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Relativistic Kinematics
General Equations

A particle with total energy E; and 3-momentum pj has a 4-momentum vector p; = (Ej, pj). Let
the rest mass of the particle be m and let its velocity be vj. Then the following relations hold:

B =v/c M
y = 1
Y @
(1-B2)
~ If we adopt units where ¢ = 1, then
B =BE =B ¥m = (E’-m2)n @

where T} is the kinetic energy of the particle.
If we consider any general 4-vectors A = (A, A) and B = (B, B), the scalar product is defined
by
AB =A;B;=A-B (&)

Lorentz Transformations

Consider a particle with 4-momentum p = (E, p) viewed from a second frame with velocity B,

relative to the original frame and y=(1 - [302)'“2. The components of p in the second frame are
denoted by p* = (E¥, p*) where

E* = 7 (E- p-By) ©

YO
P* = p+By, YOHBO-p—E . )

The special case where B, = Bk, with k the unit vector along the z-direction, can be written

E* =yE-BYE, ®)
p*=7p-B7E, . ©)
P =P, 5 PF=p,. (10)

It follows that the scalar product of any two 4-momenta, p;p, = E;E; - p;-p, is invariant, that is
frame independent. ‘
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Consider the case where the second frame is the center of mass of two colliding particles with
4-momenta p, and p, and the second particle is at rest in the first frame. This corresponds to the
conventional laboratory system. The above equations give the transformation from the lab to the

center of mass when the velocity of the center of mass B_ is substituted for B,

By = P1/(E;+my) (12)
and

E +m,

[(El+mz)2- pf]l/Z

Yem =

(13)

The transformation from the center of mass to the lab is obtained by substituting -B_ . in the
appropriate equations.
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Two Body Kinematics Formulae

Some useful 2-body kinematics formulae are summarized in the following table. The particles
have laboratory 4-momenta given by

p1 = (Ey, pp) andp, = (E,, pp for the initial state

p3 = (E3, p3)andp, = (E4 py for the final state.

The total energy in the center of mass is denoted by W. The relevant angle variables are shown in
the figure below. In the table, the quantities 811. are defined by

5 = B/B;, (14)
where the subscripts refer to the particle. In the table, asterisked variables are in the center of mass,
all others are in the lab frame.

Laboratory System

P;




Quantity

Two Body Scattering Formulae

General Formula

Elastic Scattering

N-N Scattering (equal mass)

Total c.m. energy

Same as the General

W = [2myE, ]2

= [ + m2)2 - plzlm formula
= [ (B3 +Ep?- (p; +pp* 172
c.m. momentum before | pi* = 1 {[W2-(m, + m,?] " py = EL[ W2-4mg2 ]2
. . 12
the interaction 2W . [W2-(m, - my?] }
c.m momentum after p* = 1 {[W2-my+my?] pP3* = py* p3'=p'= L[W2-am2 ]2
the interaction W - [w2-(my-my?] 12 2
velocity of the c.m. B* = py/(E; +my) Same as the General Formula Same as the General Formula
¥ of the c.m. v = E;+my) /W " !
Maximum lab " 032z = 90°

scattering angle

* _ 1§12
ta'ne3max = ‘Yz*[ 823 1]

*
) 2 21
otherwise 93m ax = 180°

c.m. to lab angle

cos 0, - ___y*,(cos 6%, +0%,3) |
[ sinZ+y*,2 (8%, ,+cos 0+%,)2 ]1/3

tane3 = $ingQ *
1+, (8*21+cos6*3 )

tan ¢, = _1 cotf*
Y*y 2

tanf, = sinf+,
Y*, ( 14cos6*5 )

jooqpuey soyewdulnyy JINNIAL

sonjewdury] dISIAIB[dY



Two Body Scattering Formulae

to a stationary
particle

Quantity General Formula N-N Scattering (equal mass)
8. lab to c.m. angle 12
transformation 8* (v.tan® & ( tane) * -
cos 0, - 2 a, ) &y, tan)” K (ytane) 1
1+Q, tan6)’ 1+Q, tan® ) «, tan6)” + 1
9. Solid angle dQ . __yt,(1+8,, cos0*) do . __y+,(1+ cosO+)
transformation d9*3 [ sin20* +y*22 ( 8‘23 + cos0,)2 32 aQ*, [ sin20% + v*,2 (1 + cos0,)2 ]2
(Jacobian)
dO+ _ sin’0; v+, (8*,; cosf* +1)
asl, sin“o#
10. Relations between (7¢l2 -1) = k% (7.22- 1) ¢ =%,
the vy factors
N.B. kj;=m;/m, Y+, = ki +7v, ™ = (.Lt:!l).m
(1 + K25+ 2kpp7, )2 2
Y4 = —Ka1 Y = Vep
(1 4+ kyy + 2y,kyy )12
11. Lab quantity 2p; pycos6y = mg2 - my2-my2 -my2 +2(E; +my ) E5 -2E  my
relations
2 p3 Py c0s(85+0,) =ms2 + m2 - m;2my2 - 2E, my + 2 5 E, P3 Py C0S(0540,) = T; T,
12. Maximum K E. transfer Tmax = 2 My [ Ky +kgy +27, ] py?

jooqpueH sonpewRun] JINNIAL
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Mandelstam Variables

In the general process 1 +2 — 3 + 4 as shown in the figure below, the relativistically invariant
Mandelstam variables are defined by

s = (P1+P2)2 = (p3+p4)2 = W’ ( square of the total energy )
t=(p, -Ps ) = (p,-p, ) ( 4-momentum transfer )

u = (.pl-p4)2 = (pz'p3)2

Pj P4

The Mandelstam variables are not independent:

4
2
s+t+u = m,
i=1

Other useful relations are:

*

E,

Il
)
]
m
*
]

2 2
) —= (s+m;-m, )

1
S

* * 1 2 2
E, = Js -E, = — (s+m;-m, )

2
2 2 *  k * ok *
t =m +m;-2E E;+2p p,cos® .
For elastic scattering

t=-2p (l-coso* ) = -2m, T, .

The 4-momentum transfer is negative for elastic scattering and — 0 as 6* — 0. There is no similar
simplification for u, since in general m; # my and my # mj3.
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Other Useful Kinematic Variables
(1) Rapidity

Generally we write the total energy of a particle as E2 = m2 + p2. If a particular direction is

chosen for the z-axis, then define
2 2 2 2 2 2
m = m+p+p = E-p, .
In this case we have
E =m, coshy
p,=m, sinhy

E+p E+p
_1 A _ z _ -1 pz
y—EIn{E_pz}—ln{ ml}—tanh{f}.

The variable y is called the rapidity.

where

(2) Pseudo-rapidity
A related variable is the pseudo-rapidity defined as

= 9
n lncot2 .

Here 0 is the angle between the particle and the beam direction. In the limit that E » m we have
n-y.

(3) Feynman x Variable

If a particular direction is chosen for the z-axis, the Feynman x variable is defined using the z-
momentum component in the overall c.m. system as follows:

X = .
‘ Py max cm

At high energy
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n-Body Phase Space

Consider the reaction shown in the figure below where there are n bodies in the final state.

P}
B P,
M
M
p2
pn- 1
P,

The differential cross section for this reaction is given in either the lab or center of mass by
the expression

en' M|
do = - dD_(Py Py Py» Py Pas wweeer P, ) -

2 2 2
(pjp,) - mym,

Here | M |? is the square of the Lorentz invariant scattering amplitude, [ (p;'py)? - m;2 my2]12 =
Piapmy = plcm\/s is the Moller flux factor, and d®_ is the n-body phase space factor.

The n-body phase space factor can be written
)13
d _dp
d®_(p, Pyi Py Pgs s D) = 4P, 2 P)
i= i=1(2n) ) E/

A simple recursion relation is obtained if we consider particles 1' and 2' as a single system of
momentum p';, = p;' +pp’ and mass m?;, = p?,

| 1 ] i ] I | i i 3
d® (P, P,; Pp Pp -+Pp) = AP (P Py Py Py -P,) APL Pp; P Py (27) dmyy



