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Chapter 1

Linear response theory

1.1 Time-dependent Hartree-Fock equation

The time-dependent Hartree-Fock equation can be written in the small amplitude limit,

i un(rt) = (h(r) — &) dun(r) { / d’ 1)+ F(rt) | én(r)

under following small amplitude conditions,

h(r)on(r) = e)on(r)
h(r)gp(r) = epop(r)
Un(rt) = (fn(r) + S (rt)) e rnt/"
plrt) = > W (rt)en(rt)
h
~ po(r) +dp(rt)
where
po(r) = Z¢;<r>¢h<r>

dp(rt) = Z{¢h )0 (1rt) + dn(r)oy, (rt)}

(1.1)

(1.7)

(1.8)

where h(7) is the meanfield Hamiltonian. Note that “h” denotes hole states. In this chapter, we use

the notation for the single particle states, “p” for particle statees, “k” for all states.

And also note that “€%” means unperturbed single particle levels defined by Eq.(1.2) and Eq.(1.3).

1.2 RPA equation

By inserting Eq.(1.8) and multiplying [ dr¢y(r) to Eq.(1.1), then we get

9
ins / dr ey (r)50n(rt)

= (=) [ argyrisin i + > [ [ drv' ;w6 ) 55 onrisen o't

—1—2// drdr’¢ Mr) bn (P bn (P)005, (r't) —l—/drqﬁ;(r)f(rt)(bh(r)

,r./

(1.9)



By taking the complex conjugate of Eq.(1.9), we get the equation for §v; (rt),

—m% / dré, ()54 (rt)
= (&~ ) [[droymsuitrn) + > [ [ arartoyron o) 2 g s

+3 [ [ ardr'ayr (,f',))m,( NGB + [ dro,mfoie) (L0

Here we suppose

S (rt) = Z@, )60, (t) (1.11)

and insert this into Eq.(1.9) and Eq.(1.10), then we get

v 5¢ph() > _ (Aph,p’h’ Bph,p’h’> <5¢p’h’(t)> <fph(t)>
gz ( oo 2B i) oot ) = U 12
where
A = ()= Do+ [ [ arartsyirro, <r’>§§7ﬂ¢h<r>¢pf () (1.13)
Bure = [ [ arar'asnion, o0y D ontrin ) (114)
fm®) = [ droymfronr) (1.15)
If we suppose in Eq.(1.12),
Shpn () = pl(i)(w) zwt_’_p;ll; (w )+iwt (1.16)
Fr) = flr)em 4 fr (et (1.17)

Then finally we get

1
Z |:<Aph,p’h’ Bph,p’h’ ) . hw (5pp’5hh’ 0 ):| p;’;;’(w) — _ <fph) (118)
o Bonpn  Aphpri 0 ~OppOnn PS’;’ (w) T

where fpn = (p|flh).
By using Eq.(A.27) and Eq.(A.30), we can derive

[(Aph,p’h’ By prhs > — hw (5pp’5hh’ 0 )]
B;h,p’h’ A;h,p’h’ 0 _5pp'6hh’

v v* v v T
:Z<1 0)()(1;,1 Ypﬁ*>[hwy(1 0)—7%(1 O)](l 0)()%,,1, Ypy,il,> (1 0)
—\0 -1)\Yy; X5 0 -1 0 1)j\0 —1)\Yy, Xm ) \0 -1
(1.19)

The inverse matrix, therefore, can be found very easily,



-1
(e 2oy w0,
B;h,p’h' A;h,p’h’ O _6pp'6hh'

v vk 1 vk vk
S (5 W) (7 ) ()
h v th Xph 0 th Xph

w,,—i—w
v v vEy U v v
1 Xpth'h’ th Yp’h’ Xphyp'h' th X7 p’h!
- Wy —w wytw Wy —w Wy +w
7 E Yu Xu/* XV*yVI Yu Yu/* XWXV/
h’ h' h’ + h’
v

Wy —w wL,er Wy —w wy +w

(1.20)

(O\bhap\l/)(u\af/b;: |0> + (0‘aT/bIL ”><V|bhaplo> <O‘bhap‘l/>(u‘bh/(l.p/|0> + <O‘bh/(l.p/|u><l/|bh(l.p|0>

p’ R/ p’ R/ p%h

10)

— _ Z Wy —w wytw Wy —w
- tpt Tt Tt Tyt t
h ~ (Olagby, [v)(v|al, b, ,|0) " (Ola_,b,,[v)(vla,b,10)  (0]alb]l |v)(v]bsra,]0) " (0[by,ra,|v)(v]a

Wy —w wytw Wy —w

The response function is defined by

p;};/(w) _ Z (Rphm’h’ (W) Bphhrp (w) ) (fp’h’ )
pgll) (W) Rippri (W) Rip,nrpy (w) Thp

p/h/

therefore

<Rph,p’h’(w) Ryhhp (W) )
Ripprn (W) Bap, (W)

(1.21)

(1.22)

(Olbrap|v)(vlal,b],10)  (Olal, b, [1)(vIbhapl0)  (0]bray|v)(vlbyra, |0) 4 {Oltray v v lbna0)

[ w—wy wtwy, w—wy
h ZV (0lafb] [v)(vlal, bl |0) n (Olal, b}, 1) (v]albl10)  (0]albl[v)(v]b, a,]0) L {Obway ) (vl

p’ " h! P h

10)

w—wy wtwy w—wy

Then we find

Rpgrrg (
& w— wy W+ w,

(Olcken|v) (Ve cq[0)  (Oleh cq V) (vl cher|0)
hz B

1.3 Bethe-Salpeter equation

Here combinning Eq.(1.11) and Eq.(1.16), we defined as,
Sun(rt) = Z L)

Z¢p (p;SL) 7iwt + nglp)*(w)eJriwt)

= Xh('rw)e Wt 1Y, (rw)e it

and instead of using Eq.(1.8), we suppose

Sp(rt) = dp(rw)e™ ™ + §p* (rw)et!
and also use Eq.(1.17) in Eq.(1.1), then we obtain

Oh(r)
r')

JOn(r)

ok a0(r') + 1(r)]

o= (r) + 8] 0r) = | [ar

S sp(r') + 1) n(r)
Vi) [he - hry ] = o) |

(1.23)

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)



These equations are so-called “Sturm-Liouville equation”, therefore the solution is expressed by the
Green’s function as,

Xp(r) = /dr Go(rr'; hiw + €9) Ud d : W)+ fr )} on () (1.29)
vie) = [argio)| [ g((:,/,))ép(r”w)Jrf(r’)} Golr'mi—hw ) (130)

where the Green’s function defined by

[fiw — h(r)]Go(rr';w) = 6(r — ') (1.31)

Note that, we used the property of the Green’s function G§(rr’) = Go(r'r) to derive the equation fot
Y},.
By the way, by inserting Eq.(1.25) into Eq.(1.8), we get

Zm )Xn(rw) + Y5 (rw)én(r)} (1.32)

We insert Eq.(1.29) and Eq.(1.30) into Eq.(1.32), then we get

p(rw) /dr Ro(rr';w [/d " ://, ')+ f(r) (1.33)
where
(rr';w) Z r)Go(rr'; hw + €)on(r') + 5 (r)Go(r'r; —hw + 62)(;5;7,(7')] (1.34)
h

If one defines the perturbed response function as

dp(rw) = /dr'R(r,r';w)&p(r'w) (1.35)

then Eq.(1.33) can be rewritten as

Oh(r")

"o
8p(r”’)R(r ,rw) (1.36)

R(r,r";w) :Ro('r,'r';w)+/dr”R0('r,r”;w)/dr”'



1.4 Spurious mode

The RPA equation and the transition density are expressed as following,

1
Z [(Aphp’h’ Bphp’h’> ~ hw <1 0 >] p;';l' (@) = — (fph> (1.37)
h Bonpn Aphpris 0 -1 PS) (w) T

op(rrsw) = 3 [0 (r)6p(r)oly) () + pli) (@) (rYon(r)] (1.38)
ph
= Z [0 (r) X (rsw) + Yy (7' w) ()] (1.39)

Note that dp(r;w) = dp(rr;w).
The bound HF solution breaks translational invariance, i.e., [P, po] # 0. Then the RPA equation has
a spurious solution. It is so-called Nambu-Goldstone (NG) modes.

th:/<B;hp’h' Al h —Prry (1.40)
opp(rr’) =3 [81.(r')ép(r) Pon = Prpy(r')on(r)] (1.41)
ph
where
f =P (1.42)

- / dre’(r) zhﬁ ) (1.43)
_ / dr ey (r)ﬁ (V.- ﬁz) on(r) (1.44)
_ /d s ) (T~ FL) onr —/dr¢;(r)P(r,r’)¢h(r')|7w:r (1.45)

There is also another equation for another operator ) which satisfies the canonical commutation
relation, [Q, P] = ih as following. The following equation descrives the boost motion of the center Mass
of the system which is derived from [h — aP, p] = 0.

s de ) () = (o 5) (h)
1;;, <B;hp’h’ A;hp’h’ _thpl MO 0 -1 _Php (146)
Spq(rr’) =Y [651(r)op(r)Qpn — Qupdy (1) b1 (r)] (1.47)
ph
where
Q= (p|QIR) (1.48)
= [ droy)zontr) (1.49)

By following [1], we assume that there is a mixture of NG modes in a calculated transition density,
dpea](w), but here we apply the assumption to the transition density in the coordinate space representa-
tion.

3pcal (T3 w) = 0pphy (T50) + Ap(W)dpp(T) + Ag(w)dpe(r) (1.50)



where “physical” transition density 5pphy is free from the NG modes. As the same discussion with

[1], since the 5pphy should be orthogonal to the NG modes, then we have

[ rP )30y r30) (= 115{(8p2, 80,1 ()]

= [ rQUsppy (i) = 1T5{(Sp0, 5o ()])) = O

Using Eq.(1.50), therefore we obtain

/drP(r)dpphy(r;w) = /drP(r)&pcal(r;w) - )\Q(w)/drP(r)dpQ(r) =0

/ drQ(r)dpypy (rsw) = / I Q(r)3pay (riw) — Ap(w) / drQ(r)opp(r) =

By the way, using the canonicity condition [Q, P] = if, then we get,

Jarawisoptr) = = [arping) (== [ arpwrssger ey

S [PonQup — PapQpn] = iR

ph

Then we can get the expression for Ag and Ap as,

Ag(w)

)\p(w)

1
o [P )

——/dr (v v))thw—th'rw(v ?)

%/er(T)‘Spcal(r;w)
%/drz[¢Z(T)ZXh(r;w)+Y1f("‘%w)Z¢h(’°)]
h

(1.51)

(1.52)

(1.53)

(1.54)

(1.55)

(1.56)

(1.57)

(1.58)
(1.59)

(1.60)



Appendix A

A.1 Hartree-Fock approximation

The total exact Hamiltonian is given by

I:I = T + V (A 1)
where
T = > twciow (A.2)
kK’
~ 1
V.= 3 Z vk1k2k3k4czlcz2ck4ck3 (A.3)
k1,k2,k3,kq

When one thinks the Hartree-Fock approximation, one can define the Hartree-Fock(HF) vacuum by
using the particle and hole annihilation operator (a, b).

ap|0gr (k>kp) |
b:|0>5§ (k < k?) } =0 (A.4)

The relationship between the creation-annihilation operator for the real vacuum (c,c’) and the
particle-hole operators for HF vacuum is given by

cx = O(k—kp)ag +0(kp — k)b} (A.5)
et = 0(k—kp)al +0(kr — k)b (A.6)

Then by applying the Wick’s theorem, the total Hamiltonian can be rewritten as

]f[ = Eé{F + BHF + -Hres (A7)
where
EF'T = (0|H|0)ur (A.8)
hur = Ze?n cal am : — Ze? : bjbi : (A.9)
N 1
H’I"ES = 5 Z vk1k2k)3k4 : 611;161];261646]63 : (A']'O)
k1,k2,ks,ka



A.2 RPA —Equation and Hamiltonian—

A.2.1 Derivation of RPA equation

First of all, we think the time-dependent state by using the time-evolution from the Hartree-Fock ground
state.

1B(t)) = e~ R4S ()05 1) (A.11)

This expression is justified by Thouless’s theprem, and expresses the fluctuation of the state around
the stationally point(HF ground state) depending the time evolution.
According to the Thouless theorem, G(t) is given by

G(t) = 3 (g0 (O], = g5 ()T (A12)

ph

where FTh = aT bT
In order |®(t)) satisfies the time-dependent Hartree-Fock equation ih%@(t)) = H|®(t)), G(t) must
satisfy

3G( ) -
H Al
S = H.G(0) (A13)
We define the Lagrangian £ by
L= zhg - H (A.14)
ot '
and consider the variational principle
5/dt ®)|L]®(t)) =0 (A.15)

for g and ¢g*. But before to do that, we extend the expectation value of the Hamiltonian by using the
Baker-Hausedorff formula upto 2nd order of g and ¢g*, and then take the variational pronciple.
Then we get

»9 (%h(ﬂ) -y (Aphp'h' Bz:hp’h’> (93%' (t)> (A.16)
o

ot gph (t) B;hp’h’ Aphp’h’ gp’h’ (t)

Here if we suppose,
gpn(t Z C, (X et 4 yyretiont) (A.17)
then the equation becomes,

> (A’ihp’h' B%:hp'h'> (Xé’h’) = hw, (1 0 ) (X§h> (A.18)
p/h/ Bphp’h’ Aphp’h’ Yplhl O _]. th

This is so-called RPA equation.



A.2.2 RPA Hamiltonian
Definition of the RPA states

If we define the RPA vacuum and the excited states as,

where

@V) ( X —Ypl;f) (th>
2 = v v T
< 0} %h: Yo o Xpn ) \Tpy

From Eq.(A.12), Eq.(A.17) and Eq.(A.20), G(t) can be rewritten as

G(t) Yoy (X A hrph) emint % (Xg,j o

ph
Zc {Ofemiont — O, ettt}

and Eq.(A.13) gives

ph

Z hw, C, {(;)le_i‘””t + (’jl,e““’”t}

Zc {17, Of)e " = (1,0, )t |

So Eq.(A.13) requires

[H,0]] = hw,Ol, and [HO,)=

This implies the RPA Hamiltonian takes the form as

HRPA = Z hwvélou

RPA equation and RPA Hamiltonian

From Eq.(A.18), simple matrix algebra shows

§ Aphp’h’ Bphp’h’ X;)l’h’ Yplle — hw 1
B* A* Yy X Mo
Y php’ h! php’h! p’h! p'h!

and also we show the well-known formula.
ph

v ph

10

Z(Xéh Y’;)(l O)(ng'h' YPZZL'
Vi X 0 —1)\ Yy, XU

v v\ T v’ v %
S (8 Y (0 (% )
th Xph 0 -1 Yp”h, Xﬁh*

—hw, O,
Xon You
Yo Xph

vxt +iwyt
— YT ) e

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)



Eq.(A.28) and Eq.(A.29) are equivalent with the orthogonality of X and Y amplitudes.
And also, from Eq.(A.28) and Eq.(A.29), we can find

v v* -1 v 123 T vk 123
G ) D0 NG -CE )
vy X o —1) vy x%) \o <1 -y XY,
Therefore we find Eq.(A.20) is

A -1
O, Xy Yux | P
(o) -2 (% %) () (A8

ph ph ph

and also

v

= v vk A A.32
< Flh v Yoh  Xph o} ( )

It is well known that, in the quasiboson approximation, the Hamiltonian can be written by

1 1 A ho'h! B ho'h! Fp/h/
H = FEpr—-;TrA+ (FT ,Fh)< per php t (A.33)
2 2 p}%’:h’ ph p Bphp’h’ Aphp’hl Pp’h’
Using Eq.(A.32) and Eq.(A.18), the Hamiltonian can is rewritten as
1
H = EHF — §T1"A
.I_ ’// /* A
1 A A XV YV* A hp'h' B hp'h’ X 'R Y’h’ O ’
+3 o1 0 (i ) (e B (o ) (G
2 ph,;(%;,l/u’ th Xph Bphp’h’ Aphp’h’ Yp’h’ Xp’h’ Ou’
(A.34)
1 1 (O
= i Z T v
Enp — 5TrA+ 5 zy:hwl,((’)u 0,) <OZ>
1 At A 1
= Bur— 5TrA+) hw, (OL0, + 5 (A.35)

11



Appendix B

Key formula and theorem

B.1

B.1.1 Useful formula

Complex analysys

1

im -
e—0 z & i€

oo
/ dte™?
—o0
+oo
/ dteiwt
0

B.1.2 Unit step function

—1 ©

The proof of (B.4)

1
= P; Fimd(z) (B.1)
= 2mo(w) (B.2)
fim —— —i (L4 5(w) (B.3)
=i —Fim .
e—0tw Fe w +
io(t—t") -1 00 —i@(t—t")
w—1in 21 J_ o w~+1in

1 [>® —iw(t—t")
ot —t') = f/ dws
2m J_ w41

>
>

To show the proof of this relation for the step func-
tion, we think the contour integration(left figure).
When t —t' > 0(t —t' < 0) one takes a path Cp +
C1(Co+Cy), because et converges on C1(Cy)
plane at the limit w — oo, and also
/ dw e—z’w(t—t’)
01(02) 27TZ w + Z'I7

— 0.

R—o0

Then one can calculate by using the residue theorem,

® o e—iw(t=t) dw e~iw(t=t)
/_DQ% w +1in _/Co% w +1in

d —iw(t—t")

t—t >0) / R

CotCy 2T W +1in n—0

/ dw efiw(tft') 0
CotCs 2T w +1in B

— —1

(t—t <0)

12



B.1.3 Cauchy’s theorem for the Green’ function

If the single (quasi)particle HF(B) Green’s function is defined by

' _ Su(ro)gl(r'a’)  du(ra)gl(r'a’)
G(ro,v'0’' | E) = Z { = —/;EN +— +PJL5,1, } (B.5)
= Z Gu(ro,r'd’ E) (B.6)

14

This Green’s function has the poles at £ = E, and E = —E,,. According to the Cauchy’s theorem,
the following formula is satisfied as

Zf E,) ¢ TU)(b (r'e’) = Zf ) hm (E"'Eu)gu(ra r'o’ E) (B.7)
= lim f(B )Y (E+ E,)Gu(ro,v'o’, E) (B.8)
- EEmE FE)Y (E+EL)Y Gy(ro.r'd' E) (B.9)
— EEIPE} f(E )%:(E—f—Eu)g(ra,r’a',E) (B.10)
— EEIPEMZ(E—FE“)f(E)g(ra,r’a’,E) (B.11)
= 21 dEf(E)G(ro, 70", E) (B.12)
T C

because the Green’s function has the poles of the 1st rank.

f(E) is an arbitraly function, but on the right hand side, f(F) must not have any poles in the
contour integration area.

The contour path C' is shown by Fig.B.1.

So finally one can get the most general relatioship,

. !/ 1 ! /!
Eilr_nE“%:(E—kEu)f(E)g(ro,ra,E) il CdEf(E)g(ra,ra,E) (B.13)

Of course, the left hand side of Eq.(B.13) is available only for the spectral representation of the Green’s
function. The right hand side does not depend on the representation.

B.2 Matrix and Operator

B.2.1 Useful formula

1 1 1 1
1=5 5B 45 (B.14)
B.2.2  Baker-Hausdorff formula
e“He™® = H+[iG, H]+ %[Z'G, [iG, H]] + - -- (B.15)
eAeB  — o A+B+3[AB] (B.16)

13



ImE

ReE

Figure B.1: The contour path C for the integration of B.12. ) is the Fermi energy.
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