



### J-PARCミュオン実験施設 ミューオンによる非破壊元素分析の可能性 2018/11/12





#### 河村 成肇

# J—PARC Japan Proton Accelerator Research Complex

#### ミュオン施設を日本に!



J-PARCはKEKとJAEAが共同で建設をすすめた加速器複合施設 世界最大強度のビームを目指し、2008年から運用を開始

#### Muon Science Establishment J-PARC 大強度陽子ビームによる $(\pi \rightarrow \mu + \nu)$ ミュオン(μ) 多様な粒子ビームの生成 π中間子 3つの加速器 ニュートリノ(ν) 原子核標的(A リニアック 陽子(p) K中間子 3GeVシンクロトロン 50GeVシンクロトロン 反陽子 1eVは電子を1Vの電圧で加速した 陽子(p) 中性子(n) 時のエネルギー(1.6×10<sup>-19</sup>J) 中性子(n) ハドロン実験施設 物質・生命科学実験施設 1 MW パルス中性子源、ミュオン源 ▶物質·生命科学実験施設 核変換実験施設 第日期計画 ハドロン実験施設 ◀ 500 m ニュートリノ実験施設◀ ニュートリノ実験施設 核変換実験施設 カミオカンデヘ 3 GeV シンクロトロン 4つの実験施設 (25 Hz, 1 MW) 50 GeV シンクロトロン リニアック (0.75 MW) (稼働中は3つ) (400 MeV) J-PARC = Japan Proton Accelerator Research Complex



USE Muon Science Establishment

## 物質·生命科学実験施設



# 世界の中間子工場

ミュオンを大量に作る施設は中間子工場(meson factory)と呼ばれる

|                                   |                        | J-PARC            |                   | TRIUMF            |  |  |
|-----------------------------------|------------------------|-------------------|-------------------|-------------------|--|--|
| CA AS                             | 国名                     | スイス               | 英国                | 日本                |  |  |
| GAL V F                           | 施設名                    | PSI               | RAL ISIS          | J-PARC ミュオン       |  |  |
|                                   | 陽子エネルギー<br>[GeV]       | 0.59              | 0.8               | 3.0               |  |  |
| Engr o                            | 陽子ビーム強度<br>[MW]        | 1.3               | 0.16              | 1.0 (設計値)         |  |  |
|                                   | $\mu^+$ [/s] (surface) | 3×10 <sup>7</sup> | 6×10 <sup>5</sup> | 4×10 <sup>8</sup> |  |  |
|                                   | μ <sup>-</sup> [/s]    | 2×10 <sup>7</sup> | 7×10 <sup>4</sup> | 1×10 <sup>7</sup> |  |  |
| Cepyright(C) 2007 TSUKUI Internat | ビームの構造                 | 直流                | パルス (50Hz)        | パルス (25Hz)        |  |  |







- パルスビーム (シンクロトロン、J-PARC、ISIS)
- CWビーム (サイクロトロン、PSI、RCNP-MuSIC)
- 加速器の種類により、ミュオンの発生 する際の時間構造が異なる
- 異なる種類のビームでは得意分野が 異なる(同じ種類のビームなら強度が 高い方が優れている)
  - 一般的な非破壊元素分析(ミュオン特性 X線の測定)はCWビーム向き
  - 非常に浅い(表面)の元素分析はJ-PARC



ミュオン原子は元素固有の X線(特性X線)を出す ↓ 元素分析が可能

X線のエネルギーは200倍
 ↓
 物質の奥深くからでも放射
 非破壊元素分析が可能

歴史的な遺物 世界に一つしかない試料



Muon Science Es

原子核(Z)

従来の電子ビームによる特性X線分析 では表面の浅い部分しか分からない ミュオン特性X線は物質の奥からでも出 てくることが可能 しかも、ミュオンのエネルギーは可変で、

任意の深さに止めることが可能











パルスミュオンビームでは同時に多くのX線が放出されるので、 Ge検出器を試料周りに多数配置し、検出効率を上げている。 J-PARCにおける元素分析の例

Muon Science Establishmen



同位体分析

同位体が混じった試料(natPb)からは、複数の成分に 割れたミューオン特性X線が得られた



ISE 👘 Muon Science Establishment

まとめ

- ミュオン(ミューオン)による非破壊元素分析は、加速器の進化によるビーム強度の増加(ミュオン数増加)によって、実用化レベルに到達
- J-PARCは年間5000時間(200日)を共同利用実験 に提供している(実験課題の提案は春秋年2回) 課題審査の平均競争率は約2倍 最初は既存グループと一緒に、まずは相談を
- 本当に非破壊?
  J-PARCで1日照射した試料は10<sup>-12</sup> molの核改変の 可能性がある(将来の妙な勘違いに注意)



- <sup>108</sup>Pdにµ<sup>-</sup>を入れた場合の生成物
  - <sup>108</sup>Pd ( $\mu^-$ ,  $\nu$ )<sup>108</sup>Rh ( $\tau_{1/2}$  = 16.8 s/5.9 m,  $\beta^- \gamma$  decay to <sup>108</sup>Pd, stable)
  - <sup>108</sup>Pd ( $\mu^{-}$ ,  $\nu n$ )<sup>107</sup>Rh ( $\tau_{1/2} = 21.7 \text{ m}$ ,  $\beta^{-}-\gamma$  decay to <sup>107</sup>Pd, LLFP)
  - <sup>108</sup>Pd ( $\mu^-$ , v2n)<sup>106</sup>Rh ( $\tau_{1/2}$  = 30 s/2.2 h,  $\beta^ \gamma$  decay to <sup>106</sup>Pd, stable)
  - <sup>108</sup>Pd ( $\mu^-$ , v3n)<sup>105</sup>Rh ( $\tau_{1/2}$  = 35.4 h/45 s,  $\beta^ \gamma$  decay to <sup>105</sup>Pd, stable)
  - <sup>108</sup>Pd ( $\mu^-$ , v4n)<sup>104</sup>Rh ( $\tau_{1/2}$  = 42 s/4.4 m, $\beta^ \gamma$  decay to <sup>104</sup>Pd, stable)
  - ${}^{108}$ Pd ( $\mu^{-}$ ,  $\nu 5n$ ) ${}^{103}$ Rh (stable)
- RI 製造に 使えるの では ないか?

| Pd 101<br>8.47 h<br>«, #* 0.8<br>y 296, 590<br>270<br>m                     | Pd 192<br>1.02                                                     | Pd 103<br>16.991 d<br><sup>c</sup><br>7 (357)<br>m                                                                                                         | Pd 104<br>11.14         | Pd 105<br>22.33<br>o5E-7                                              | Pd 106<br>27.33                                             | Pd 107<br>21.3 6.5 10%                                                                                                | Pd 108<br>26.46                                     | Pd 109<br>449 m 1243 h<br>1011<br>1011<br>447<br>100<br>100                                      | Pd 110<br>11.72                                                               | Pd 111<br>35h 234m<br>h 172<br>y 70,0Pt<br>652<br>y 70,0Pt<br>1455<br>mt 8<br>mt 8 |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rh 100<br>4.7 m 21.1 h<br>5 32,74 5*2.6.<br>1'.<br>1/(540 2376<br>957) 1583 | Rh 101<br>441 133<br>137<br>145<br>145<br>145<br>145<br>145<br>145 | Rh 102<br>25 a 207 d<br>p <sup>+</sup> + 3<br>7 470, 601 p <sup>+</sup> + 3<br>957<br>957<br>1 (102) e <sup>+</sup> 12<br>957<br>1 (102) e <sup>+</sup> 12 | Rh 103                  | Rh 104<br>4410<br>423<br>151-<br>155<br>(1584-)<br>150<br>1507-<br>40 | Fin 105<br>451 334 in<br>918<br>305<br>1,130 1,000<br>11000 | Rn 106<br>221<br>17.<br>17.<br>17.<br>17.<br>19.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10 | Rh 107<br>217 m<br>9 103, 393                       | Rh 108<br>19 h 10.8 s<br>19 h 10.8 s<br>10.4 set 10.4 s<br>10.4 set 10.4 s<br>10.4 set 10.4 s    | Rh 109<br>80 s<br>p <sup>-</sup> 2.3, 2.6<br>y 327, 426, 178<br>291, 113<br>g | Rh 110<br>37.7 3.3 3.3 1<br>1 374 540 1 374 440<br>988 440 797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ru 99<br>12.76                                                              | Ru 100<br>12.60                                                    | Ru 101<br>17.05                                                                                                                                            | Ru 102<br>31.55<br>#1.2 | Ru 103<br>39.210 d<br>p= 0.2, 0.7<br>7 497, 610<br>m<br>e 1.2         | Ru 104<br>18.62                                             | Ru 105<br>4.44 h<br>17 1.2, 1.8.<br>7724, 499, 676<br>316 gm<br>n 0.29                                                | Ru 106<br>373.6 d<br>p* 0.04<br>nu y<br>9<br>= 0.15 | Ru 107<br>3.8 m<br><sup>()<sup>+</sup></sup> 3.2<br><sup>7<sup>+</sup></sup> 94, 848, 463<br>375 | Ru 108<br>4.5 m<br>7 1.3_<br>7 165, 91_<br>9                                  | Ru 109<br>34.5 s<br>β <sup>-</sup> 2.3, 4.2.<br>γ 206, 226<br>1929, 359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |