Hadron Spectroscopy with High-momentum Secondary Beam

M. Naruki (Kyoto Univ.) Hadron Physics Symposium, 2014/4/19

Contents

- Introduction
 - overview of J-PARC Hadron Facility
- Near Future Project : Baryon Spectroscopy
 - explore hadron structure with high-momentum secondary beams
 - strange to charm

J-PARC bird's-eye view

Tokai, Ibaraki, Japan

Search for Θ + in π -p \rightarrow K-X reaction

no significant structure has been observed.
upper limit is 0.26µb/sr (90%C.L.) cf. 2.9µb/sr (E52²)

Beam lines at Hadron Hall

7

Beam line specifications

Name	Particles	P _{max}	Intensity	
K1.8	π, Κ, ρ	2.0 GeV/c	10 ⁶ K ⁻ 's	
K1.8BR	π, Κ, ρ	1.1 GeV/c	10 ⁶ K ⁻ 's	
KL	neutral K			
K1.1BR	π, Κ, ρ	0.8 GeV/c	10 ⁶ K ⁻ 's	
K1.1	π, Κ, ρ	1.1 GeV/c	10 ⁶ K ⁻ 's	
High-p	proton	30 GeV/c	10 ¹⁰ p	new
High-p	π/K/p	20 GeV/c	10 ⁶ K ⁻ 's	
secondary	(unseparated.)			J

 $\sqrt{s} = 2.2 \text{ GeV} \rightarrow \sqrt{s} = 6.2 \text{ GeV}$ in 20GeV/c π p/Kp reactions

at SM1 high-p beam branches off from the primary line
30 GeV primary proton (10¹⁰/s, 10¹²/s)
8 GeV primary proton for COMET
secondary particles (~20 GeV/c)

unsolved problems in QCD

confinement

chiral symmetry breaking

- Approaches at J-PARC
 - Dilepton measurement
 - Baryon spectroscopy
 - Properties of Exotics

Baryon spectroscopy

- Baryon : building blocks of our world
- description based on QCD with spectroscopy
 - understand underlying degree-of-freedom and interaction between them

needs theoretical interpretation to connect experimental observables to QCD

Comparison with QM

- Missing resonances
- Experimental difficulties in N*/ Δ resonances
 - Mixture of different isospin states
 - Overlap of broad resonances of various spins

Diquark correlations

as a new building block of the Quark Model?

- $qq: \overline{3}_c \ \overline{3}_f, 0>: scaler$
- number of missing resonance is lower
- effective at large L / with heavy quark Λ^*

Baryon with Heavy Quark

Most fundamental question Interaction btwn quarks Diquark correlations

Q

C

→ Charmed baryon to close up diquark correlations

• Weak Color Magnetic Interaction with a heavy Quark

Negative-parity Baryon

Experimental Data

slide by Oka-san

Structure and Decay Partial Width

No correlation

diquark corr.

- $\Lambda(1520) \rightarrow NK (D wave!) > \pi\Sigma$, similarly $\Lambda(1800), \Lambda(2100)$
- Possible explanation of narrow widths of Charmed Baryons

Charmed Baryon Spectroscopy

Using Missing Mass Techniques

- Decay measurement in coincidence w/ p(π,D^{*-}) assists the missing mass spectroscopy.
- * Decay Branches: diquark correlation affects $\Gamma(\Lambda_c^* - pD)/\Gamma(\Lambda_c^* - \Sigma_c \pi)$.
- * Angular Distribution: spin, parity

Spectrometer setup

High resolution & Large acceptance spectrometer

- Larget acceptance (60% for D*)
- Detector configuration for high-resolution (dp/p=0.2%)
 - Possible decay mode measurement: $Y_c^* \rightarrow Y_c + \pi...$
- Multi-particle detection in the high rate environment

production cross section

Experiment

- $\sigma(\pi p \rightarrow D^* \Lambda c) < 7$ nb at $p_{\pi} = 13$ GeV/c [BNL, '85]
- $\sigma(\pi N \rightarrow J/\psi X) = (3 \pm 0.6)$ nb at $p_{\pi} = 22 \text{ GeV/c [BNL, '79]}$
- $\sigma(\gamma p \rightarrow \Lambda c \overline{D} X) = (44 \pm 7 + 11 8)$ nb at $E\gamma = 20$ GeV [SLAC, '86]
- Theory
 - Regge Model
 - Production rate of charm relative to strangeness
 - t-channel D* exchange model
 - The model independent ratio of the production cross section

 $\sigma(p(\pi^-, D^{*-})\Lambda_c) \sim a \text{ few nb}$

Higher *L* states are produced in the same order as g.s. ²¹

Expected spectra: $\sigma(\pi p \rightarrow D^* Y_c) = 1 \text{ nb}$

N(Yc*)~1000 events/1nb/100 days Sensitivity: ~0.1 nb (3σ, *Γ*~100 MeV)

Decay Products

* decay products can be seen clearly

* strongly assists the missing mass spectroscopy.

- Branching ratios: $\Gamma(\Lambda_c^* pD) / \Gamma(\Lambda_c^* \Sigma_c \pi)$.
- Angular distribution: Spin, Parity

Hadron Hall Extension

Precise Spectroscopy of Hypernuclei

HIHR: High resolution

intense secondary beam

Systematic Study for Hypernuclei (S=-1)

K1.1: High-intensity & lowmomentum K beam

K1.1

extended

K10: High-momentum separated secondary beam

Measurement of CP violation

KL: high intensity neutral kaons

J-PARC Symposium

2nd International Symposium on Science at J-PARC (J-PARC 2014) July 12-15, 2014, Tsukuba, Japan <u>http://j-parc.jp/symposium/j-parc2014/</u> The deadline of the abstract submission was extended to May 7

Satellite Workshop & Get-together Party in Honor of Professor Shoji Nagamiya 16th July 2014

Back Up Slides

Calculated production rates

L=1L=0L=2•A_c(2625) •Λ_c(2880) Λ_{c} (scaled to Λ_{c}) •∧_c(2940) Σ_c(2520) • (pi-,D*-) 6.1 Σ_c(2800) • e+e- (Belle Σ_c(2455) NPC this conf.) 0.01 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 Mass (GeV/ c^2)