

大阪大学理学研究科化学専攻 篠原研究室 M2 林 良彦

〇白金系抗がん剤とその動態追跡法

◆DNAに配位することで細胞の成長を阻害 ◆幅広いがんに対し抗腫瘍効果をもつため 抗がん剤として世界中で利用

白金系抗がん剤の主な挙動追跡方法

◆PIXE (表層分析) 細胞内での挙動の観察

◆ICP-MS (破壊分析) 細胞への取り込みや体内動態 ヒト体内での動態観察には 非破壊的で、深部も探れる 放射性Ptトレーサーが必須

白金系抗がん剤のヒト体内での挙動は ほとんど知られていない

O放射性Ptトレーサー

Au 189	Au 190	Au 191	Au 192	Au 193	Au 194	Au 195	Au 196	Au 197	Au 198	Au 199
4.6 m 28 m	42.8 m	1 s <mark>3.2 h</mark>	5.0 h	3.9 s 18 h	38 h	31 s 186 c	9.7 h <mark>6.2</mark> d	7.7 s 100	2.3 d <mark>2.7</mark> d	3.1 d
Pt 188	Pt 189	Pt 190	Pt 191	Pt 192	Pt 193	Pt 194	Pt 195	Pt 196	Pt 197	Pt 198
10 d	11 h	0.01	2.8 d	0.8	4.3 d 50 a	33.0	4.0 d 33.8	25.2	94 m 18 h	7.2
Ir 187	Ir 188	Ir 189	Ir 190	Ir 191	Ir 192	Ir 193	Ir 194	Ir 195	Ir 196	Ir 197
11 h	42 h	13 d	3.0 h 12 d	5.0 s 37.3	1.4 m 74 d	11 d 62.7	171 d 19 h	3.8 h 2.5 h	1.4 h 52 s	8.9 m 5.8 m
Os 186	Os 187	Os 188	Os 189	Os 190	Os 191	Os 192	Os 193	Os 194	Os 195	Os 196
1.59	1.96	13.24	5 h 16.2	9.9 m 26.3	13 h 15 d	6.1 s 40.9	30 h	6.0 a	6.5 m	35 m

Nuclide	Half-life	Eγ (keV)	lγ (%)
Pt-191	2.8 d	63-74	102
		82	4.9
		96	3.28
		129	3.2
		172	3.52
		538	13.7

Nuclide	Half-life	Eγ (keV)	lγ (%)
Pt-195m	4.0 d	65-76	68
		99	11.7
		130	2.9

〇従来の製造法の問題点

Au 189	Au 190	Au 191	Au 192	Au 193	Au 194	Au 195	Au 196	Au 197	Au 198	Au 199
4.6 m 28 m	42.8 m	1 s 3.2 h	5.0 h	3.9 s 18 h	38 h	31 s <mark>186 d</mark>	9.7 h <mark>6.2 d</mark>	7.7 s 100	2.3 d <mark>2.7 d</mark>	3.1 d
Pt 188	Pt 189	Pt 190	Pt 191	Pt 192	Pt 193	Pt 194	Pt 195	Pt 196	Pt 197	Pt 198
10 d	11 h	0.01	2.8 d	0.8	4.3 d 50 a	33.0	4.0 d 33.8	25.2	94 m <mark>18 h</mark>	7.2
Ir 187	Ir 188	Ir 189	Ir 190	Ir 191	Ir 192	Ir 193	Ir 194	Ir 195	Ir 196	Ir 197
11 h	42 h	13 d	3.0 h 12 d	5.0 s 37.3	1.4 m 74 d	11 d 62.7	171 d 19 h	3.8 h 2.5 h	1.4 h 52 s	8.9 m 5.8 m
Os 186	Os 187	Os 188	Os 189	Os 190	Os 191	Os 192	Os 193	Os 194	Os 195	Os 196
1.59	1.96	13.24	5h 16.2	9.9 m 26.3	13 h <mark>15 d</mark>	6.1 s 40.9	30 h	6.0 a	6.5 m	35 m

◆¹⁹²Os(He³, 4n)¹⁹¹Pt → 毒性の非常に強いOsO₄ガスが発生

◆^{nat}lr(*p, xn*)¹⁹¹Pt → ¹⁹¹Pt製造後の分離精製が困難

◆¹⁹⁴Pt(*n*,)^{195m}Pt → 比放射能の高い^{195m}Ptの製造が困難

〇従来の製造法の問題点

Au 189	Au 190	Au 191	Au 192	Au 193	Au 194	Au 195	Au 196	Au 197	Au 198	Au 199
4.6 m 28 m	42.8 m	1 s 3.2 h	5.0 h	3.9 s 18 h	38 h	31 s <mark>186 c</mark>	9.7 h <mark>6.2</mark> d	7.7 s 100	2.3 d <mark>2.7 d</mark>	3.1 d
Pt 188	Pt 189	Pt 190	Pt 191	Pt 192	Pt 193	Pt 194	Pt 195	Pt 196	Pt 197	Pt 198
10 d	11 h	0.01	2.8 d	0.8	4.3 d <mark>50</mark> a	33.0	4.0 d 33.8	25.2	94 m <mark>18 h</mark>	7.2
Ir 187	Ir 188	Ir 189	Ir 190	Ir 191	Ir 192	Ir 193	Ir 194	Ir 195	Ir 196	Ir 197
11 h	42 h	13 d	3.0 h 12 d	5.0 s 37.3	1.4 m 74 d	11 d 62.7	171 d 19 h	3.8 h 2.5 h	1.4 h 52 s	8.9 m 5.8 m
Os 186	Os 187	Os 188	Os 189	Os 190	Os 191	Os 192	Os 193	Os 194	Os 195	Os 196
1.59	1.96	13.24	5 h 16.2	9.9 m 26.3	13 h 15 d	6.1 s 40.9	30 h	6.0 a	6.5 m	35 m

◆¹⁹²Os(He³, 4n)¹⁹¹Pt

 \bullet ^{nat}Ir(p , xn)¹⁹¹Pt

• 194 Pt(*n*, γ)^{195m}Pt

PtのRIが供給された例は非常に少なく 創薬研究における需要を満たす 新たな製造法の開発が必要

^{nat}Ptより

分離

191Au + 194Au

^{nat}Ptターゲット

p beam

サイクロトロン

> 99%^[1]

191Au + 194Au

研究概要 ○本研究の目的 新規放射性Ptトレーサー供給法の開発 ① ^{nat}Pt(*p*, *xn*)¹⁹¹Au→¹⁹¹Pt反応による¹⁹¹Ptの製造 ② 同製造系からの¹⁹¹Ptの分離

③¹⁹¹Pt標識薬剤によるin vivo実験

> 10 GBq ◆比放射能 > 50 GBq/g ◆ 放射性核種純度 > 99%^[1]

臨床試験を

想定した目標

放射能

〇核反応断面積の測定:実験

○照射条件
 加速器:大阪大学核物理研究センターAVFサイクロトロン
 ビームエネルギー: 41.2, 46.6, 49.7, 53.3, 57.3, 60.2 MeV
 電流値: 9 - 52 nA 照射時間: 1 - 5 min
 ターゲット: 20 µm厚 Pt箔 減速材: 0.5 - 2 mm厚 Al板
 電流値モニター: ¹⁹⁷Au(*p*, 3*n*)¹⁹⁵ Hg, ビームによる2次電子の検出

〇<u>核反応断面積の測定: 結果</u>

^[2] F. Tarkanyi et al., Nucl. Inst. Meth. Phys. Res., Section B, 226 (2004).

O¹⁹¹Pt製造効率の測定:実験

〇照射条件
 加速器: 大阪大学核物理研究センターAVFサイクロトロン
 ターゲット: 2 mm厚 ^{nat}Pt ペレットターゲット
 ビームエネルギー: 60 MeV
 電流値: 121 nA 照射時間: 3 min
 電流値モニター: ¹⁹⁷Au(*p*, 3n)^{195g}Hg, ビームによる2次電子の検出

O <u>¹⁹¹Pt製造効率の測定: 結果</u>

Nuclear reaction	Energy	Yield (MBq/*)	Impurities (%)	
^{nat} Pt(<i>p, xn</i>) ¹⁹¹ Au→ ¹⁹¹ Pt	60→33 MeV	144 (198**)	¹⁸⁹ Pt: ~0.5 (T _{1/2} : 11 h)	
¹⁹² Os(³ <i>He, 4n</i>) ¹⁹¹ Pt ^[3]	$36 \rightarrow 25 \text{ MeV}$	6.4	none	
¹⁹⁷ Au(<i>p, x</i>) ¹⁹¹ Pt ^[4]	$75 \rightarrow 65 \text{ MeV}$	1-5	none	
¹⁹⁴ Pt(<i>n</i> , γ) ^{195m} Pt ^[5]	\sim 0.01 eV	1.8	¹⁹⁷ Pt: ~58 (T _{1/2} : 18 h)	
^{nat} Pt(<i>n, 2n</i>) ^{195m} Pt ^[6]	13.5 - 14.6 MeV	9.1	197 Pt: \sim 20 (T $_{1/2}$: 18 h)	

* (μ A h) or (10¹²n cm⁻² s⁻¹g h).

** Calculation

<u>過去の製造法に比べても</u>

<u>非常に高い効率、放射性核種純度で191Ptの製造が可能</u>

[3] S. M. Qaim et al., Appl. Radiat. Isot., 67, 6 (2009).[4] K. Hilgers et al., Appl. Radiat. Isot., 66 (2008).[5] J. Areberg et al., Acta Oncologica., 38 (2006).[6] J. Luo et al., Radiochim. Acta, 93 (2005).

研究概要

〇本研究の目的

<u>新規放射性Ptトレーサー供給法の開発</u>

①^{nat}Pt(*p*, *xn*)¹⁹¹Au→¹⁹¹Pt反応による¹⁹¹Ptの製造

 回製造系からの¹⁹¹Ptの分離

③¹⁹¹Pt標識薬剤によるin vivo実験

O nat Pt(p, xn)¹⁹¹Au→¹⁹¹Pt製造系からの¹⁹¹Ptの分離: 実験

O^{nat}Pt(p, xn)¹⁹¹Au→¹⁹¹Pt製造系からの¹⁹¹Ptの分離: 実験

研究概要 ○本研究の目的 新規放射性Ptトレーサー供給法の開発 ① ^{nat}Pt(p, xn)¹⁹¹Au→¹⁹¹Pt反応による¹⁹¹Ptの製造 ② 同製造系からの¹⁹¹Ptの分離 ③ <u>¹⁹¹Pt標識薬剤によるin vivo実験</u>

③¹⁹¹Pt標識薬剤によるin vivo実験

O¹⁹¹Pt-cisplatinの合成とマウス体内での動態: 実験

〇合成

※¹⁹¹Ptに数mgのK₂PtCl₄キャリアを添加

③¹⁹¹Pt標識薬剤によるin vivo実験

O¹⁹¹Pt-cisplatinの合成とマウス体内での動態: 結果

まとめ	
〇本研究の目的	
<u>新規放射性Ptトレーサー供給法</u>	の開発
① ^{nat} Pt(<i>p , xn</i>) ¹⁹¹ Au→ ¹⁹¹ Pt反応によ ② <u>同製造系からの¹⁹¹Ptの分離</u>	<u>え¹⁹¹Ptの製造</u> ➡ 製造、精製 ➡ 操作の自動化
③ ¹⁹¹ Pt標識薬剤によるin vivo実験	シンチグラムの撮像 オージェ電子治療への応用
ー 今回の結果	 協床試験を想定した目標 ◆ 放射能: > 10 GBq
◆比放射能:>52 GBq/g µA h	◆比放射能: > 50 GBq/g
◆放射性核種純度:>99%	◆ 放射性核種純度: > 99%

30 µA程度のビームにより十分達成可能 本製造、精製法によって供給される¹⁹¹Ptの有効性を確認