放射光CT装置を用いた 非破壊分析の現状と将来の開発

上椙真之

高輝度光科学研究センター/SPring-8

2018.11.13 研究会: Muonによる非破壊分析の可能性

自己紹介

上椙真之 (うえすぎまさゆき)

専門

* 惑星物質科学

履歴

- * 広島大学(学士、修士)
- * 九州大学(博士号取得)
- * SPring-8 (1年半)
- * 大阪大学 宇宙地球、土`山研
- * 宇宙航空研究開発機構 はやぶさ試料キュレーション施設
- * SPring-8 (2016-)

小惑星探査機「はやぶさ」

ヘリコプターのサーチライトで照らしだされ、ヘリの機上から 目視で確認されたカプセル.

静電制御マニピュレータによるピックアップ作業の様子

Computed Tomography (CT)法の原理

SPring-8

SPring-8イメージング関連BLs

BL20B2 中尺BL Bending 視野 300mm-5mm 分解能 10µm 大視野CT

BL28B2 Bending 視野 50mm 分解能 20µm 高エネルギーCT

BL20XU 中尺BL Undulator 視野 5mm-1mm 分解能 1µm 総合CT

BL47XU Undulator 視野 1mm-0.1mm 分解能 0.1µm 高分解能CT

試料周りセットアップ例

BL20XU

(放射光) X線CTの利点、欠点

○利点

- * [高精度・高分解能+三次元+非破壊] 観察が可能
 =>ただし個々の特徴については必ずしもNo.1ではない
- * 原子番号と密度に比例したコントラストがつくため、 電子顕微鏡のBSE画像と似た画像が得られる

○欠点

* 精度が低い

=>破壊観察の方が精度が高い

* 情報量が少ない

=>組織を見ることは出来ても、それが何かを知る手段が少ない

* 重たい元素、大きい物が苦手

=>高分解能で見るためには、試料を視野に合わせて加工しなければならない

✤ 結像型CT

♥ マルチスケールCT

Dual Energy Tomography (DET)

高分解能

情報の多角化

- XRD-CT
- ◆ 位相コントラストCT
- * 高エネルギーCT (~200keV)

結像型CT (BL47XU)

Dual Energy CT (DET)

XRD-CT (BL20XU)

XRD-CT (BL20XU)

マーチソン隕石 (CM2)

absorption CT

位相コントラストCT

閑話休題

なぜCT?

○破壊分析の方が遙かに精度が高い
 組織:吸収CT像 << FE-SEM, TEM
 元素:DET,位相 << EDS, WDS
 結晶:XRD-CT << EBSD
 放射光実験にも、XRD, XAFS, SAXなど、高精度分析はある。
 が、イメージング、CTは違う

○CTの利点: 非破壊、三次元 => 本当に? 非破壊:視野に試料サイズを合わせなければならない 三次元:シリアルセクショニング等、より精度の高い手法もある

はっきり言ってまだ使いづらい

マルチスケールCT (BL20XU)

マルチスケールCT-i (BL20XU)

投影CT+結像CT (20-30keV)

140nm程度の分解能を 20-30keVのエネルギー のX線で達成

Orgureil (CI)

高エネルギーCT (BL28B2)

○実験条件

* X線エネルギー 200keV

隕石(LLコンドライト)

- * 投影数:1800投影
- ◆ 露光時間:40msec
- 11.16µm/pixel

SUS

閑話休題

なぜ非破壊?

流通、医療、保安などの産業・生活分野において、非 破壊検査は必須である。しかし、非破壊分析は破壊分析 に精度はどう頑張っても追いつかない。そのため、研究 者にとって非破壊分析は

「どうしようもない理由で渋々使うもの」 あるいは

「破壊分析の精度をより向上させるための予備実験」で ある。

=>学術の世界で、非破壊そのものは売りになりにくい

売りになるのはやっぱり、

その装置でしか出来ないこと

その場観察:岩石メルトの結晶成長

様々なCT法 - まとめ1-

手法	長所	短所	
結像型CT	高分解能(< 0.1µm)	視野が狭い(<100µm)	
Dual Energy Tomography (DET)	元素組成分布がわかる	使用できるX線エネルギーが限られる (≒試料サイズが限られる)	
XRD-CT	鉱物組成・分布がわかる	時間がかかる(1スライス10時間)	
位相コントラストCT	軽元素で出来た相が見やすい	ノイズが多い、解析が大変	
マルチスケールCT	10mmの試料の中の、µm観察	操作が複雑、解析が大変	
高エネルギーCT	Fe等の重元素の相が見やすい	軽元素の相がコントラストがつきにくい	

様々なCT法 -まとめ2-

各ビームラインの特徴

	BL20B2	BL20XU	BL47XU	BL28B2
視野*	5-300 mm	1-5 mm	0.1-1 mm	50 mm
分解能*	10µm	1µm	0.1µm	10-50µm
エネルギー	8-70keV	8-60keV	10-60keV	~200keV
撮影時間	20-60分	5-20分	20-30分	5-20分
可能な手法 (投影CT以外)	DET 位相CT	結像型CT XRD-CT 位相CT DET(元素制約有) マルチスケールCTi マルチモードCT	結像型CT DET 位相CT マルチスケールCT	

*ボクセルサイズは視野を1000-2000分割した程度

* 大視野化

=>スキャンニングCTの開発

* <u>ダメージ評価</u>

=> 有機物などは、X線による損傷を受ける事が考えられる。 各分析のダメージを測定し、その影響を調べる必要がある。

- * <u>試料準備環境・データ解析環境の整備</u>
 =>試料準備用グローブボックスの整備、大気遮断ホルダの開発、試料保管場所の整備など
 =>ソフトウェア開発、大容量ストレージ整備、リモート解析環境の整備
- 高性能化、高分解能、高濃度分解能化

 => 光学素子の性能向上等

=>ユーザーインターフェースの最適化、局所CT法の高精度化等