Future Project at J-PARC

H. Noumi (RCNP, Osaka University)

Outline:

- 1. J-PARC Hadron Exp. Facility
- 2. High Momentum Beam Line (New)
- 3. Charmed Baryon Spectroscopy at J-PARC

4. Summary

Joint Project between KEK and JAEA since 2001

HADRON BEAM LINE FACILITY

Slow Extraction (SX) Beam :

- Currently, the accelerator is operated at 30 GeV.
- 1st phase: A design goal is 9µA (270 kW, 3.4x10¹⁴ /6s spill)
 SX Beam: step by step operation to increase extracted power

99.6% Extraction efficiency is achieved! - The World Highest Score -

Hadron Exp. Hall Nuclear/Hadron Physics Programs

- Strangeness Nuclear Physics
 - Precision Spectroscopy of S=-1, -2 Hypernuclei
 - Ξ hypernuclei,(E05) $\Lambda\Lambda$ hypernuclei (E07)
 - Hypernuclear γ-ray spectroscopy (E13), Ξ-Atomic X ray (E03)
 - Neutron-rich Λ hypernuclei (E10), ΣN scattering (E40)
 - Deeply Bound Kaonic Nuclear System
 - ³He(K-,n)"K-pp"(E15), K-He X ray (E17), d(π⁺,K⁺)"Λ*p" (E27)
- Hadron Physics
 - Hadron Spectroscopy, including "Exotics"
 - Θ⁺ via p(π⁻,K⁻) (E19)
 - **Ge**• Λ (1405) via d(K⁻,n) (E31)
 - H-dibaryon via (K⁻,K⁺) (E42)
 - Baryon resonances (E45)

Be - Mass modification of Vector Meson in Medium

• ϕ ->e+e- in A (E16), $_{\phi}$ A via (p^{bar}, ϕ) (E29), ω -> $\pi^{0}\gamma$ in A (E26)

Hadron Exp. Hall

Coming in Near Future

High-p BL: to be constructed by the end of 2015

branched at upstream of the primary Beam Line

A New project at the High-Momentum Beam Line

Charmed Baryon Spectroscopy

High-res., High-momentum Beam Line

What are essential D.o.F. of baryons?

Constituent Quark

Hadron properties

- Classification based on Spin/flavor symmetry
- Mass Relations, Magnetic Moments

Failure in Resonant States

- Missing Resonances
- Exotics

What are essential D.o.F. of baryons?

Constituent Quark

hadron (colorless cluster)

Diquark? (Colored cluster)

What are essential D.o.F. of baryons?

- Most fundamental question
- Interaction btwn quarks
 Diquark correlations

- → Charmed baryon to close up diquark correlations
 - Weak Color Magnetic Interaction with a heavy Quark

chiral partners of "qq" states appear.

Limited # of Charmed Baryons have been observed.

Charmed Baryon Spectroscopy Using Missing Mass Techniques

qq

- inclusive (π, D*-) spectrum
 - Level structure of Y_c*
 - Production Rate
- + Decay Particles
 - Decay Width/Decay Branching Ratios
 - Spin, Parity

Charmed Baryon Spectrometer

Large acceptance ~ 60% (for D^*), $\Delta p/p \sim 0.2\%$ at ~5 GeV/c

Production Cross Section

- Regge Theory: Binary Reaction at High E is well described
- Normalized to strangeness production, $p(\pi, K^{*0})$
- Charm production: ~10⁻⁴ of strangeness production

 $\rightarrow \sigma(p(\pi^{-},D^{*-})\Lambda_{c}) \sim a \text{ few nb} at p_{\pi}=20 \text{ GeV/}c$

Production Rate

 t-channel D* EX at a forward angle Production Rates are determined by the overlap of WFs

$$R \sim \left\langle \varphi_f \left| \sqrt{2} \sigma_{-} \exp(i \vec{q}_{eff} \vec{r}) \right| \varphi_i \right\rangle$$

and depend on:

- 1. Spin/Isospin Config. of Y_c Spin/Isospin Factor
- 2. Momentum transfer (q_{eff})

$$I_L \sim (q_{eff}/A)^L \exp(-q_{eff}^2/2A^2)$$

A: (baryon size parameter)⁻¹

Calculated production rates

	p _π =20 GeV/c	Mass (GeV/c)	"ud" isospin factor	Y _c * Spin factor	q _{eff} (GeV/c)	Rate (Relative)
=0	$\Lambda_{\rm c}^{\rm 1/2+}$	2286	1/2	1	1.33	1
	$\Sigma_{\rm c}{}^{\rm 1/2+}$	2455	1/6	1/9	1.43	0.03
	$\Sigma_{\rm c}^{3/2+}$	2520	1/6	8/9	1.44	0.20
=1	$\Lambda_{\rm c}^{\rm 1/2-}$	2595	1/2	1/3	1.37	1.17
	$\Lambda_{\rm c}^{\rm 3/2-}$	2625	1/2	2/3	1.38	2.26
	$\Sigma_{\rm c}^{\rm 1/2-}$	2750	1/6	1/27	1.49	0.03
	$\Sigma_{\rm c}^{\rm 3/2-}$	2820	1/6	2/27	1.50	0.06
	$\Sigma_{\rm c}^{1/2-\prime}$	2750	1/6	2/27	1.49	0.07
	${\Sigma_{\rm c}}^{3/2-'}$	2820	1/6	56/135	1.50	0.33
	$\Sigma_{\rm c}^{5/2-\rm '}$	2820	1/6	2/5	1.50	0.31
=2	$\Lambda_{\rm c}^{\rm 3/2+}$	2940	1/2	2/5	1.42	0.85
	$\Lambda_{\rm c}^{\rm 5/2+}$	2880	1/2	3/5	1.41	1.55

Expected spectra: σ_{GS} = 1 nb

N(Yc*)~1000 events/1nb/100 days Sensitivity: ~0.1 nb (3σ, *Γ*~100 MeV)

Structure and Decay Partial Width

p mode (qq)

λ mode [qq]

- $\Lambda(1520) \rightarrow \Gamma(NK) > \Gamma(\pi\Sigma)$, similarly $\Lambda(1820)$, $\Lambda(2100)$
- Possible explanation of narrow widths of Charmed Baryons

Decay Products

* Decay products can be measured by means of missing mass tech..

Acceptance for decay particles: ~85 %

a wide range of the azimuthal (ϕ_{CM}) and polar (θ_{CM}) angles

* Decay products can be measured efficiently.

Decay Products

* Decay meas. strongly assists the missing mass spectroscopy.

- Branching ratios: Diquark corr. affects $\Gamma(\Lambda_c^* pD)/\Gamma(\Lambda_c^* \Sigma_c \pi)$.
- Angular distribution: Spin, Parity

Summary

- J-PARC Hadron Facility provides opportunities to study Hadron and Nulcear Physics.
- Upgrade plans of the Hadron Facility:
 - A high-momentum beam line is under construction.
 - Extension of the Hadron Hall is planning.
- A project of charmed baryon spectroscopy via the (π⁻, D*-) reaction:
 - Systematic studies on charmed baryon spectrum, production rate, and decays provide information on quarkquark dynamics in baryons.

Backup

Jadron Evn Hall A								
IAUIUIILA	K1.8	K1.8BR	K1.1	K1.1BR	KL			
Design								
Max. p (GeV/c)	2.0	1.11.8	1.1	1.1	~2 (#) (0~5)			
Prod. angle	-6 deg.	-6 deg.	+6 deg.	+6 deg.	+16 deg.			
Length	45.8 m B	31.4 m	27.9 m	21.5 m	20.6 m			
Acceptance	1.5 msr•%	2.0 msr • %	1 msr*%	5.0 msr•%	7.8 µsr			
Separator Max. Field	6 m x 2 80 kV/cm	6m x 1 80 kV/cm	2 m x 2 50 kV/cm	2 m x 1 50 kV/cm				
Measured performance	ES1:50kV/cm ES2:40kV/cm	ES1:50kV/cm K1.1BR	Under Const'n	ES1:40kV/cm				
Kaon Intensity /10 ¹⁴ proton	K- (1.8GeV/c) 1.3E+6 (\$)	K- (1GeV/c) 8.1E+5		K+ (1 GeV/c) 1.6E+6	KL: 2.1E+7			
BK/all m	0.15	0.23	-	0.47				

(\$) Mass Slits was closed about half of designed.

(#) typical mean value

Extension of Hadron Exp. Hall (in planning) increase of new physics opportunities w/ unique beam lines

Baryon-Baryon interaction (γ -ray from Hyp.Nucl., YN scat., Σ -A) Hadron Property in Nuclear Medium (Λ Mag. Moment in A) Quark-Gluon Dynamics in Hadron/Medium (Ξ^* , Ω^* , Exotics, D off A) Mechanism of Dynamical mass generation (σ , ϕ , η' , J/ ψ , multi-K in A)

Summary

We have clarified the following features:

- 1. Signals
 - $\sigma(p(\pi^-, D^{*-})\Lambda_c) \sim a$ few nb seems plausible.
 - Higher *L* states are abundantly produced.
- 2. Background
 - The background level is well reproduced by JAM.
 - Background reduction is studied
 - Signal sensitivity of 0.1 nb for Γ ~100 MeV is achieved.

Charmed Baryon Spectroscopy Using Missing Mass Techniques

Baryon Spectra upto ~1 GeV Excitation Energy

Difference and Similarity in s- and c-sector are of interest

Estimation of cross sections

- Experiment
 - $-\sigma(\pi p \rightarrow D^* \Lambda_c) < 7 \text{ nb at } p_{\pi} = 13 \text{ GeV/c [BNL, '85]}$
 - $-\sigma(\pi N \rightarrow J/\psi X) = (3 \pm 0.6) \text{ nb at } p_{\pi} = 22 \text{ GeV/c [BNL, '79]}$
 - $-\sigma(\gamma p \rightarrow \Lambda_c D^{bar}X) = (44 \pm 7^{+11}_{-8}) \text{ nb at } E_{\gamma} = 20 \text{ GeV [SLAC, '86]}$
- Theory
 - Regge Model
 - Production rate of charm relative to strangeness
 - t-channel D* exchange model
 - The model independent ratio of the production cross section

calculated by A. Hosaka

Regge Theory

- PS(K,D)-Regge (Top): s/c-prod: ~10⁻⁵(Naïve), ~3x10⁻⁵(Kaidalov)
- V(K*,D*)-Regge (Bottom): s/c-prod.: ~10⁻⁴(Naïve), ~3x10⁻⁵(Kaidalov)

Production Rate

t-channel D* EX at a forward angle
quark-diquark picture

$$R \sim \gamma C |K \cdot I|^2 p_B$$

kinematic factor × a propagator

$$K \sim k_{D^*}^0 k_{\pi} (|\vec{p}_B| / 2m_B - 1) / (q^2 - m_{D^*}^2)$$

~ 0.9

The production rates depend on the spin/isospin configurations of baryons.

$$R \sim \gamma C |K \cdot I|^2 p_B$$

$$\gamma = \begin{cases} 1/2 \text{ for } [\text{ud}]: {}^{1}\text{S}_{0}, I = 0\\ 1/6 \text{ for } (\text{ud}): {}^{3}\text{S}_{1}, I = 1 \end{cases}$$

$$C = \left\langle \left[\varphi_{nL}, \chi^{M} \right]_{-1/2}^{J} \left| \sqrt{2} \sigma_{-} \right| \varphi_{000} \chi_{+1/2}^{\rho} \right\rangle$$

The production rates provide

p _π =20 GeV/c	Mass (GeV/c)	γ	С	Q _{eff} (GeV/c)	R (Relative)	
$\Lambda_{\rm c}{}^{\rm 1/2+}$	2286	1/2	1	1.33	1	L=(
$\Sigma_{\rm c}{}^{\rm 1/2+}$	2455	1/6	1/9	1.43	0.03	
$\Sigma_{\rm c}^{3/2+}$	2520	1/6	8/9	1.44	0.20	
$\Lambda_{\rm c}^{\rm 1/2-}$	2595	1/2	1/3	1.37	1.17	L=:
$\Lambda_{\rm c}^{\rm 3/2\text{-}}$	2625	1/2	2/3	1.38	2.26	
$\Sigma_{\rm c}{}^{\rm 1/2-}$	2750	1/6	1/27	1.49	0.03	
$\Sigma_{\rm c}^{3/2}$ -	2820	1/6	2/27	1.50	0.06	
$\Sigma_{\rm c}{}^{\rm 1/2-'}$	2750	1/6	2/27	1.49	0.07	
$\Sigma_{\rm c}{}^{\rm 3/2-'}$	2820	1/6	56/135	1.50	0.33	
${\Sigma_{\rm c}}^{5/2-\prime}$	2820	1/6	2/5	1.50	0.31	
$\Lambda_{\rm c}^{3/2+}$	2940	1/2	2/5	1.42	0.85	L=2
$\Lambda_{\rm c}^{\rm 5/2+}$	2880	1/2	3/5	1.41	1.55	

No reduction at higher *L* states, depending on spin/isospin configuration of Quark-Diquark in Y_c .

Calculated by A. Hosaka

Charmed Baryon Spectroscopy Using Missing Mass Techniques

BG simulation by JAM

BGs of the past exp's were well reproduced.

* Smooth BG shapes are seen in the D*/D mass region.

Background reduction

- S/N improvement:
 - Mass resolution: x4
 - Decay angle cut: x2
 - Production angle cut x4 (depends on $d\sigma/dt$)

Considered BG for BG reduction

1. Main background

- Strangeness production including the (K⁺, π^- , π_s^-) final state 3.4 mb JAM (PRC61 (2000) 024901)
- 2. Wrong particle identification
 - Dominant cases: (π^+, π^-, π_s^-) , (p, $\pi^-, \pi_s^-)$
 - PID miss-identification of π/p as K⁺: ~3%
 - Productions of π and p are ~10 times higher than K.
 - Contribution of other combinations are negligible.
 - (K⁺, K⁻, π_s^{-}), (K⁺, π^- , K_s⁻), (π^+ , K⁻, π_s^{-}), (p, K⁻, π_s^{-}), ...
 - Semi-leptonic decay channels: (K⁺, μ^- , π_s^-) (K⁺, e⁻, π_s^-)
 - D⁰ mass cannot be reconstructed.
- 3. Associated charm production: Including D*-
 - D** production: D**0, - \rightarrow D*- + $\pi^{+,0}$
 - $D^{0,+} + D^{*-}$, $D^{*0,+} + D^{*-}$ pair production
 - Hidden charm meson (J/ ψ , ψ , χ_c) production: Decay to D*–

Very Small and No peak structure : shoulder at ~2.45 GeV/c²

26 mb

Main background

Background source

- $K^{*0}(\to K^+, \pi^-) + \pi^-$
- $KK_{bar} (K^*K^*_{bar}) \text{ production} + \pi^-$
- $Y K^{+} + \pi^{-}$

- Non-resonant multi-meson production

* No special channel contributes to background

- Background generation Y. Nara et.al. Phys. Rev. C61 (2000) 024901
 - JAM (Jet AA Microscopic transport model)
 - Use K⁺ and π^- distribution from π^- p reaction at 20 GeV/c
 - $\sigma = 2.4 \text{ mb for } (K^+, \pi^-, \pi^-)$
 - ss_{bar} production multiplicity: ~1 (2 K⁺event: ~3%)

42

String model for JAM

String model region in JAM: 4 GeV < \sqrt{s} < 10 GeV (~6.2 GeV for 20 GeV/c)

- String production by hadron-hadron collision
 - String(hadron) + String(hadron) \rightarrow st(qq_{bar}) + st(qqq) + st(qq_{bar}) + ...
- String collision
 - Not considered: Hadronization at first \Rightarrow Hadron-hadron collisions
 - Color flux between strings was not also considered.

Hadronization model: Lund model

- qqbar production rate: uu_{bar} : dd_{bar} : ss_{bar} : $cc_{bar} = 1 : 1 : 0.3 : 10^{-11}$
- Input of production rate not obeyed to the spin $({}^{3}S_{1}, {}^{1}S_{0})$ statistics
 - $\rho/(\pi+\rho) = 0.5$, K*/(K+K*)=0.6, D*/(D+D*)=0.75
- * Almost same as of PYTHIA

Difference from PYTHIA

- String collision: Used simplified input model
- Hadronization process: Input parameters of resonances are different.
- Hard process

\Rightarrow To be checked by experimental data

D⁰, D^{*-} spectrum

- 1/7 event, 12 nb in total: ~ 3200 events
- D⁰ cutでD*⁻のpeakが確認できる

Decay measurement

- Method: Mainly Forward scattering due Lorentz boost ($\theta < 40^{\circ}$)
 - Horizontal direction: Internal tracker and Surrounding TOF wall
 - Vertical direction: Internal tracker and Pole PAD TOF detector
- Mass resolution: ~ 10 MeV(rms)
 - Only internal detector tracking at the target downstream
- **PID requirement: TOF time difference** $(\pi \& K) \Rightarrow \Delta T > 500 \text{ ps}$
 - Decay particle has slow momentum: < 1.0 GeV/c

Decay missing mass spectrum: SUM

- * Full event w/ background/ No " $\Lambda_c^+ \pi^+ \pi^-$ gated"
- Continuum background shape around Σ_c mass region
- Background events from Λ_c were the same as of $(K^+\pi^-\pi^-)$
- Better S/N of π^- tag. event than π^+ tag.

46

Study condition

- Assumed decay mode for $\Lambda_c^{*+}(J^P = 3/2^+, M = 2.94 \text{ GeV/c}^2)$
 - N + D: $\Gamma = 0.4 \Rightarrow p D^0: 0.2, n D^+: 0.2$
 - $\Sigma_{c} + \pi$: $\Gamma = 0.4 \Rightarrow \Sigma_{c}^{++} \pi^{-}$: 0.4/3, $\Sigma_{c}^{+} \pi^{0}$: 0.4/3, $\Sigma_{c}^{0} \pi^{+}$: 0.4/3 \circ Decay to $\Sigma_{c}(2455)$ assumed
 - $\Lambda_c + \pi + \pi$: $\Gamma = 0.2 \Rightarrow \Lambda_c^+ \pi^+ \pi^-: 0.1, \Lambda_c^+ \pi^0 \pi^0: 0.1$
- Yield estimation @ 1 nb case (~1900 counts)
 - p D⁰: $0.2 \Rightarrow 1900 \times 0.2 \times 0.8 = -300$
 - $\Sigma_{c}^{++,0} \pi^{-,+}: 0.4/3 \Rightarrow 1900 \times 0.4/3 \times 0.8 = -200$
 - Forward scattering of protons
 - Wider scattering angle of pions
 - Combined with 4-body D⁰ decay mode: 3 times larger yield
 - $D^0 \rightarrow K^+ \pi^-$ (B.R.= 3.88%, acceptance = ~60%)
 - + $D^0 \rightarrow K^+ \pi^- \pi^+ \pi^- (B.R.= 8.07\%, acceptance=~50\%)$
 - Background level of 4-body case is larger. But, it can be combined.

47

 $\Sigma_{\rm c}$ (2800) -> $\Lambda_{\rm c}$ + π

Belle, PRL94, 122002('05)