Spectroscopic study of charmed baryon at J-PARC

H. Noumi (RCNP, Osaka University)

Outline:

- 1. High Momentum Beam Line at J-PARC
- 2. Charmed Baryon Spectroscopy at J-PARC
- 3. Summary

Joint Project between KEK and JAEA since 2001

HADRON BEAM LINE FACILITY

- Slow Extraction (SX) Beam :
 - Currently, the accelerator is operated at 30 GeV.
 - 1st phase: A design goal is 9µA (270 kW, 3.4x10¹⁴ /6s spill)
 SX Beam: step by step operation to increase extracted power

1st Beam in 2009. ~3 kW (Feb. 2011) ~6 kW (June, 2012) ~15 kW in 2012 >30 kW in 2013 ~100 kW

99.6% Extraction efficiency is achieved! - The World Highest Score -

Hadron Exp. Hall

Coming in Near Future

High-p BL: to be constructed by JFY2015

branched at upstream of the primary Beam Line

High-momentum Beam Line

High-res., High-momentum Beam Line

- High-intensity secondary Pion beam
- High-resolution beam: ∆p/p~0.1%

High-res., High-momentum Beam Line

- High-intensity secondary Pion beam
 1.0 x 10⁷ pions/sec @ 20GeV/c
- High-resolution beam: △p/p~0.1%

 \rightarrow Production of charmed particles

Sanford-Wang Prod. Angle=0 degrees 15 kW Loss on Pt Acceptance :2 msr%, 132 m

Charmed Baryon Spectroscopy at J-PARC

What are essential D.o.F. of baryons?

Constituent Quark

Hadron properties

- Classification based on Spin/flavor symmetry
- Mass Relations, Magnetic Moments

Failure in Resonant States

- Missing Resonances
- Exotics

What are essential D.o.F. of baryons?

Constituent Quark

hadron (colorless cluster)

Diquark? (Colored cluster)

What are essential D.o.F. of baryons?

- Most fundamental question
- Interaction btwn quarks
 Diquark correlations

- → Charmed baryon to close up diquark correlations
 - Weak Color Magnetic Interaction with a heavy Quark

Limited # of Charmed Baryons have been observed.

Charmed Baryon Spectroscopy Using Missing Mass Techniques

- inclusive (π⁻, D^{*-}) spectrum
 - Level structure of Y_c*
 - Production Rate
- Decay Particles
 - Decay Width/Decay Branching Ratios
 - Spin, Parity

charmed baryon meas. by $p(\pi, D^{*-})Y_c$

• No exp. data for the $p(\pi^-, D^{*-})\Lambda_c$ is available but σ <7nb at p_{π} =13 GeV/*c* at BNL (1985)

Production Cross Section

- Regge Theory: Binary Reaction at High E is well described
- Normalized to strangeness production, $p(\pi, K^{*0})\Lambda$
- Charm production: ~10⁻⁴ of strangeness production

 $\rightarrow \sigma(p(\pi^{-},D^{*-})\Lambda_{c}) \sim a \text{ few nb} at p_{\pi}=20 \text{ GeV/}c$

Production Rate

 t-channel D* EX at a forward angle Production Rates are determined by the overlap of WFs

$$R \sim \left\langle \varphi_f \left| \sqrt{2} \sigma_- \exp(i \vec{q}_{eff} \vec{r}) \right| \varphi_i \right\rangle$$

and depend on:

- 1. Spin/Isospin Config. of Y_c Spin/Isospin Factor
- 2. Momentum transfer (q_{eff})

 $I_L \sim (q_{eff}/A)^L \exp(-q_{eff}^2/2A^2)$

 $A^{0.42}$ GeV ([Baryon size]⁻¹) $q_{eff}^{1.4}$ GeV/c

Calculated production rates

	p _π =20 GeV/c	Mass (GeV/c)	"ud" isospin factor	Y _c * Spin factor	q _{eff} (GeV/c)	Rate (Relative)
=0	$\Lambda_{\rm c}^{1/2+}$	2286	1/2	1	1.33	1
	$\Sigma_{\rm c}{}^{\rm 1/2+}$	2455	1/6	1/9	1.43	0.03
	$\Sigma_{\rm c}^{3/2+}$	2520	1/6	8/9	1.44	0.20
=1	$\Lambda_{\rm c}^{\rm 1/2-}$	2595	1/2	1/3	1.37	1.17
	$\Lambda_{\rm c}^{3/2}$ -	2625	1/2	2/3	1.38	2.26
	$\Sigma_{\rm c}^{\rm 1/2-}$	2750	1/6	1/27	1.49	0.03
	$\Sigma_{\rm c}^{3/2}$ -	2820	1/6	2/27	1.50	0.06
	$\Sigma_{\rm c}{}^{\rm 1/2-'}$	2750	1/6	2/27	1.49	0.07
	$\Sigma_{\rm c}^{3/2-\prime}$	2820	1/6	56/135	1.50	0.33
	$\Sigma_{\rm c}{}^{\rm 5/2-\prime}$	2820	1/6	2/5	1.50	0.31
=2	$\Lambda_{\rm c}^{\rm 3/2+}$	2940	1/2	2/5	1.42	0.85
	$\Lambda_{\rm c}^{\rm 5/2+}$	2880	1/2	3/5	1.41	1.55

A. Hosaka, private comm. (2013)

19

Calculated production rates

Charmed Baryon Spectrometer

Large acceptance ~ 60% (for D^*), $\Delta p/p \sim 0.2\%$ at ~5 GeV/c

Expected spectrum: $\sigma_{GS} = 1 \text{ nb}$

N(Yc*)~1000 events/1nb/100 days Sensitivity: ~0.1 nb (3σ, *Γ*~100 MeV)

Charmed Baryon Spectroscopy Using Missing Mass Techniques

- inclusive (π⁻, D^{*-}) spectrum
 - Level structure of Y_c*
 - Production Rate
- Decay Particles
 - Decay Width/Decay Branching Ratios
 - Spin, Parity

Structure and Decay Partial Width

p mode (qq)

λ mode [qq]

- $\Lambda(1520) \rightarrow \Gamma(NK) > \Gamma(\pi\Sigma)$, similarly $\Lambda(1820)$, $\Lambda(2100)$
- Possible explanation of narrow widths of Charmed Baryons

Acceptance for decay particles: ~85 % a wide range of the azimuthal (ϕ_{CM}) and polar (θ_{CM}) angles

* Decay products can be measured efficiently.

Decay Products

* Decay meas. strongly assists the missing mass spectroscopy.

- Branching ratios: Diquark corr. affects $\Gamma(\Lambda_c^* pD)/\Gamma(\Lambda_c^* \Sigma_c \pi)$.
- Angular distribution: Spin, Parity

Summary

- A High Momentum Beam Line is under construction at J-PARC
 - opens a new opportunity to study charmed baryons via the (π⁻, D^{*-}) reaction
- A new project for charmed baryon spectroscopy
 - Under research cooperation btwn RCNP, IPNS/KEK, and the J-PARC Center
 - Proposal P50:

"Charmed Baryon Spectroscopy via the (π^-, D^{*-}) reaction", submitted to PAC (2013)

http://www.j-parc.jp/researcher/Hadron/en/Proposal_e.html#1301 under investigation for approval