Evaluation of ionizing radiation induced DNA damage on a cell by integrated Monte Carlo simulations using Geant4-DNA

Dousatsu Sakata for the Geant4-DNA Collaboration

National Institutes for Quantum and Radiological Science and Technology

National Institute of Radiological Science

Outlook

Introduction

- Cell nucleus Geometry
 Direct/Indirect damage
 Simulation Configuration
- Results
- Conclusion

Introduction

Modeling of radiation induced DNA damage

Radiobiological Experiments

Proc Natl Acad Sci U. S. A. 2003 29;100(9):5057-62.

Simulation Overview

Physics and Chemistry

Electronic state	Decay Channel	Fraction (%)		
All ionization states	$H_3O^+ + \bullet OH$	100		
Excitation state	$\bullet \mathrm{OH} + \mathrm{H} \bullet$	65		
A1B1:	$H_2O + \Delta E$	35		
$(1b1) \rightarrow (4a1/3s)$				
Excitation state	$H_3O^+ + \bullet OH + e_{aq}$	55		
B1A1:	$\bullet \mathrm{OH} + \bullet \mathrm{OH} + \mathrm{H}_2$	15		
$(3a1) \rightarrow (4a1/3s)$	$H_2O + \Delta E$	30		
Excitation state:	$H_3O^+ + \bullet OH + e_{aq}$	50		
Rydberg, diffusion	$H_2O + \Delta E$	50		
bands				
		(10 1 - 1)		
Reaction	Reaction	rate $(10^{10} \text{ M}^{-1} \text{ s}^{-1})$		
$H \bullet + e_{aq} + H_2 O \rightarrow OH^2$	$H + H_2$	2.65		
$H \bullet + \bullet OH \rightarrow H_2 O$)	1.44		
$\mathrm{H}^{\bullet} + \mathrm{H}^{\bullet} \longrightarrow \mathrm{H}_{2}$		1.20		
$H_2 + \bullet OH \rightarrow H \bullet + H$	I ₂ O 4	4.17×10 ⁻³		
$H_2O_2 + e_{aq}^- \rightarrow OH^- +$	•OH	1.41		
$H_{3}O^{+} + e^{-}_{aq} \rightarrow H^{\bullet} + I$	H ₂ O	2.11		
$H_{3}O^{+} + OH^{-} \rightarrow 2 H_{3}$	20	14.3		
•OH + $e_{aq} \rightarrow OH$	-	2.95		
$\bullet \mathrm{OH} + \bullet \mathrm{OH} \to \mathrm{H}_{2}\mathrm{OH}$	D ₂	0.44		
$e_{aq}^{-} + e_{aq}^{-} + 2 H_2^{-} O \rightarrow 2 O$	\dot{H} + H ₂	0.50		
2	-			

Geometry in Previous Simulations

Cell Nucleus Geometry

DNA Geometry

TABLE I. The minimum allocation molecule geometries						
Name	Chemical formula	Volume shape	Radius (X) [Å]	Radius (Y) [Å]	Radius (Z) [Å]	
Phosphate	H_3PO_4	Sphere	2.28	2.28	2.28	
Deoxyribose	$C_5H_{10}O_4$	Sphere	2.63	2.63	2.63	
Guanine	$\mathrm{C}_{5}\mathrm{H}_{5}\mathrm{N}_{5}\mathrm{O}$	Ellipsoid	3.63	3.80	1.89	
Adenine	$\mathrm{C}_{5}\mathrm{H}_{5}\mathrm{N}_{5}$	Ellipsoid	3.43	3.74	1.93	
Cytosine	$\mathrm{C}_{4}\mathrm{H}_{5}\mathrm{N}_{3}\mathrm{O}$	Ellipsoid	3.60	3.07	1.77	
Thymine	$C_5H_6N_2O_2$	Ellipsoid	4.21	3.04	2.00	

N. Lampe et al, Phys. Med. 2018; 48:135-145

DNA Voxel Chromatin Fiber Geometry

NIRS

DNA Fractal Geometry

A Whole Cell Nucleus

Direct/Indirect damage and repair models

Direct Damage Model

Accumulate Eloss around molecules

Calculate probability of SSB

Indirect Damage and Histone Scavenging

OH-

Histone Size PARTRAC : 45 nm This work : 25 nm

NIRS

Simulation Configuration

Results

Using different damage parameters

After 10 years from Geant4-DNAlaunched, we have achieved to develop applications for evaluating ionising radiation induced DNA damage, as a milestone of the Geant4-DNA studies.

We are now ready to explore the mechanisms of ionising radiation induced DNA damage.

Physica Medica xxx (xxxx) xxx-xxx

Original paper

Evaluation of early radiation DNA damage in a fractal cell nucleus model using Geant4-DNA

Dousatsu Sakata^{a,1}, Nathanael Lampe^{c,d,1}, Mathieu Karamitros^{e,1}, Ioanna Kyriakou^f, Oleg Belov^g, Mario A. Bernal^h, David Bolst^a, Marie-Claude Bordage^{i,j}, Vincent Breton^b, Jeremy M.C. Brown^k, Ziad Francis^l, Vladimir Ivanchenko^{m,n}, Sylvain Meylan^{o,p}, Koichi Murakami^q, Shogo Okada^q, Ivan Petrovic^r, Aleksandra Ristic-Fira^r, Giovanni Santin^s, David Sarramia^b, Takashi Sasaki^q, Wook-Geun Shin^{c,d}, Nicolas Tang^o, Hoang N. Tran^{t,u}, Carmen Villagrasa^o, Dimitris Emfietzoglou^f, Petteri Nieminen^s, Susanna Guatelli^a, Sebastien Incerti^{c,d,*}

