}_3^*|\sin\theta_{\rm cm}}{\gamma_{\rm cm}\left(|\boldsymbol{p}_3^*|\cos\theta_{\rm cm}+\beta_{\rm cm}E_3^*\right)}\\ \tan\theta_{\rm lab} &= \frac{\sin\theta_{\rm cm}}{\gamma_{\rm cm}\left(\cos\theta_{\rm cm}+\beta_{\rm cm}(E_3^*/|\boldsymbol{p}_3^*|)\right)}\\ \tan\theta_{\rm lab} &= \frac{\sin\theta_{\rm cm}}{\gamma_{\rm cm}\left(\cos\theta_{\rm cm}+\beta_{\rm cm}/|\boldsymbol{\beta}_3^*|\right)}\\ \end{align} In the center of mass system, $\beta_\mathrm{cm}=|\boldsymbol{\beta}_2^*|$. Therefore, \begin{align} \beta_{\rm cm}/|\boldsymbol{\beta}_3^*| &= |\boldsymbol{\beta}_2^*|/|\boldsymbol{\beta}_3^*|\\ &= \delta_{23}^*. \end{align} By using this formula, $\gamma_\mathrm{cm}=\gamma_2^*$, $\theta_\mathrm{cm}=\theta_3^*$, and $\theta_\mathrm{lab}=\theta_3$, \begin{align} \tan\theta_3 &= \frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}.\\ \end{align}

By using the relation $\cos\theta=1/\sqrt{1+\tan^2\theta}$, \begin{align} \cos\theta_3 &= \frac{1}{\sqrt{1+\left[\frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}\right]^2}}\\ &= \frac{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}{\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}} \end{align}

The first formula for Elastic Scattering

For elastic scattering, $m_1 = m_3$ and $|\boldsymbol{p}_3^*| = |\boldsymbol{p}_1^*|$. Therefore,

\begin{align} |\boldsymbol{\beta}_3^*| = |\boldsymbol{\beta}_1^*|\\ \delta_{23}^* = \delta_{21}^* \end{align}

From a equation in the derivation of Quantity 7.,

\begin{align} \tan\theta_3 &= \frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}.\\ &= \frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{21}^*+\cos\theta_3^*\right)}.\\ \end{align}

The second formula for Elastic Scattering

\begin{align} \begin{pmatrix} E_4\\ |\boldsymbol{p}_4|\cos\theta_4 \end{pmatrix} &= \begin{pmatrix} \gamma_{\rm cm} & \beta_{\rm cm}\gamma_{\rm cm}\\ \beta_{\rm cm}\gamma_{\rm cm} & \gamma_{\rm cm} \end{pmatrix} \begin{pmatrix} E_4^*\\ -|\boldsymbol{p}_4^*|\cos\theta_4^* \end{pmatrix}\\ |\boldsymbol{p}_4|\cos\theta_4 &= \gamma_{\rm cm}\left(\beta_{\rm cm}E_4^*-|\boldsymbol{p}_4^*|\cos\theta_4^*\right)\\ |\boldsymbol{p}_4|\sin\theta_4 &= |\boldsymbol{p}_4^*|\sin\theta_4^* \end{align}

Therefore,

\begin{align} \frac{|\boldsymbol{p}_4|\sin\theta_4}{|\boldsymbol{p}_4|\cos\theta_4} &= \frac{|\boldsymbol{p}_4^*|\sin\theta_4^*}{\gamma_{\rm cm}\left(\beta_{\rm cm}E_4^*-|\boldsymbol{p}_4^*|\cos\theta_4\right)}\\ \tan\theta_4 &= \frac{\sin\theta_4^*}{\gamma_{\rm cm}\left(\beta_{\rm cm}(E_4^*/|\boldsymbol{p}_4^*|)-\cos\theta_4^*\right)}\\ \tan\theta_4 &= \frac{\sin\theta_4^*}{\gamma_{\rm cm}\left(\beta_{\rm cm}/|\boldsymbol{\beta}_4^*|-\cos\theta_4^*\right)}\\ \end{align}

By using $\theta_4^* = \theta_3^*$, $\beta_{\rm cm} = |\boldsymbol{\beta}_2^*|$ and $\gamma_{\rm cm} = \gamma_2^*$, \begin{align} \tan\theta_4 = \frac{\sin\theta_3^*}{\gamma_2^*\left(|\boldsymbol{\beta}_2^*|/|\boldsymbol{\beta}_4^*|-\cos\theta_3^*\right)} \end{align}

For elastic scattering, $m_2=m_4$, $|\boldsymbol{p}_2^*|=|\boldsymbol{p}_4^*|$, and $|\boldsymbol{\beta}_2^*|=|\boldsymbol{\beta}_4^*|$. Therefore, \begin{align} \tan\theta_4 = \frac{\sin\theta_3^*}{\gamma_2^*(1-\cos\theta_3^*)} \end{align}

In general, $\cot\dfrac{x}{2} = \dfrac{\sin x}{1-\cos x}$. Therefore,

\begin{align} \tan\theta_4 = \frac{1}{\gamma_2^*}\cot\frac{\theta_3^*}{2} \end{align}

The formula for N-N Scattering

From an equation in the derivation of Quantity 6., $\delta_{23}^* = 1$. From this equation and an equation in the derivation of Quantity 7.,

\begin{align} \tan\theta_3 &= \frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}.\\ &= \frac{\sin\theta_3^*}{\gamma_2^*\left(1+\cos\theta_3^*\right)}.\\ \end{align}

Derivation of Quantity 8. lab to c.m. angle transformation ($\theta_\mathrm{cm} \rightarrow \theta_\mathrm{lab}$)

The General Formula

From an equation in the derivation of Quantity 7., \begin{align} \tan\theta_3 &= \frac{\sin\theta_3^*}{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}.\\ \end{align}

By taking the square of the formula, \begin{align} \tan^2\theta_3 &= \frac{\sin^2\theta_3^*}{\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}\\ &= \frac{1-\cos^2\theta_3^*}{\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2},\\ &\Rightarrow (\gamma_2^*\tan\theta_3)^2\left(\delta_{23}^*+\cos\theta_3^*\right)^2=1-\cos^2\theta_3^*\\ &\Rightarrow \left[(\gamma_2^*\tan\theta_3)^2+1\right]\cos\theta_3^{*2}+2\delta_{23}^*(\gamma_2^*\tan\theta_3)^2\cos\theta_3^*+\delta_{23}^{*2}(\gamma_2^*\tan\theta_3)^2-1=0\\ \end{align}

In general, the solution of the equation \begin{align} ax^2+2bx+c=0 \end{align} is \begin{align} x=\frac{b}{a}\pm\sqrt{\left(\frac{b}{a}\right)^2-\frac{c}{a}}. \end{align} Therefore, \begin{align} \cos\theta_3^*=\frac{\delta_{23}^*(\gamma_2^*\tan\theta_3)^2}{(\gamma_2^*\tan\theta_3)^2+1}\pm\sqrt{\left(\frac{\delta_{23}^*(\gamma_2^*\tan\theta_3)^2}{(\gamma_2^*\tan\theta_3)^2+1}\right)^2-\frac{\delta_{23}^{*2}(\gamma_2^*\tan\theta_3)^2-1}{(\gamma_2^*\tan\theta_3)^2+1}}. \end{align}

The another solution

\begin{align} \begin{pmatrix} E_3^*\\ |\boldsymbol{p}_3^*|\cos\theta_{\rm cm} \end{pmatrix} &= \begin{pmatrix} \gamma_{\rm cm} & -\beta_{\rm cm}\gamma_{\rm cm}\\ -\beta_{\rm cm}\gamma_{\rm cm} & \gamma_{\rm cm} \end{pmatrix} \begin{pmatrix} E_3\\ |\boldsymbol{p}_3|\cos\theta_{\rm lab} \end{pmatrix}\\ |\boldsymbol{p}_3^*|\cos\theta_{\rm cm} &= \gamma_{\rm cm}\left(|\boldsymbol{p}_3|\cos\theta_{\rm lab}-\beta_{\rm cm}E_3\right)\\ |\boldsymbol{p}_3^*|\sin\theta_{\rm cm} &= |\boldsymbol{p}_3|\sin\theta_{\rm lab} \end{align}

Therefore,

\begin{align} \frac{|\boldsymbol{p}_3^*|\sin\theta_{\rm cm}}{|\boldsymbol{p}_3^*|\cos\theta_{\rm cm}} &= \frac{|\boldsymbol{p}_3|\sin\theta_{\rm lab}}{\gamma_{\rm cm}\left(|\boldsymbol{p}_3|\cos\theta_{\rm lab}-\beta_{\rm cm}E_3\right)}\\ \tan\theta_{\rm cm} &= \frac{\sin\theta_{\rm lab}}{\gamma_{\rm cm}\left(\cos\theta_{\rm lab}-\beta_{\rm cm}(E_3/|\boldsymbol{p}_3|)\right)}\\ \tan\theta_{\rm cm} &= \frac{\sin\theta_{\rm lab}}{\gamma_{\rm cm}\left(\cos\theta_{\rm lab}-\beta_{\rm cm}/|\boldsymbol{\beta}_3|\right)}\\ \end{align}

Derivation of Quantity 9. Solid angle transformation (Jacobian)

The first formula of the General Formulae

\begin{align} \frac{d\Omega_3}{d\Omega_3^*} &= \frac{\sin\theta_3d\theta_3d\phi}{\sin\theta_3^*d\theta_3^*d\phi}\\ &= \frac{\sin\theta_3d\theta_3}{\sin\theta_3^*d\theta_3^*}\\ &= \frac{d(\cos\theta_3)}{d(\cos\theta_3^*)}\\ \end{align} By using the Quantity 7. and $(f/g)'=(f'g-fg')/g^2$, \begin{align} \frac{d(\cos\theta_3)}{d(\cos\theta_3^*)} &= \frac{d}{d(\cos\theta_3^*)}\left[\frac{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}{\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\right]\\ &= \left.\left[\frac{d\left[\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\right]}{d(\cos\theta_3^*)}\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}-\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\frac{d\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}{d(\cos\theta_3^*)}\right]\right/\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]\\ &= \left.\left[\gamma_2^*\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}-\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\frac{1}{2\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\frac{d\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]}{d(\cos\theta_3^*)}\right]\right/\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]\\ &= \left.\left[\gamma_2^*\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}-\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\frac{1}{2\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\frac{d\left[1-\cos^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^{*2}+2\delta_{23}^{*}\cos\theta_3^*+\cos^2\theta_3^*\right)\right]}{d(\cos\theta_3^*)}\right]\right/\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]\\ &= \left.\left[\gamma_2^*\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}-\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\frac{1}{2\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\frac{d\left[(\gamma_2^{*2}-1)\cos^2\theta_3^*+2\delta_{23}^{*}\gamma_2^{*2}\cos\theta_3^*+\delta_{23}^{*2}\gamma_2^{*2}+1\right]}{d(\cos\theta_3^*)}\right]\right/\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]\\ &= \left.\left[\gamma_2^*\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}-\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\frac{1}{2\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\left[2(\gamma_2^{*2}-1)\cos\theta_3^*+2\delta_{23}^{*}\gamma_2^{*2}\right]\right]\right/\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]\\ &= \left.\left[\gamma_2^*\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]-\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)\left[(\gamma_2^{*2}-1)\cos\theta_3^*+\delta_{23}^{*}\gamma_2^{*2}\right]\right]\right/\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]^{3/2}\\ &= \gamma_2^*\left.\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2-\left(\delta_{23}^*+\cos\theta_3^*\right)\left[(\gamma_2^{*2}-1)\cos\theta_3^*+\delta_{23}^{*}\gamma_2^{*2}\right]\right]\right/\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]^{3/2}\\ &= \gamma_2^*\left.\left[(\gamma_2^{*2}-1)\cos^2\theta_3^*+2\delta_{23}^{*}\gamma_2^{*2}\cos\theta_3^*+\delta_{23}^{*2}\gamma_2^{*2}+1-\left[(\gamma_2^{*2}-1)\cos^2\theta_3^*+\delta_{23}^{*}\gamma_2^{*2}\cos\theta_3^*+\delta_{23}^{*}(\gamma_2^{*2}-1)\cos\theta_3^*+\delta_{23}^{*2}\gamma_2^{*2}\right]\right]\right/\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]^{3/2}\\ &= \gamma_2^*\left.\left[(\gamma_2^{*2}-1)\cos^2\theta_3^*+2\delta_{23}^{*}\gamma_2^{*2}\cos\theta_3^*+\delta_{23}^{*2}\gamma_2^{*2}+1-\left[(\gamma_2^{*2}-1)\cos^2\theta_3^*+2\delta_{23}^{*}\gamma_2^{*2}\cos\theta_3^*-\delta_{23}^{*}\cos\theta_3^*+\delta_{23}^{*2}\gamma_2^{*2}\right]\right]\right/\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]^{3/2}\\ &= \frac{\gamma_2^*(1+\delta_{23}^{*}\cos\theta_3^*)}{\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]^{3/2}} \end{align}

The second formula of the General Formulae

From Quantity 7., \begin{align} \cos\theta_3 &= \frac{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}{\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}. \end{align} In general, $\sin\theta=\sqrt{1-\cos^2\theta}$. Therefore, \begin{align} \sin\theta_3 &= \sqrt{1-\left[\frac{\gamma_2^*\left(\delta_{23}^*+\cos\theta_3^*\right)}{\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\right]^2}\\ &= \sqrt{\frac{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2-\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\\ &= \sqrt{\frac{\sin^2\theta_3^*}{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\\ &= \frac{\sin\theta_3^*}{\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}}\\ \Rightarrow \frac{\sin\theta_3}{\sin\theta_3^*} &= \frac{1}{\sqrt{\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2}} \end{align} By substituting this formula into the first formula of Quantity 9., \begin{align} \frac{d\Omega_3}{d\Omega_3^*} &= \frac{\gamma_2^*(1+\delta_{23}^*\cos\theta_3^*)}{\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]^{3/2}}\\ &= \frac{\sin^3\theta_3}{\sin^3\theta_3^*}\gamma_2^*(1+\delta_{23}^*\cos\theta_3^*)\\ \end{align}

The formula for N-N Scattering

From an equation in the derivation of Quantity 6., $\delta_{23}^* = 1$. Therefore, the first formula of the General Formulae of Quantity 9. can be written as

\begin{align} \frac{d(\cos\theta_3)}{d(\cos\theta_3^*)} &= \frac{\gamma_2^*(1+\delta_{23}^{*}\cos\theta_3^*)}{\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(\delta_{23}^*+\cos\theta_3^*\right)^2\right]^{3/2}} &= \frac{\gamma_2^*(1+\cos\theta_3^*)}{\left[\sin^2\theta_3^*+\gamma_2^{*2}\left(1+\cos\theta_3^*\right)^2\right]^{3/2}} \end{align}

Derivation of Quantity 10. Relations between the $\gamma$ factors

The first formula of the General Formulae

In general,

\begin{align} |\boldsymbol{p}|=m\gamma|\boldsymbol{\beta}|=m\sqrt{\gamma^2-1}. \end{align} On the other hand, in the Center of mass system, \begin{align} |\boldsymbol{p}_1^*|=|\boldsymbol{p}_2^*|. \end{align} Therefore, \begin{align} m_1\sqrt{\gamma_1^{*2}-1}=m_2\sqrt{\gamma_2^{*2}-1}\\ \Rightarrow m_1^2(\gamma_1^{*2}-1)=m_2^2(\gamma_2^{*2}-1)\\ \Rightarrow (\gamma_1^{*2}-1)=k_{21}^2(\gamma_2^{*2}-1). \end{align}

The third formula of the General Formulae

From Quantity 1. and 5.,

\begin{align} \gamma_2^* &= \gamma_\mathrm{cm}\\ &= \frac{E_1+m_2}{W}\\ &= \frac{E_1+m_2}{\sqrt{m_1^2+m_2^2+2m_2E_1}}\\ &= \frac{m_1\gamma_1+m_2}{\sqrt{m_1^2+m_2^2+2m_1m_2\gamma_1}}. \end{align} Then, by using $k_{12}=m_1/m_2$,

\begin{align} \gamma_2^* = \frac{k_{21}+\gamma_1}{\sqrt{1+k_{21}^2+2\gamma_1k_{21}}} \end{align}

The second formula of the General Formulae

By substituting the third formula into the first formula,

\begin{align} (\gamma_1^{*2}-1) &= k_{21}^2\left[\frac{(k_{21}+\gamma_1)^2}{1+k_{21}^2+2\gamma_1k_{21}}-1\right]\\ &= k_{21}^2\left[\frac{k_{21}^2+\gamma_1^2+2\gamma_1k_{21}}{1+k_{21}^2+2\gamma_1k_{21}}-1\right]\\ &= k_{21}^2\frac{k_{21}^2+\gamma_1^2+2\gamma_1k_{21}-(1+k_{21}^2+2\gamma_1k_{21})}{1+k_{21}^2+2\gamma_1k_{21}}\\ &= k_{21}^2\frac{\gamma_1^2-1}{1+k_{21}^2+2\gamma_1k_{21}}\\ &= \frac{\gamma_1^2-1}{(1/k_{21})^2+1+2\gamma_1(1/k_{21})}\\ &= \frac{\gamma_1^2-1}{1+k_{12}^2+2\gamma_1k_{12}}\\ \Leftrightarrow \gamma_1^{*2} &= \frac{\gamma_1^2-1}{1+k_{12}^2+2\gamma_1k_{12}}+1\\ &= \frac{\gamma_1^2-1+(1+k_{12}^2+2\gamma_1k_{12})}{1+k_{12}^2+2\gamma_1k_{12}}\\ &= \frac{\gamma_1^2+k_{12}^2+2\gamma_1k_{12}}{1+k_{12}^2+2\gamma_1k_{12}}\\ &= \frac{(k_{12}+\gamma_1)^2}{1+k_{12}^2+2\gamma_1k_{12}}\\ \end{align}

Then,

\begin{align} \gamma_1^* = \frac{k_{12}+\gamma_1}{\sqrt{1+k_{12}^2+2\gamma_1k_{12}}} \end{align}

The formulae for N-N Scattering

For N-N scattering, $m_1 = m_2 = m_\mathrm{N}$. Therefore,

\begin{align} k_{12} &= \frac{m_1}{m_2}\\ &= \frac{m_\mathrm{N}}{m_\mathrm{N}}\\ &= 1\\ \end{align}

Similarly, $k_{21} = 1$. As a result, from the first formula of the General Formulae,

\begin{align} (\gamma_1^{*2}-1)=k_{21}^2(\gamma_2^{*2}-1)\\ \Rightarrow \gamma_1^{*2}-1=\gamma_2^{*2}-1\\ \Rightarrow \gamma_1^*=\gamma_2^*. \end{align}

And, from the second formula of the General Formulae,

\begin{align} \gamma_1^* &= \frac{k_{12}+\gamma_1}{\sqrt{1+k_{12}^2+2\gamma_1k_{12}}}\\ &= \frac{1+\gamma_1}{\sqrt{1+1+2\gamma_1}}\\ &= \frac{1+\gamma_1}{\sqrt{2(1+\gamma_1)}}\\ &= \sqrt{\frac{1+\gamma_1}{2}}\\ \end{align}

Derivation of Quantity 11. Lab quantity relations

The first formula of the General Formulae

From the law of conservation of momentum, \begin{align} &&|\boldsymbol{p}_1| = |\boldsymbol{p}_3|\cos\theta_3 + |\boldsymbol{p}_4|\cos\theta_4,\\ &&|\boldsymbol{p}_3|\sin\theta_3 = |\boldsymbol{p}_4|\sin\theta_4.\\ \end{align} By moving $|\boldsymbol{p}_3|\cos\theta_3$ to left and making squares for the both sides of each formula, \begin{align} \boldsymbol{p}_1^2 + \boldsymbol{p}_3^2\cos^2\theta_3 -2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 &= \boldsymbol{p}_4^2\cos^2\theta_4,\\ \boldsymbol{p}_3^2\sin^2\theta_3 &= \boldsymbol{p}_4^2\sin^2\theta_4.\\ \end{align} By summing these formulae, \begin{align} \boldsymbol{p}_1^2 + (\boldsymbol{p}_3^2\cos^2\theta_3+\boldsymbol{p}_3^2\sin^2\theta_3) -2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 &= \boldsymbol{p}_4^2\cos^2\theta_4+\boldsymbol{p}_4^2\sin^2\theta_4,\\ \boldsymbol{p}_1^2 + \boldsymbol{p}_3^2 -2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 &= \boldsymbol{p}_4^2.\\ \end{align}

(N.B. This formula can be obtained directly by taking square of the both sides of the relation $\boldsymbol{p}_1=\boldsymbol{p}_3+\boldsymbol{p}_4 \Leftrightarrow \boldsymbol{p}_1-\boldsymbol{p}_3=\boldsymbol{p}_4$)

Then, \begin{align} 2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 &= \boldsymbol{p}_1^2 + \boldsymbol{p}_3^2 - \boldsymbol{p}_4^2\\ &= E_1^2 - m_1^2 + E_3^2 - m_3^2 - E_4^2 + m_4^2.\\ \end{align} From the law of conservation of energy, \begin{align} E_1+m_2&=E_3+E_4,\\ E_4&=E_1+m_2-E_3,\\ E_4^2&=E_1^2+m_2^2+E_3^2-2(E_1+m_2)E_3+2E_1m_2.\\ \end{align} By substituting this formula into the above formula, \begin{align} 2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 &= m_4^2 - m_1^2 - m_2^2 - m_3^2+2(E_1+m_2)E_3-2E_1m_2.\\ \end{align}

The second formula of the General Formulae

From the law of conservation of momentum in the direction of $\boldsymbol{p}_3$, \begin{align} |\boldsymbol{p}_1|\cos\theta_3 &= |\boldsymbol{p}_3|+|\boldsymbol{p}_4|\cos(\theta_3+\theta_4)\\ \Rightarrow 2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3 &= 2\boldsymbol{p}_3^2+2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4)\\ \Rightarrow 2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) &= 2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3-2\boldsymbol{p}_3^2\\ &= 2|\boldsymbol{p}_1||\boldsymbol{p}_3|\cos\theta_3-2E_3^2+2m_3^2.\\ \end{align} By substituting the first formula of the Quantity 11. Lab quantity relations into this formula, \begin{align} 2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) &= m_4^2 - m_1^2 - m_2^2 - m_3^2+2(E_1+m_2)E_3-2E_1m_2 -2E_3^2+2m_3^2\\ &= m_3^2 + m_4^2 - m_1^2 - m_2^2+2(E_1+m_2)E_3-2E_1m_2 -2E_3^2\\ \end{align} By substituting the $E_1+m_2=E_3+E_4$ into the formula, \begin{align} 2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) &= m_3^2 + m_4^2 - m_1^2 - m_2^2+2(E_3+E_4)E_3-2E_1m_2 -2E_3^2\\ &= m_3^2 + m_4^2 - m_1^2 - m_2^2-2E_1m_2+2E_3E_4\\ \end{align}

The formula for N-N Scattering

For N-N scattering, $m_1 = m_2 = m_3 = m_4 = m_\mathrm{N}$. Therefore, the second formula of the General Formulae becomes

\begin{align} 2|\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) &= m_3^2 + m_4^2 - m_1^2 - m_2^2+2(E_3+E_4)E_3-2E_1m_2 -2E_3^2\\ &= m_\mathrm{N}^2 + m_\mathrm{N}^2 - m_\mathrm{N}^2 - m_\mathrm{N}^2-2E_1m_\mathrm{N}+2E_3E_4\\ &= -2E_1m_\mathrm{N}+2E_3E_4\\ \Rightarrow |\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) &= -E_1m_\mathrm{N}+E_3E_4\\ &= E_3E_4-m_\mathrm{N}(E_1+m_\mathrm{N})+m_\mathrm{N}^2\\ \end{align}

From the law of conservation of energy, $E_1+m_\mathrm{N}=E_3+E_4$. Therefore, \begin{align} |\boldsymbol{p}_3||\boldsymbol{p}_4|\cos(\theta_3+\theta_4) &= E_3E_4-m_\mathrm{N}(E_1+m_\mathrm{N})+m_\mathrm{N}^2\\ &= E_3E_4-m_\mathrm{N}(E_3+E_4)+m_\mathrm{N}^2\\ &= (E_3-m_\mathrm{N})(E_4-m_\mathrm{N})\\ &= T_3T_4 \end{align}

Derivation of Quantity 12. Maximum K.E. transfer to a stationary particle

The first formula of the General Formulae \begin{align} \begin{pmatrix} E_4\\ |\boldsymbol{p}_4|\cos\theta_\mathrm{lab} \end{pmatrix} &= \begin{pmatrix} \gamma_\mathrm{cm} & \beta_\mathrm{cm}\gamma_\mathrm{cm}\\ \beta_\mathrm{cm}\gamma_\mathrm{cm} & \gamma_\mathrm{cm} \end{pmatrix} \begin{pmatrix} E_4^*\\ -|\boldsymbol{p}_4^*|\cos\theta_\mathrm{cm} \end{pmatrix}\\ \Rightarrow E_4 &= \gamma_\mathrm{cm} (E_4^* - \beta_\mathrm{cm}|\boldsymbol{p}_4^*|\cos\theta_\mathrm{cm}) \end{align}

Therefore, $E_4$ becomes maximum at $\theta_\mathrm{cm}=\pi$. The maximum value is \begin{align} E_\mathrm{4max} &= \gamma_\mathrm{cm} (E_4^* + \beta_\mathrm{cm}|\boldsymbol{p}_4^*|). \end{align}

From this formula, \begin{align} T_\mathrm{max} &= E_\mathrm{4max} - m_4\\ &= \gamma_\mathrm{cm} (E_4^* + \beta_\mathrm{cm}|\boldsymbol{p}_4^*|) - m_4. \end{align}

For the elastic scattering, $m_4 = m_2$, $|\boldsymbol{p}_4^*| = |\boldsymbol{p}_2^*|$, and $|E_4^*| = |E_2^*|$. Then, \begin{align} T_\mathrm{max} &= \gamma_\mathrm{cm} (E_2^* + \beta_\mathrm{cm}|\boldsymbol{p}_2^*|) - m_2\\ &= \gamma_\mathrm{cm} [m_2\gamma_2^* + \beta_\mathrm{cm}(m_2|\boldsymbol{\beta}_2^*|\gamma_2^*)] - m_2. \end{align} By using $|\boldsymbol{\beta}_2^*| = \beta_\mathrm{cm}$ and $\gamma_2^* = \gamma_\mathrm{cm}$, \begin{align} T_\mathrm{max} &= \gamma_\mathrm{cm} [m_2\gamma_\mathrm{cm} + \beta_\mathrm{cm}(m_2\beta_\mathrm{cm}\gamma_\mathrm{cm})] - m_2\\ &= m_2\gamma_\mathrm{cm}^2 (1+\beta_\mathrm{cm}^2) - m_2.\\ \end{align} In general, $|\boldsymbol{\beta}| = \sqrt{\gamma^2-1}/\gamma$. Therefore, \begin{align} T_\mathrm{max} &= m_2\gamma_\mathrm{cm}^2 \left(1+\frac{\gamma_\mathrm{cm}^2-1}{\gamma_\mathrm{cm}^2}\right) - m_2\\ &= m_2 (\gamma_\mathrm{cm}^2+\gamma_\mathrm{cm}^2-1) - m_2\\ &= 2m_2 (\gamma_\mathrm{cm}^2-1)\\ &= 2m_2 \boldsymbol{\beta}_\mathrm{cm}^2\gamma_\mathrm{cm}^2.\\ \end{align} By using Quantity 4. and 5., \begin{align} T_\mathrm{max} &= 2m_2 \left(\frac{\boldsymbol{p}_1}{E_1+m_2}\right)^2\left(\frac{E_1+m_2}{W}\right)^2\\ &= 2m_2 \frac{\boldsymbol{p}_1^2}{W^2}.\\ \end{align}

$W$ can be written as \begin{align} W &= \sqrt{m_1^2+m_2^2+2m_2E_1}\\ &= \sqrt{m_1^2+m_2^2+2m_2m_1\gamma_1}\\ &= \sqrt{m_1m_2\left(\frac{m_1}{m_2}+\frac{m_2}{m_1}+2\gamma_1\right)}\\ &= \sqrt{m_1m_2\left(k_{12}+k_{21}+2\gamma_1\right)}.\\ \end{align} By substituting this formula into the former formula, \begin{align} T_\mathrm{max} &= 2m_2 \frac{\boldsymbol{p}_1^2}{m_1m_2\left(k_{12}+k_{21}+2\gamma_1\right)}\\ &= \frac{2\boldsymbol{p}_1^2}{m_1(k_{12}+k_{21}+2\gamma_1)}.\\ \end{align}

The second formula of the General Formulae

From the first formula, \begin{align} T_\mathrm{max} &= \frac{2\boldsymbol{p}_1^2}{m_1(k_{12}+k_{21}+2\gamma_1)}\\ &= \frac{2m_1^2\boldsymbol{\beta}_1^2\gamma_1^2}{m_1(k_{12}+k_{21}+2\gamma_1)}\\ &= \frac{2m_1\boldsymbol{\beta}_1^2\gamma_1^2}{k_{12}+k_{21}+2\gamma_1}.\\ \end{align} By using $m_1=m_2/k_{21}$, \begin{align} T_\mathrm{max} &= \frac{2m_2\boldsymbol{\beta}_1^2\gamma_1^2}{k_{21}(k_{12}+k_{21}+2\gamma_1)}\\ &= \frac{2m_2\boldsymbol{\beta}_1^2\gamma_1^2}{1+k_{21}^2+2\gamma_1k_{21}}.\\ \end{align} If $k_{21} = m2/m1 \ll 1$, \begin{align} T_\mathrm{max} &= \frac{2m_2\boldsymbol{\beta}_1^2\gamma_1^2}{1+k_{21}^2+2\gamma_1k_{21}}\\ &\approx 2m_2\boldsymbol{\beta}_1^2\gamma_1^2.\\ \end{align}

Another derivation of the second formula of the General Formulae

If $m2/m1 \ll 1$, $|\boldsymbol{\beta}_\mathrm{cm}| \approx |\boldsymbol{\beta}_1|$ and $\gamma_\mathrm{cm} \approx \gamma_1$. Therefore, from the formula above, \begin{align} T_\mathrm{max} &= 2m_2 \boldsymbol{\beta}_\mathrm{cm}^2\gamma_\mathrm{cm}^2\\ &\approx 2m_2\boldsymbol{\beta}_1^2\gamma_1^2.\\ \end{align}

General memo

Lorentz transformation

\begin{align} E^*&=\gamma_0(E-\boldsymbol{p}\cdot\boldsymbol{\beta}_0)\\ \boldsymbol{p}^*&=\boldsymbol{p}+\boldsymbol{\beta}_0\gamma_0\left[\frac{\gamma_0}{\gamma_0+1}\boldsymbol{\beta}_0\cdot\boldsymbol{p}-E\right] \end{align}

Beam axis

$\boldsymbol{p}$ can be written as \begin{align} \boldsymbol{p} = p_{||}\boldsymbol{e}_{||} +p_{T}\boldsymbol{e}_T, \end{align} where $\boldsymbol{e}_{||}$ ($\boldsymbol{e}_T$) is a unit vector parallel (perpendicular) to $\boldsymbol{\beta}_0$, and $p_{||}$ ($p_T$) is the component of $\boldsymbol{p}$ parallel (perpendicular) to $\boldsymbol{\beta}_0$. Similarly, \begin{align} \boldsymbol{p}^* = p_{||}^*\boldsymbol{e}_{||} +p_{T}^*\boldsymbol{e}_T. \end{align} From the equation of $\boldsymbol{p}$, \begin{align} \boldsymbol{\beta}_0\cdot\boldsymbol{p} &= (\beta_0 \boldsymbol{e}_{||}) \cdot (p_{||}\boldsymbol{e}_{||} +p_{T}\boldsymbol{e}_T)\\ &= \beta_0 p_{||} \boldsymbol{e}_{||} \cdot \boldsymbol{e}_{||} + \beta_0 p_{T} \boldsymbol{e}_{||} \cdot \boldsymbol{e}_T\\ &= \beta_0 p_{||}. \end{align}

By using these equations, \begin{align} E^* &=\gamma_0(E-\boldsymbol{p}\cdot\boldsymbol{\beta}_0)\\ &=\gamma_0(E-p_{||}\beta_0)\\ \boldsymbol{p}^*&=\boldsymbol{p}+\boldsymbol{\beta}_0\gamma_0\left[\frac{\gamma_0}{\gamma_0+1}\boldsymbol{\beta}_0\cdot\boldsymbol{p}-E\right]\\ p_{||}^*\boldsymbol{e}_{||} +p_{T}^*\boldsymbol{e}_T &= p_{||}\boldsymbol{e}_{||} +p_{T}\boldsymbol{e}_T + \beta_0 \boldsymbol{e}_{||}\gamma_0\left[\frac{\gamma_0}{\gamma_0+1}\beta_0 p_{||}-E\right]\\ &= p_{||}\boldsymbol{e}_{||} +p_{T}\boldsymbol{e}_T + \left[\frac{(\gamma_0\beta_0)^2}{\gamma_0+1} p_{||}-\beta_0 \gamma_0 E\right]\boldsymbol{e}_{||}\\ &= p_{||}\boldsymbol{e}_{||} +p_{T}\boldsymbol{e}_T + \left[\frac{\gamma_0^2-1}{\gamma_0+1} p_{||}-\beta_0 \gamma_0 E\right]\boldsymbol{e}_{||}\\ &= p_{||}\boldsymbol{e}_{||} +p_{T}\boldsymbol{e}_T + \left[(\gamma_0-1) p_{||}-\beta_0 \gamma_0 E\right]\boldsymbol{e}_{||}\\ &= \left(\gamma_0 p_{||}-\beta_0 \gamma_0 E\right)\boldsymbol{e}_{||} +p_{T}\boldsymbol{e}_T.\\ \end{align} Finally, \begin{align} \begin{pmatrix} E^*\\ p_{||}^*\\ p_T^*\\ \end{pmatrix} = \begin{pmatrix} \gamma_0 & -\beta_0\gamma_0 & 0 \\ -\beta_0\gamma_0 & \gamma_0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} E\\ p_{||}\\ p_T\\ \end{pmatrix} \end{align}

Special case

The special case where $\boldsymbol{\beta}_0 = \beta_0 \boldsymbol{k}$, with $\boldsymbol{k}$ the unit vector along the $z$-direction, can be written

\begin{align} E^*&=\gamma_0E-\beta_0\gamma_0p_z\\ \boldsymbol{p}^*&=\boldsymbol{p}+\beta_0\boldsymbol{k}\gamma_0\left[\frac{\gamma_0}{\gamma_0+1}\beta_0 \boldsymbol{k}\cdot\boldsymbol{p}-E\right]\\ &=\boldsymbol{p}+\beta_0\boldsymbol{k}\gamma_0\left[\frac{\gamma_0}{\gamma_0+1}\beta_0 p_z-E\right]\\ &=\boldsymbol{p}+\left[\frac{(\beta_0\gamma_0)^2}{\gamma_0+1}p_z-\beta_0\gamma_0E\right]\boldsymbol{k}\\ &=\boldsymbol{p}+\left[\frac{\gamma_0^2-1}{\gamma_0+1}p_z-\beta_0\gamma_0E\right]\boldsymbol{k}\\ &=\boldsymbol{p}+\left[(\gamma_0-1)p_z-\beta_0\gamma_0E\right]\boldsymbol{k}\\ p_x^*\boldsymbol{i}+p_y^*\boldsymbol{j}+p_z^*\boldsymbol{k}&=p_x\boldsymbol{i}+p_y\boldsymbol{j}+p_z\boldsymbol{k}+\left[(\gamma_0-1)p_z-\beta_0\gamma_0E\right]\boldsymbol{k}\\ p_x^*\boldsymbol{i}+p_y^*\boldsymbol{j}+p_z^*\boldsymbol{k}&=p_x\boldsymbol{i}+p_y\boldsymbol{j}+(\gamma_0 p_z-\beta_0\gamma_0E)\boldsymbol{k}\\ p_x^* &= p_x \\ p_y^* &= p_y \\ p_z^* &= \gamma_0 p_z-\beta_0\gamma_0E \end{align}

\begin{align} \begin{pmatrix} E^*\\ p_x^*\\ p_y^*\\ p_z^* \end{pmatrix} = \begin{pmatrix} \gamma_0 & 0 & 0 & -\beta_0\gamma_0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\beta_0\gamma_0 & 0 & 0 & \gamma_0 \end{pmatrix} \begin{pmatrix} E\\ p_x\\ p_y\\ p_z \end{pmatrix} \end{align}

Velocity of the center of mass $\boldsymbol{\beta}_{\rm cm}$

In the center of mass frame, the sum of the momenta of the particles ($\boldsymbol{p}_1^* + \boldsymbol{p}_2^*$) should be $0$. Therefore, $\boldsymbol{\beta}_{\rm cm}$ can be obtained by solving the following equation for $\boldsymbol{\beta}_0$. \begin{align} 0 &= \boldsymbol{p}_1^* + \boldsymbol{p}_2^*\\ &= \boldsymbol{p}_1+\boldsymbol{\beta}_0\gamma_0\left[\frac{\gamma_0}{\gamma_0+1}\boldsymbol{\beta}_0\cdot\boldsymbol{p}_1-E_1\right] + \boldsymbol{p}_2+\boldsymbol{\beta}_0\gamma_0\left[\frac{\gamma_0}{\gamma_0+1}\boldsymbol{\beta}_0\cdot\boldsymbol{p}_2-E_2\right]\\ \end{align} The equation can be rearranged as below. \begin{align} \boldsymbol{p}_1 + \boldsymbol{p}_2 = -\boldsymbol{\beta}_0\gamma_0\left[\frac{\gamma_0}{\gamma_0+1}\boldsymbol{\beta}_0\cdot(\boldsymbol{p}_1+\boldsymbol{p}_2)-(E_1+E_2)\right] \end{align} This equation means that the direction of $\boldsymbol{\beta}_0$ is the same as that of $(\boldsymbol{p}_1 + \boldsymbol{p}_2)$. (Note that $\boldsymbol{\beta}_0\cdot(\boldsymbol{p}_1+\boldsymbol{p}_2)$ is a scalar term and has no direction.) Therefore, the unit vector $\widehat{\boldsymbol{\beta}_0}$ along the direction of $\boldsymbol{\beta}_0$ is \begin{align} \widehat{\boldsymbol{\beta}_0} = \frac{\boldsymbol{\beta}_0}{\beta_0} = \frac{\boldsymbol{p}_1 + \boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}. \end{align} The magnitude $\beta_0=|\boldsymbol{\beta}_0|$ of the vector $\boldsymbol{\beta}_0$ can be calculated by making inner product of $\boldsymbol{\beta}_0$ and $(\boldsymbol{p}_1 + \boldsymbol{p}_2)$ as below. \begin{align} \boldsymbol{\beta}_0\cdot(\boldsymbol{p}_1 + \boldsymbol{p}_2) &= -\boldsymbol{\beta}_0\cdot\boldsymbol{\beta}_0\gamma_0\left[\frac{\gamma_0}{\gamma_0+1}\boldsymbol{\beta}_0\cdot(\boldsymbol{p}_1+\boldsymbol{p}_2)-(E_1+E_2)\right]\\ &= -\beta_0^2\gamma_0\left[\frac{\gamma_0}{\gamma_0+1}\boldsymbol{\beta}_0\cdot(\boldsymbol{p}_1+\boldsymbol{p}_2)-(E_1+E_2)\right]\\ &= -\frac{(\beta_0\gamma_0)^2}{\gamma_0+1}\boldsymbol{\beta}_0\cdot(\boldsymbol{p}_1+\boldsymbol{p}_2)+\beta_0^2\gamma_0(E_1+E_2)\\ \beta_0^2\gamma_0(E_1+E_2) &= \left[1+\frac{(\beta_0\gamma_0)^2}{\gamma_0+1}\right]\boldsymbol{\beta}_0\cdot(\boldsymbol{p}_1 + \boldsymbol{p}_2)\\ &= \left[1+\frac{\gamma_0^2-1}{\gamma_0+1}\right]\boldsymbol{\beta}_0\cdot(\boldsymbol{p}_1 + \boldsymbol{p}_2)\\ &= \left[1+(\gamma_0-1)\right]\boldsymbol{\beta}_0\cdot(\boldsymbol{p}_1 + \boldsymbol{p}_2)\\ &= \gamma_0\boldsymbol{\beta}_0\cdot(\boldsymbol{p}_1 + \boldsymbol{p}_2)\\ \beta_0^2(E_1+E_2) &= \boldsymbol{\beta}_0\cdot(\boldsymbol{p}_1 + \boldsymbol{p}_2)\\ \beta_0(E_1+E_2) &= \left(\frac{\boldsymbol{\beta}_0}{\beta_0}\right)\cdot(\boldsymbol{p}_1 + \boldsymbol{p}_2)\\ &= \left(\frac{\boldsymbol{p}_1 + \boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\right)\cdot(\boldsymbol{p}_1 + \boldsymbol{p}_2)\\ &= \frac{(\boldsymbol{p}_1 + \boldsymbol{p}_2)\cdot(\boldsymbol{p}_1 + \boldsymbol{p}_2)}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\\ &= \frac{|\boldsymbol{p}_1 + \boldsymbol{p}_2|^2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\\ &=|\boldsymbol{p}_1 + \boldsymbol{p}_2|\\ \beta_0&=\frac{|\boldsymbol{p}_1 + \boldsymbol{p}_2|}{E_1+E_2}. \end{align} Therefore, \begin{align} \widehat{\boldsymbol{\beta}_{\rm cm}} = \frac{\boldsymbol{\beta}_{\rm cm}}{\beta_{\rm cm}} = \frac{\boldsymbol{p}_1 + \boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|},\\ \beta_{\rm cm} = \frac{|\boldsymbol{p}_1 + \boldsymbol{p}_2|}{E_1+E_2}. \end{align} As a result, \begin{align} \boldsymbol{\beta}_{\rm cm} = \beta_{\rm cm}\widehat{\boldsymbol{\beta}_{\rm cm}} = \frac{\boldsymbol{p}_1 + \boldsymbol{p}_2}{E_1+E_2}. \end{align} In other words, \begin{align} \boldsymbol{\beta}_{\rm cm} = \frac{E_1\boldsymbol{\beta}_1 + E_2\boldsymbol{\beta}_2}{E_1+E_2}. \end{align}

N.B. In Galilean transformation (non-relativistic limit), \begin{align} \boldsymbol{\beta}_{\rm cm} = \frac{m_1\boldsymbol{\beta}_1 + m_2\boldsymbol{\beta}_2}{m_1+m_2}. \end{align}

The total center of mass energy $W$, $\gamma_{\rm cm}$ and $\boldsymbol{\beta}_{\rm cm}\gamma_{\rm cm}$

\begin{align} W &= \sqrt{(E_1+E_2)^2-(\boldsymbol{p}_1+\boldsymbol{p}_2)^2}\\ \gamma_{\rm cm} &= \frac{1}{\sqrt{1-\beta_{\rm cm}^2}}\\ &= \frac{1}{\sqrt{1-\left(\frac{\boldsymbol{p}_1 + \boldsymbol{p}_2}{E_1+E_2}\right)^2}}\\ &= \frac{E_1+E_2}{\sqrt{(E_1+E_2)^2-(\boldsymbol{p}_1 + \boldsymbol{p}_2)^2}}\\ &= \frac{E_1+E_2}{W}\\ \boldsymbol{\beta}_{\rm cm}\gamma_{\rm cm} &= \frac{\boldsymbol{p}_1 + \boldsymbol{p}_2}{E_1+E_2} \frac{E_1+E_2}{W} \\ &= \frac{\boldsymbol{p}_1 + \boldsymbol{p}_2}{W} \\ \beta_{\rm cm}\gamma_{\rm cm} &= \frac{|\boldsymbol{p}_1 + \boldsymbol{p}_2|}{W} \end{align}

The momentum $\boldsymbol{p}_1^*$ in the center of mass frame

\begin{align} \boldsymbol{p}_1^* &= \boldsymbol{p}_1+\boldsymbol{\beta}_{\rm cm}\gamma_{\rm cm}\left[\frac{\gamma_{\rm cm}}{\gamma_{\rm cm}+1}\boldsymbol{\beta}_{\rm cm}\cdot\boldsymbol{p}_1-E_1\right]\\ &= \boldsymbol{p}_1+\beta_{\rm cm}\widehat{\boldsymbol{\beta}_{\rm cm}}\gamma_{\rm cm}\left[\frac{\gamma_{\rm cm}}{\gamma_{\rm cm}+1}\beta_{\rm cm}\widehat{\boldsymbol{\beta}_{\rm cm}}\cdot\boldsymbol{p}_1-E_1\right]\\ &= \boldsymbol{p}_1+\widehat{\boldsymbol{\beta}_{\rm cm}}\left[\frac{(\beta_{\rm cm}\gamma_{\rm cm})^2}{\gamma_{\rm cm}+1}\widehat{\boldsymbol{\beta}_{\rm cm}}\cdot\boldsymbol{p}_1-\beta_{\rm cm}\gamma_{\rm cm}E_1\right]\\ &= \boldsymbol{p}_1+\widehat{\boldsymbol{\beta}_{\rm cm}}\left[(\gamma_{\rm cm}-1)\widehat{\boldsymbol{\beta}_{\rm cm}}\cdot\boldsymbol{p}_1-\beta_{\rm cm}\gamma_{\rm cm}E_1\right]\\ &= \boldsymbol{p}_1+\frac{\boldsymbol{p}_1+\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\left[\left(\frac{E_1+E_2}{W}-1\right)\frac{\boldsymbol{p}_1+\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\cdot\boldsymbol{p}_1-\frac{|\boldsymbol{p}_1+\boldsymbol{p}_2|}{W}E_1\right]\\ &= \boldsymbol{p}_1+\frac{\boldsymbol{p}_1+\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\left[\frac{E_1+E_2}{W}\frac{\boldsymbol{p}_1+\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\cdot\boldsymbol{p}_1-\frac{\boldsymbol{p}_1+\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\cdot\boldsymbol{p}_1-\frac{|\boldsymbol{p}_1+\boldsymbol{p}_2|}{W}E_1\right]\\ &= \boldsymbol{p}_1+\frac{\boldsymbol{p}_1+\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\left[\frac{E_1+E_2}{W}\frac{\boldsymbol{p}_1^2+\boldsymbol{p}_1\cdot\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}-\frac{\boldsymbol{p}_1^2+\boldsymbol{p}_1\cdot\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}-\frac{|\boldsymbol{p}_1+\boldsymbol{p}_2|}{W}E_1\right]\\ &= \boldsymbol{p}_1+\frac{\boldsymbol{p}_1+\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\left[\frac{(E_1+E_2)(\boldsymbol{p}_1^2+\boldsymbol{p}_1\cdot\boldsymbol{p}_2)-E_1|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}{W|\boldsymbol{p}_1+\boldsymbol{p}_2|}-\frac{\boldsymbol{p}_1^2+\boldsymbol{p}_1\cdot\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\right]\\ &= \boldsymbol{p}_1+\frac{\boldsymbol{p}_1+\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\left[\frac{E_1(\boldsymbol{p}_1^2+\boldsymbol{p}_1\cdot\boldsymbol{p}_2)+E_2(\boldsymbol{p}_1^2+\boldsymbol{p}_1\cdot\boldsymbol{p}_2)-E_1(\boldsymbol{p}_1^2+\boldsymbol{p}_2^2+2\boldsymbol{p}_1\cdot\boldsymbol{p}_2)}{W|\boldsymbol{p}_1+\boldsymbol{p}_2|}-\frac{\boldsymbol{p}_1^2+\boldsymbol{p}_1\cdot\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\right]\\ &= \boldsymbol{p}_1+\frac{\boldsymbol{p}_1+\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\left[\frac{\boldsymbol{p}_1^2E_2-\boldsymbol{p}_2^2E_1+(E_2-E_1)\boldsymbol{p}_1\cdot\boldsymbol{p}_2}{W|\boldsymbol{p}_1+\boldsymbol{p}_2|}-\frac{\boldsymbol{p}_1^2+\boldsymbol{p}_1\cdot\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|}\right]\\ &= \frac{\left[\boldsymbol{p}_1^2E_2-\boldsymbol{p}_2^2E_1+(E_2-E_1)\boldsymbol{p}_1\cdot\boldsymbol{p}_2\right](\boldsymbol{p}_1+\boldsymbol{p}_2)}{W|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}+\boldsymbol{p}_1-\frac{(\boldsymbol{p}_1^2+\boldsymbol{p}_1\cdot\boldsymbol{p}_2)(\boldsymbol{p}_1+\boldsymbol{p}_2)}{|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}\\ &= \frac{\left[\boldsymbol{p}_1^2E_2-\boldsymbol{p}_2^2E_1+(E_2-E_1)\boldsymbol{p}_1\cdot\boldsymbol{p}_2\right](\boldsymbol{p}_1+\boldsymbol{p}_2)}{W|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}+\frac{|\boldsymbol{p}_1+\boldsymbol{p}_2|^2\boldsymbol{p}_1-(\boldsymbol{p}_1^2+\boldsymbol{p}_1\cdot\boldsymbol{p}_2)\boldsymbol{p}_1-(\boldsymbol{p}_1^2+\boldsymbol{p}_1\cdot\boldsymbol{p}_2)\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}\\ &= \frac{\left[\boldsymbol{p}_1^2E_2-\boldsymbol{p}_2^2E_1+(E_2-E_1)\boldsymbol{p}_1\cdot\boldsymbol{p}_2\right](\boldsymbol{p}_1+\boldsymbol{p}_2)}{W|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}+\frac{(\boldsymbol{p}_1^2+\boldsymbol{p}_2^2+2\boldsymbol{p}_1\cdot\boldsymbol{p}_2)\boldsymbol{p}_1-(\boldsymbol{p}_1^2+\boldsymbol{p}_1\cdot\boldsymbol{p}_2)\boldsymbol{p}_1-(\boldsymbol{p}_1^2+\boldsymbol{p}_1\cdot\boldsymbol{p}_2)\boldsymbol{p}_2}{|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}\\ &= \frac{\left[\boldsymbol{p}_1^2E_2-\boldsymbol{p}_2^2E_1+(E_2-E_1)\boldsymbol{p}_1\cdot\boldsymbol{p}_2\right](\boldsymbol{p}_1+\boldsymbol{p}_2)}{W|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}+\frac{\boldsymbol{p}_2^2\boldsymbol{p}_1-\boldsymbol{p}_1^2\boldsymbol{p}_2+\boldsymbol{p}_1\cdot\boldsymbol{p}_2(\boldsymbol{p}_1-\boldsymbol{p}_2)}{|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}\\ &= \frac{\left[\boldsymbol{p}_1^2E_2-\boldsymbol{p}_2^2E_1+(E_2-E_1)\cdot\frac{1}{2}\left(|\boldsymbol{p}_1+\boldsymbol{p}_2|^2-\boldsymbol{p}_1^2-\boldsymbol{p}_2^2\right)\right](\boldsymbol{p}_1+\boldsymbol{p}_2)}{W|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}+\frac{\boldsymbol{p}_2^2\boldsymbol{p}_1-\boldsymbol{p}_1^2\boldsymbol{p}_2+\frac{1}{2}\left(|\boldsymbol{p}_1+\boldsymbol{p}_2|^2-\boldsymbol{p}_1^2-\boldsymbol{p}_2^2\right)(\boldsymbol{p}_1-\boldsymbol{p}_2)}{|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}\\ &= \frac{\left[\boldsymbol{p}_1^2E_2-\boldsymbol{p}_2^2E_1-\frac{1}{2}(E_2-E_1)(\boldsymbol{p}_1^2+\boldsymbol{p}_2^2)+\frac{1}{2}(E_2-E_1)|\boldsymbol{p}_1+\boldsymbol{p}_2|^2\right](\boldsymbol{p}_1+\boldsymbol{p}_2)}{W|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}+\frac{\boldsymbol{p}_2^2\boldsymbol{p}_1-\boldsymbol{p}_1^2\boldsymbol{p}_2-\frac{1}{2}(\boldsymbol{p}_1^2+\boldsymbol{p}_2^2)(\boldsymbol{p}_1-\boldsymbol{p}_2)+\frac{1}{2}|\boldsymbol{p}_1+\boldsymbol{p}_2|^2(\boldsymbol{p}_1-\boldsymbol{p}_2)}{|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}\\ &= \frac{\left[\frac{1}{2}\boldsymbol{p}_1^2E_2-\frac{1}{2}\boldsymbol{p}_2^2E_1+\frac{1}{2}\boldsymbol{p}_1^2E_1-\frac{1}{2}\boldsymbol{p}_2^2E_2+\frac{1}{2}(E_2-E_1)|\boldsymbol{p}_1+\boldsymbol{p}_2|^2\right](\boldsymbol{p}_1+\boldsymbol{p}_2)}{W|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}+\frac{\frac{1}{2}\boldsymbol{p}_2^2\boldsymbol{p}_1-\frac{1}{2}\boldsymbol{p}_1^2\boldsymbol{p}_2-\frac{1}{2}\boldsymbol{p}_1^2\boldsymbol{p}_1+\frac{1}{2}\boldsymbol{p}_2^2\boldsymbol{p}_2+\frac{1}{2}|\boldsymbol{p}_1+\boldsymbol{p}_2|^2(\boldsymbol{p}_1-\boldsymbol{p}_2)}{|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}\\ &= \frac{\left[(E_1+E_2)(\boldsymbol{p}_1^2-\boldsymbol{p}_2^2)+(E_2-E_1)|\boldsymbol{p}_1+\boldsymbol{p}_2|^2\right](\boldsymbol{p}_1+\boldsymbol{p}_2)}{2W|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}+\frac{(\boldsymbol{p}_2^2-\boldsymbol{p}_1^2)(\boldsymbol{p}_1+\boldsymbol{p}_2)+|\boldsymbol{p}_1+\boldsymbol{p}_2|^2(\boldsymbol{p}_1-\boldsymbol{p}_2)}{2|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}\\ &= \frac{\left[(E_1+E_2)(\boldsymbol{p}_1^2-\boldsymbol{p}_2^2)+(E_2-E_1)|\boldsymbol{p}_1+\boldsymbol{p}_2|^2\right](\boldsymbol{p}_1+\boldsymbol{p}_2)+W(\boldsymbol{p}_2^2-\boldsymbol{p}_1^2)(\boldsymbol{p}_1+\boldsymbol{p}_2)}{2W|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}+\frac{1}{2}(\boldsymbol{p}_1-\boldsymbol{p}_2)\\ &= \frac{(E_1+E_2-W)(\boldsymbol{p}_1^2-\boldsymbol{p}_2^2)+(E_2-E_1)|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}{2W|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}(\boldsymbol{p}_1+\boldsymbol{p}_2)+\frac{1}{2}(\boldsymbol{p}_1-\boldsymbol{p}_2)\\ &= \frac{(E_1+E_2-W)(\boldsymbol{p}_1^2-\boldsymbol{p}_2^2)(\boldsymbol{p}_1+\boldsymbol{p}_2)+(E_2-E_1)|\boldsymbol{p}_1+\boldsymbol{p}_2|^2(\boldsymbol{p}_1+\boldsymbol{p}_2)+W|\boldsymbol{p}_1+\boldsymbol{p}_2|^2(\boldsymbol{p}_1-\boldsymbol{p}_2)}{2W|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}\\ &= \frac{\left[(E_1+E_2-W)(\boldsymbol{p}_1^2-\boldsymbol{p}_2^2)+(E_2-E_1+W)|\boldsymbol{p}_1+\boldsymbol{p}_2|^2\right]\boldsymbol{p}_1+\left[(E_1+E_2-W)(\boldsymbol{p}_1^2-\boldsymbol{p}_2^2)+(E_2-E_1-W)|\boldsymbol{p}_1+\boldsymbol{p}_2|^2\right]\boldsymbol{p}_2}{2W|\boldsymbol{p}_1+\boldsymbol{p}_2|^2}\\ &= \frac{\left[(E_1+E_2-W)(E_1^2-m_1^2-E_2^2+m_2^2)+(E_2-E_1+W)\left[(E_1+E_2)^2-W^2\right]\right]\boldsymbol{p}_1+\left[(E_1+E_2-W)(E_1^2-m_1^2-E_2^2+m_2^2)+(E_2-E_1-W)\left[(E_1+E_2)^2-W^2\right]\right]\boldsymbol{p}_2}{2W\left[(E_1+E_2)^2-W^2\right]}\\ &= \frac{\left[(E_1+E_2-W)(E_1^2-m_1^2-E_2^2+m_2^2)+(E_2-E_1+W)(E_1+E_2+W)(E_1+E_2-W)\right]\boldsymbol{p}_1+\left[(E_1+E_2-W)(E_1^2-m_1^2-E_2^2+m_2^2)+(E_2-E_1-W)(E_1+E_2+W)(E_1+E_2-W)\right]\boldsymbol{p}_2}{2W(E_1+E_2+W)(E_1+E_2-W)}\\ &= \frac{\left[(E_1^2-m_1^2-E_2^2+m_2^2)+(E_2-E_1+W)(E_1+E_2+W)\right]\boldsymbol{p}_1+\left[(E_1^2-m_1^2-E_2^2+m_2^2)+(E_2-E_1-W)(E_1+E_2+W)\right]\boldsymbol{p}_2}{2W(E_1+E_2+W)}\\ &= \frac{\left(m_2^2-m_1^2+2E_2W+W^2\right)\boldsymbol{p}_1+\left(m_2^2-m_1^2-2E_1W-W^2\right)\boldsymbol{p}_2}{2W(E_1+E_2+W)}\\ \end{align}

research/memos/kinematics/non-relativistic_kinematics.1506663103.txt.gz · 最終更新: 2017/09/29 14:31 by kobayash
CC Attribution-Share Alike 4.0 International
Driven by DokuWiki Recent changes RSS feed Valid CSS Valid XHTML 1.0