

2014年11月10日(月)-11(水) 大阪大学会館 講堂

JAEAタンデム加速器施設での Rn-211/At-211ジェネレータ開発

西中 一朗

1/30

重原子核反応フロンティア研究Gr

- ²¹¹Rn/²¹¹Atジェネレータプロジェクト
 - がん治療用α放射性同位体の新規供給方法
- ²¹¹Rn/²¹¹Atジェネレータ開発基礎実験
 - 湿式化学分離(金沢)
 - 乾式化学分離(JAEA)
- 低融点金属Bi用照射装置開発
- ⁷Liイオンビームを用いたAt, Iの製造と利用
 ⁷Li+^{nat}Pb、⁷Li+^{nat}Sn
- まとめと今後、将来の計画

がん治療用α放射性同位体

H. Song et al., Cancer Res. 69(2009)8941-8948.

4/30

²¹¹Rn

²¹¹Rn/²¹¹Atジェネレータプロジェクト

²¹¹Atの特徴 7.2h 短半減期:治療効果 ハロゲン元素:薬剤合成 加速器でしか生成できないRI

²¹²Rn

核医学で注目されている²¹¹Atの一般的な合成反応 とは違う反応での合成方法とその利点に着想

²¹³Rn

²¹⁴Rn

²¹⁵Rn

α放射性同位体による 新しいがん治療を目指して

利点:ジェネレータ(親核種²¹¹Rnから 生成する娘核種²¹¹Atを利用) 放射過渡平衡を利用して半減期を約 2倍にする。長距離(日本全国、アジ ア地域)輸送が可能

²¹⁶Rn

²⁰⁹Bi(⁷Li,5n)²¹¹Rn反応で生成した²¹¹Rnから
 ²¹¹Atトレーサーを作るためのジェネレーター
 システムの基礎検討

- 湿式化学分離(金沢大)
 - 酸溶解+有機溶媒トラップ+溶媒抽出
- 乾式化学分離(JAEA)
 - 乾式蒸留法+コールドトラップ+溶媒洗浄

湿式化学分離概念図

鷲山ら、第54回日本核医学会学術総会(2014)

前田、修論(2014)

Nuclear Reactions & produced radionuclides

前田、修論(2014)

有機相からの²¹¹At逆抽出

Biodistribution of ²¹¹At-trastuzumab 1h post-injection

冷却効果の流量依存性

Heガスの冷却効果が需要

19/30

AR, I製造(励起関数、トレーサー利用)

- ⁷Li+^{nat}Pb, ^{nat}Sn, (²⁰⁹Bi)
 - 励起関数測定
 - 製造の基礎基盤となる核データの取得
 - 簡易蒸留化学分離法の開発
 - •標識薬剤合成の研究
 - 薄層クロマトグラフィー(TLC)による化学種分析
 - •標識薬剤合成のための知見
 - 標識化合物の合成研究例
 - •トレーサーの有用性

励起関数(At)

Incident energy (MeV)

Incident energy (MeV)

統計摸型計算(HIVAP)が実験データをよく再現する。 ²¹¹At (7.2 h)は、主に²⁰⁸Pb(⁷Li,4n)²¹¹At反応により生成する。 ガンマ線放出核種²¹⁰At (8.1 h)、²⁰⁹At (5.4 h)を生成する。

簡易蒸留化学分離法の開発

- 従来の蒸留
 - 電気炉+He気流+コールドトラップ

鷲山ら、第54回日本核医学会学術総会(2014)

Atの乾式蒸留化学分離

乾式蒸留後、試験管を1.8 mlのエタノール、水、ジイソピル エーテルで無担体Atを洗いだす。

薄層クロマトグラフィー(TLC)による化学種分析

24/30

無担体At, Iの化学

10⁹

10⁻¹⁵ M

TLC:SiO₂, H₂O/MeOH=1/1 イメージングプレート

S. Watanabe et al., 7th Int. Sym. on Radiohalogens (7ISR), Sep 18 (2012), Whistler, BC.

- ²¹¹Rn/²¹¹Atジェネレータプロジェクト
- ²¹¹Rn/²¹¹Atジェネレータ開発基礎実験
 - 湿式化学分離(金沢) ~80% Rn気化損失
 - 乾式化学分離(JAEA) <43% 効率向上
- 低融点金属Bi用照射装置開発
 - Heガスの冷却効果が重要
- ⁷Liイオンビームを用いたAt, Iの製造と利用
 - ⁷Li+^{nat}Pb、⁷Li+^{nat}Sn
 - 励起関数測定(核データ)
 - 簡易乾式蒸留化学分離法の開発
 - TLC化学種分析: At⁻, AtO₃⁻, AtO₄⁻
 - 標識化合物の合成
- 今後、将来の計画
 - 本格的な開発(問題点の改良)、Atトレーサー利用促進
 - J-PARC 第二期計画TEF施設での核破砕によるα放射体の製造

J-PARC TEF施設

共同研究者

- 原子力機構・先端基礎研究センター
 - 西中一朗、牧井宏之、豊島厚史
- 金沢大·理工
 - 横山明彦、前田英太、谷口拓海、村上拳冬、山田記大
- 金沢大·医薬保健
 - 鷲山幸信、天野良平
- 原子力機構・量子ビーム応用センター
 渡邊茂樹、鈴木博元、石岡典子、橋本和幸
 原子力機構・原子力基礎工学研究センター