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Atomic nuclei exhibit different shapes depending on the numbers of protons and neutrons, the excitation energies, or angular momentum. .
. . . | . . | Col laborators:
Shape coexistence phenomena, in which an excited band with a shape different from the shape in the ground band exists close to the ground
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oblate-prolate shape coexistence/mixing as large-amplitude collective motions in the low-lying states of proton-rich Se-Kr isotopes on the

basis of the adiabatic self-consistent collective coordinate (ASCC) method.
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Atomic nuclei exhibit different shapes depending on the numbers of protons and neutrons, the excitation

The construction of a microscopic theory of large-amplitude collective motions is a long-standing

energies, or angular momentum. Shape coexistence phenomena, in which an excited band with a shape open problem in nuclear structure physics.

different from the shape in the ground band exists close to the ground band, are widely observed all over In this work, we attempt to construct a microscopic theory of large-amplitude collective motions
the nuclear chart. . . on the basis of the adiabatic self-consistent collective coordinate(ASCC) method.
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Deformation The nucleus 1s a quantum many-body system:
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The numbers on arrows show B(E2) values in units of e*fm*.



