

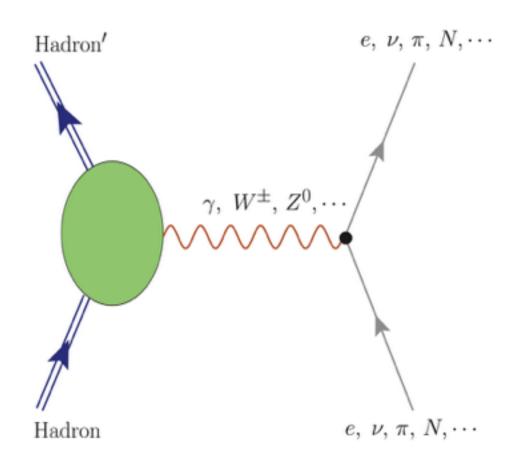
Stability of the pion beyond the chiral limit

Hyun-Chul Kim (金鉉哲)

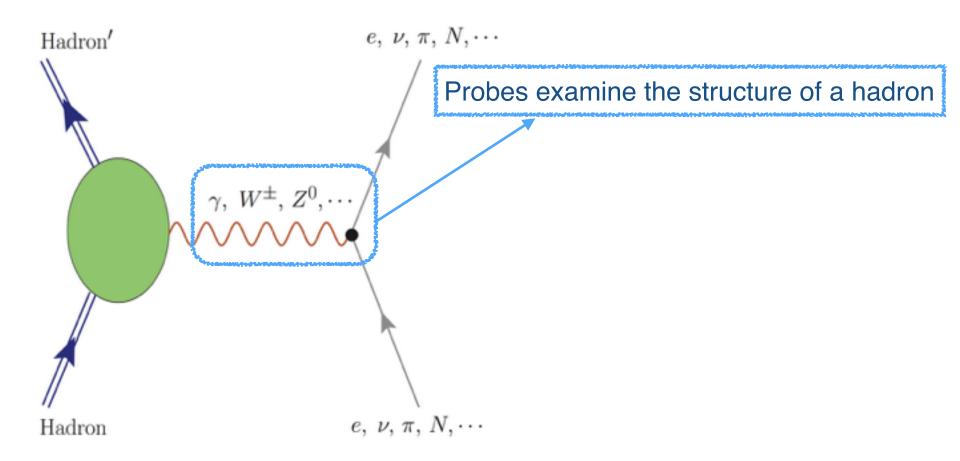
RCNP, Osaka University & Department of Physics, Inha University

In colloboration with Hyeon-Dong Son

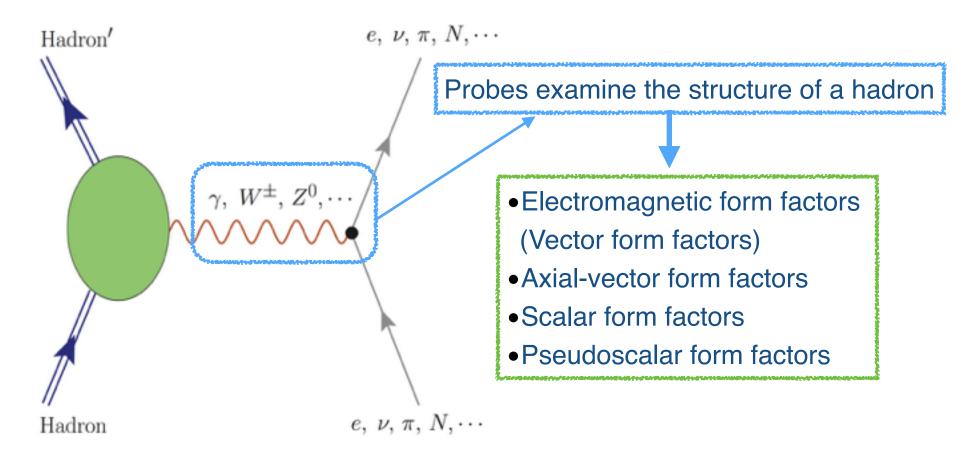
Traditional form factors



Traditional form factors



Traditional form factors



• Given an action
$$S = \int d^4 \sqrt{-g} \mathcal{L}$$

$$T_{\mu\nu}=2rac{\delta S}{\delta q^{\mu
u}} \quad {
m or} \quad T_{\mu
u}=-rac{\partial \mathcal{L}}{\partial (\partial^{\mu}arphi_{a}(x)}\partial_{
u}\phi_{a}(x)+g_{\mu
u}\mathcal{L}$$

- EMT is a conserved quantity: $\partial^{\mu}T_{\mu\nu}=0$ (EMTFFs are scale-independent quantities)
- Energy-momentum tensor form factors of the pion

$$\langle \pi^a(p')|T_{\mu\nu}(0)|\pi^b(p)\rangle = \frac{\delta^{ab}}{2} \left[(tg_{\mu\nu} - q_{\mu}q_{\nu})\Theta_1(t) + 2P_{\mu}P_{\nu}\Theta_2(t) \right]$$

(also known as the gravitational form factors)

• Given an action
$$S = \int d^4 \sqrt{-g} \mathcal{L}$$

$$T_{\mu\nu}=2rac{\delta S}{\delta q^{\mu
u}} \quad {
m or} \quad T_{\mu
u}=-rac{\partial \mathcal{L}}{\partial (\partial^{\mu}arphi_{a}(x)}\partial_{
u}\phi_{a}(x)+g_{\mu
u}\mathcal{L}$$

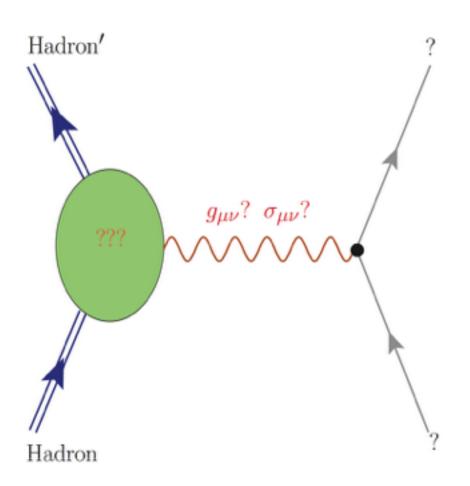
- EMT is a conserved quantity: $\partial^{\mu}T_{\mu\nu}=0$ (EMTFFs are scale-independent quantities)
- Energy-momentum tensor form factors of the pion

$$\langle \pi^a(p')|T_{\mu\nu}(0)|\pi^b(p)\rangle = \frac{\delta^{ab}}{2} \left[(tg_{\mu\nu} - q_{\mu}q_{\nu})\Theta_1(t) + 2P_{\mu}P_{\nu}\Theta_2(t) \right]$$

(also known as the gravitational form factors)

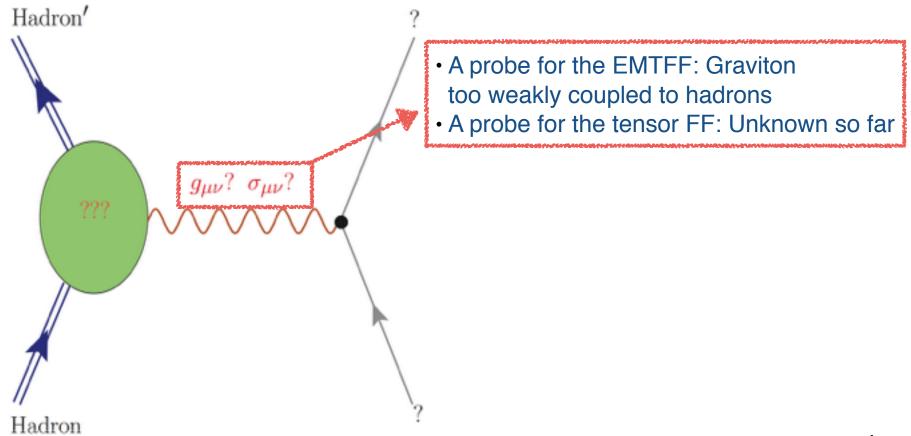
Energy-Momentum Tensor form factors & Tensor Form factors

These form factors are as equally important as vector and axial-vector form factors (Energy & Momentum distributions & transversity, resp.)!



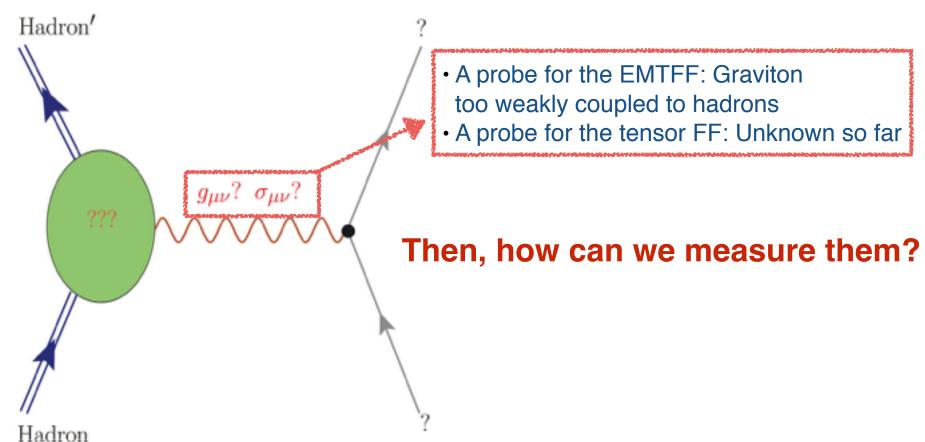
Energy-Momentum Tensor form factors & Tensor Form factors

These form factors are as equally important as vector and axial-vector form factors (Energy & Momentum distributions & transversity, resp.)!



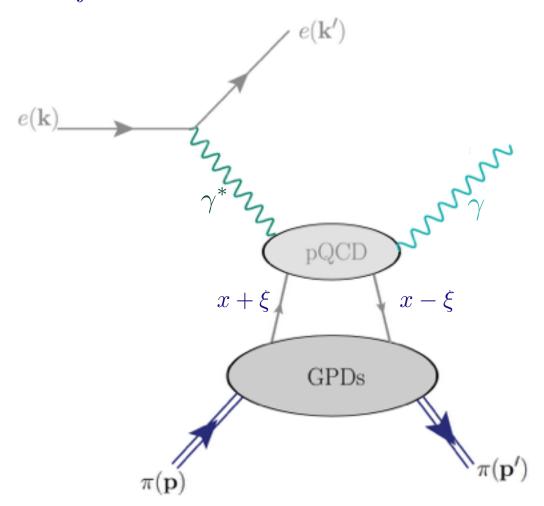
Energy-Momentum Tensor form factors & Tensor Form factors

These form factors are as equally important as vector and axial-vector form factors (Energy & Momentum distributions & transversity, resp.)!

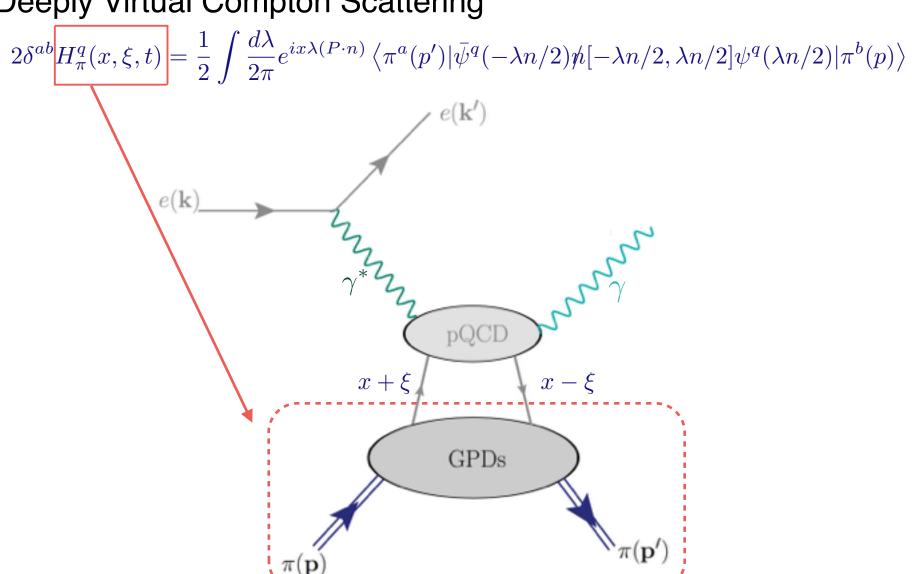


Deeply Virtual Compton Scattering

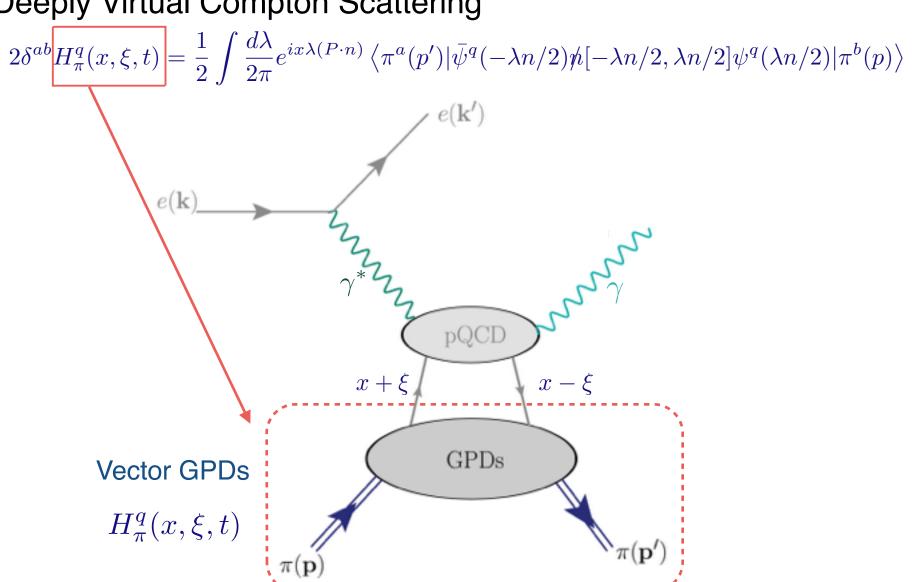
$$2\delta^{ab}H_{\pi}^{q}(x,\xi,t) = \frac{1}{2}\int \frac{d\lambda}{2\pi} e^{ix\lambda(P\cdot n)} \left\langle \pi^{a}(p')|\bar{\psi}^{q}(-\lambda n/2)/\!\!/ [-\lambda n/2,\lambda n/2]\psi^{q}(\lambda n/2)|\pi^{b}(p)\right\rangle$$



Deeply Virtual Compton Scattering



Deeply Virtual Compton Scattering



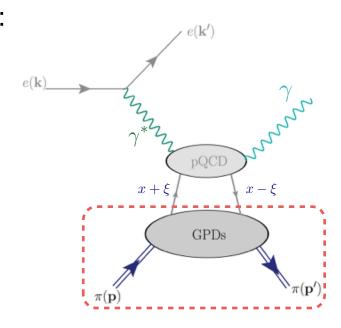
Form factor as a Mellin moment of the GPD

$$\int dx x^{n-1} H_{\pi}^{q}(x,\xi,t) = A_{n,0}(t) + \sum_{i=1,\text{ odd}}^{n} (-2\xi)^{i+1} A_{n,i+1}(t)$$

- Generalized form factors of the pion
 - pion EM form factor as the first Mellin moment:

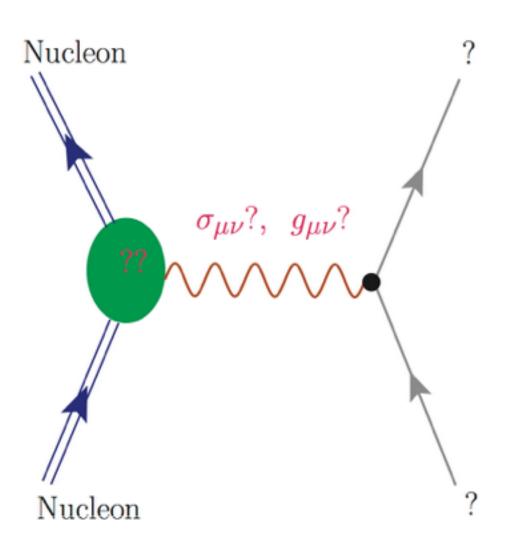
$$F_{\pi}(t) = A_{1,0}(t)$$

- EMTFFs as the second Mellin moments, which are the subjects of the present talk.



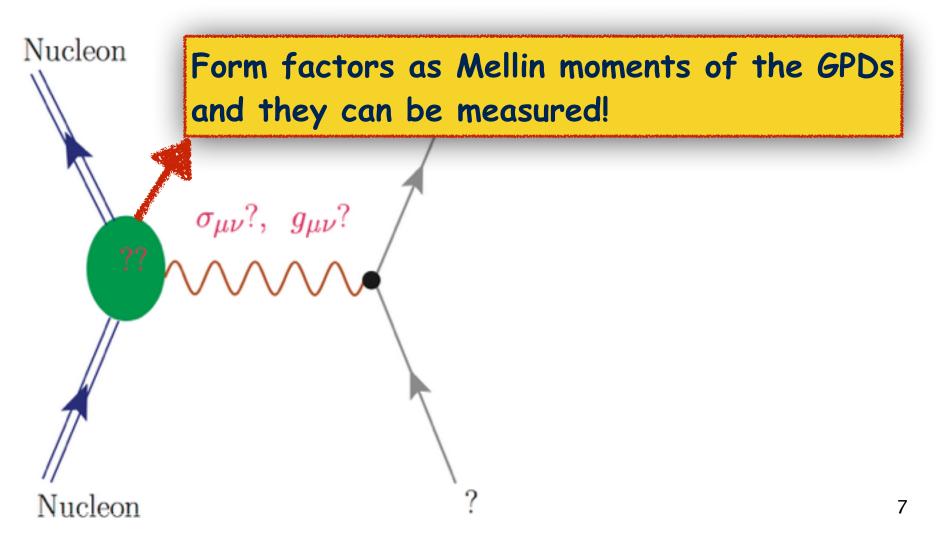
Generalised Parton Distributions

Probes are unknown for Tensor form factors and the Energy-Momentum Tensor form factors but



Generalised Parton Distributions

Probes are unknown for Tensor form factors and the Energy-Momentum Tensor form factors but



Chiral quark model

Effective Chiral Action

$$\mathrm{SU}(2)_L imes \mathrm{SU}(2)_R op \mathrm{SU}(2)_V$$
 by the quark condensate
$$\mathrm{SU}(2)_L imes \mathrm{SU}(2)_R imes \mathrm{SU}(2)_V ext{: Goldstone bosons} \qquad \Sigma op L \Sigma R^\dagger$$

Chiral quark model

Effective Chiral Action

$$\mathrm{SU}(2)_L imes \mathrm{SU}(2)_R op \mathrm{SU}(2)_V$$
 by the quark condensate
$$\mathrm{SU}(2)_L imes \mathrm{SU}(2)_R imes \mathrm{SU}(2)_V ext{: Goldstone bosons} \qquad \Sigma op L\Sigma R^\dagger$$

$$S_{\text{eff}} = -N_c \text{Tr} \log \left[i \partial \!\!\!/ + i M \Sigma P_L + i M \Sigma^{\dagger} P_R + i m \mathbf{1} \right]$$

 N_c : The number of colors

M: Dynamical quark mass

 $\Sigma = \exp(i\pi \cdot \tau/f_{\pi})$: Pion field as a pseudo-Goldstone boson

 P_L , P_R : Chiral projection operators

 $m = (m_u + m_d)/2$: Current quark mass

Energy-momentum Tensor Form factors (Pagels, 1966)

$$\langle \pi^a(p')|T_{\mu\nu}(0)|\pi^b(p)\rangle = \frac{\delta^{ab}}{2} \left[(tg_{\mu\nu} - q_{\mu}q_{\nu})\Theta_1(t) + 2P_{\mu}P_{\nu}\Theta_2(t) \right]$$

$$T_{\mu\nu}(x)=rac{1}{2}ar{\psi}(x)\gamma_\{i\overleftrightarrow{\partial}_{\nu\}}\psi(x)\,: {\sf EMT}\,{\sf operator}$$

Energy-momentum Tensor Form factors (Pagels, 1966)

$$\langle \pi^a(p')|T_{\mu\nu}(0)|\pi^b(p)\rangle = \frac{\delta^{ab}}{2} \left[(tg_{\mu\nu} - q_{\mu}q_{\nu})\Theta_1(t) + 2P_{\mu}P_{\nu}\Theta_2(t) \right]$$

EMTFFs (Gravitational FFs)

$$T_{\mu\nu}(x)=rac{1}{2}ar{\psi}(x)\gamma_\{i\overleftrightarrow{\partial}_{\nu\}}\psi(x)\,: {\sf EMT}\,{\sf operator}$$

Energy-momentum Tensor Form factors (Pagels, 1966)

$$\langle \pi^a(p')|T_{\mu\nu}(0)|\pi^b(p)\rangle = \frac{\delta^{ab}}{2} \left[(tg_{\mu\nu} - q_{\mu}q_{\nu})\Theta_1(t) + 2P_{\mu}P_{\nu}\Theta_2(t) \right]$$

EMTFFs (Gravitational FFs)

$$T_{\mu\nu}(x)=rac{1}{2}ar{\psi}(x)\gamma_\{i\overleftrightarrow{\partial}_{\nu\}}\psi(x)\,: {\sf EMT}\,{\sf operator}$$

Isoscalar vector GPDs of the pion

$$2\delta^{ab}H_{\pi}^{I=0}(x,\xi,t) = \frac{1}{2} \int \frac{d\lambda}{2\pi} e^{ix\lambda(P\cdot n)} \langle \pi^{a}(p') | \bar{\psi}(-\lambda n/2) /\!\!\!/ [-\lambda n/2, \lambda n/2] \psi(\lambda n/2) | \pi^{b}(p) \rangle$$

Energy-momentum Tensor Form factors (Pagels, 1966)

$$\langle \pi^a(p')|T_{\mu\nu}(0)|\pi^b(p)\rangle = \frac{\delta^{ab}}{2} \left[(tg_{\mu\nu} - q_{\mu}q_{\nu})\Theta_1(t) + 2P_{\mu}P_{\nu}\Theta_2(t) \right]$$

EMTFFs (Gravitational FFs)

$$T_{\mu\nu}(x)=rac{1}{2}ar{\psi}(x)\gamma_\{i\overleftrightarrow{\partial}_{\nu\}}\psi(x)\,: {\sf EMT}\,{\sf operator}$$

Isoscalar vector GPDs of the pion

$$2\delta^{ab}H_{\pi}^{I=0}(x,\xi,t) = \frac{1}{2}\int \frac{d\lambda}{2\pi} e^{ix\lambda(P\cdot n)} \langle \pi^a(p')|\bar{\psi}(-\lambda n/2)/\!\!/ [-\lambda n/2,\lambda n/2]\psi(\lambda n/2)|\pi^b(p)\rangle$$

The second moment of the GPD

$$\int dx \, x H_{\pi}^{I=0}(x,\xi,t) = A_{20}(t) + 4\xi^2 A_{22}(t)$$

Energy-momentum Tensor Form factors (Pagels, 1966)

$$\langle \pi^a(p')|T_{\mu\nu}(0)|\pi^b(p)\rangle = \frac{\delta^{ab}}{2} \left[(tg_{\mu\nu} - q_{\mu}q_{\nu})\Theta_1(t) + 2P_{\mu}P_{\nu}\Theta_2(t) \right]$$

EMTFFs (Gravitational FFs)

$$T_{\mu\nu}(x)=rac{1}{2}ar{\psi}(x)\gamma_\{i\overleftrightarrow{\partial}_{\nu\}}\psi(x)\,: {\sf EMT}\,{\sf operator}$$

Isoscalar vector GPDs of the pion

$$2\delta^{ab}H_{\pi}^{I=0}(x,\xi,t) = \frac{1}{2}\int \frac{d\lambda}{2\pi} e^{ix\lambda(P\cdot n)} \langle \pi^a(p')|\bar{\psi}(-\lambda n/2)/\!\!/ [-\lambda n/2,\lambda n/2]\psi(\lambda n/2)|\pi^b(p)\rangle$$

The second moment of the GPD

$$\int dx \, x H_\pi^{I=0}(x,\xi,t) = A_{20}(t) + 4\xi^2 A_{22}(t)$$
: Generalized form factors of the pion

Energy-momentum Tensor Form factors (Pagels, 1966)

$$\langle \pi^a(p')|T_{\mu\nu}(0)|\pi^b(p)\rangle = \frac{\delta^{ab}}{2} \left[(tg_{\mu\nu} - q_{\mu}q_{\nu})\Theta_1(t) + 2P_{\mu}P_{\nu}\Theta_2(t) \right]$$

EMTFFs (Gravitational FFs)

$$T_{\mu\nu}(x)=rac{1}{2}ar{\psi}(x)\gamma_\{i\overleftrightarrow{\partial}_{\nu\}}\psi(x)\,: {\sf EMT}\,{\sf operator}$$

Isoscalar vector GPDs of the pion

$$2\delta^{ab}H_{\pi}^{I=0}(x,\xi,t) = \frac{1}{2} \int \frac{d\lambda}{2\pi} e^{ix\lambda(P\cdot n)} \langle \pi^{a}(p') | \bar{\psi}(-\lambda n/2) /\!\!\!/ [-\lambda n/2, \lambda n/2] \psi(\lambda n/2) | \pi^{b}(p) \rangle$$

The second moment of the GPD

$$\int dx\,x H_\pi^{I=0}(x,\xi,t) = A_{20}(t) + 4\xi^2 A_{22}(t)$$
 : Generalized form factors of the pion

$$\Theta_1 = -4A_{22}^{I=0}, \ \Theta_2 = A_{20}^{I=0}$$

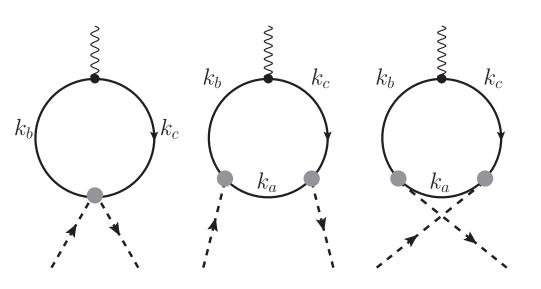
$$\Theta_1(0) - \Theta_2(0) = \mathcal{O}(m_\pi^2)$$

Time component of the EMT matrix element gives the pion mass.

$$\langle \pi^a(p)|T_{44}(0)|\pi^b(p)\rangle|_{t=0} = -2m_\pi^2\Theta_2(0)\delta^{ab}$$

The sum of the spatial component of the EMT matrix element gives the pressure of the pion, which should vanish!

$$\left\langle \pi^a(p)|T_{ii}(0)|\pi^b(p)
ight
angle igg|_{t=0}=\left.rac{3}{2}\delta^{ab}t\,\Theta_1(t)
ight|_{t=0}$$
 Zero in the chiral limit



$$k_{a\mu} = k_{\mu} - p_{\mu}/2 - q_{\mu}/2$$

$$k_{b\mu} = k_{\mu} + p_{\mu}/2 - q_{\mu}/2$$

$$k_{c\mu} = k_{\mu} + p_{\mu}/2 + q_{\mu}/2$$

$$k_{d} = k_{b} + k_{c}$$

$$k_{ij} = k_{i} \cdot k_{j}$$

$$\left\langle \pi^{a}(p')|\Theta_{\mu\nu}(0)|\pi^{b}(p)\right\rangle = \delta^{ab}\frac{2N_{c}}{f_{\pi}^{2}}\int d\tilde{k}\sum_{i}\mathcal{F}_{i}(k,p,q)_{\mu\nu} + (\mu\leftrightarrow\nu)$$

$$\mathcal{F}_{a\mu\nu} = -\frac{M\overline{M}k_{d\mu}k_{d\nu}}{D_bD_c} \qquad (\overline{M} = m + M)$$

$$\mathcal{F}_{b\mu\nu} = \frac{2M^2 k_{d\nu}}{D_a D_b D_c} \left[-k_{a\mu} \left(k_{bc} + \overline{M}^2 \right) + k_{b\mu} \left(k_{ac} + \overline{M}^2 \right) + k_{c\mu} \left(k_{ab} + \overline{M}^2 \right) \right]$$

Pressure of the pion beyond the chiral limit

$$\mathcal{P} = \langle \pi^{a}(p) | T_{ii}(0) | \pi^{a}(p) \rangle$$

$$= \frac{12N_{c}mM}{f_{\pi}^{2}} \int d\tilde{l} \frac{-l^{2}}{[l^{2} + \overline{M}^{2}]^{2}} + \frac{12N_{c}M^{2}}{f_{\pi}^{2}} \int d\tilde{l} \int_{0}^{1} dx \frac{-p^{2}l^{2}}{[l^{2} + x(1-x)p^{2} + \overline{M}^{2}]^{3}}$$

Pressure of the pion beyond the chiral limit

$$\mathcal{P} = \langle \pi^{a}(p) | T_{ii}(0) | \pi^{a}(p) \rangle$$

$$= \frac{12N_{c}mM}{f_{\pi}^{2}} \int d\tilde{l} \frac{-l^{2}}{[l^{2} + \overline{M}^{2}]^{2}} + \frac{12N_{c}M^{2}}{f_{\pi}^{2}} \int d\tilde{l} \int_{0}^{1} dx \frac{-p^{2}l^{2}}{[l^{2} + x(1 - x)p^{2} + \overline{M}^{2}]^{3}}$$

$$i \langle \psi^{\dagger} \psi \rangle = 8N_{c} \int d\tilde{l} \frac{\overline{M}}{[l^{2} + \overline{M}^{2}]}$$

Quark condensate

Pressure of the pion beyond the chiral limit

$$\mathcal{P} = \langle \pi^{a}(p) | T_{ii}(0) | \pi^{a}(p) \rangle$$

$$= \frac{12N_{c}mM}{f_{\pi}^{2}} \int d\tilde{l} \frac{-l^{2}}{[l^{2} + \overline{M}^{2}]^{2}} + \frac{12N_{c}M^{2}}{f_{\pi}^{2}} \int d\tilde{l} \int_{0}^{1} dx \frac{-p^{2}l^{2}}{[l^{2} + x(1 - x)p^{2} + \overline{M}^{2}]^{3}}$$

$$i \langle \psi^{\dagger} \psi \rangle = 8N_{c} \int d\tilde{l} \frac{\overline{M}}{[l^{2} + \overline{M}^{2}]} \quad f_{\pi}^{2} = 4N_{c} \int_{0}^{1} dx \int d\tilde{l} \frac{M\overline{M}}{[l^{2} + \overline{M}^{2} + x(1 - x)p^{2}]^{2}}$$

Quark condensate

Pion decay constant

$$\mathcal{P} = \frac{3M}{f_{\pi}^2 \overline{M}} \left(m \left\langle \bar{\psi} \psi \right\rangle + m_{\pi}^2 f_{\pi}^2 \right) = 0 !$$

by the Gell-Mann-Oakes-Renner relation to linear m order

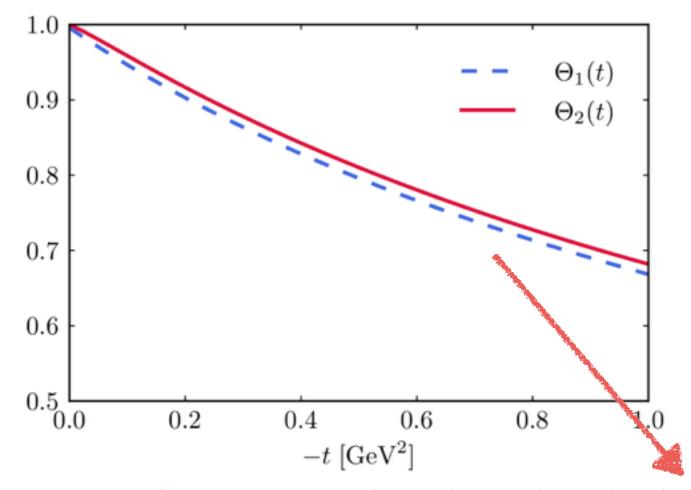
Physical implications: The stability of the pion should be deeply rooted spontaneous breakdown of chiral symmetry and the pattern of explicit chiral symmetry breaking.

Energy-momentum Tensor FFs



$$\Theta_1 = \Theta_2$$

Energy-momentum Tensor FFs



$$\Theta_1 = \Theta_2$$

in the chiral limit

The difference arises from the explicit chiral symmetry breaking.

Chiral Lagrangian in flat space

$$\mathcal{L} = \frac{f_{\pi}^{2}}{4} \operatorname{Tr}(D_{\mu} \Sigma D^{\mu} \Sigma^{\dagger})$$

$$+ L_{1} \left[\operatorname{Tr}(D_{\mu} \Sigma D^{\mu} \Sigma^{\dagger}) \right]^{2} + L_{2} \operatorname{Tr}(D_{\mu} \Sigma D_{\nu} U^{\dagger}) \operatorname{Tr}(D^{\mu} \Sigma D^{\nu} \Sigma^{\dagger})$$

$$+ L_{3} \operatorname{Tr}(D_{\mu} \Sigma D^{\mu} \Sigma^{\dagger} D_{\nu} \Sigma D^{\nu} \Sigma^{\dagger}) + \cdots$$

Chiral Lagrangian in curved space

$$\mathcal{L} = L_{11}R\text{Tr}(D_{\mu}\Sigma D^{\mu}\Sigma^{\dagger}) + L_{12}R^{\mu\nu}\text{Tr}(D_{\mu}\Sigma D_{\nu}\Sigma^{\dagger}) + L_{13}R\text{Tr}(\chi\Sigma^{\dagger} + \Sigma\chi^{\dagger}) + \cdots$$

The Low-Energy constants can be derived by the Derivative expansion. (small pion momentum, small pion mass)

Chiral Lagrangian in flat space

$$\mathcal{L} = \frac{f_{\pi}^{2}}{4} \operatorname{Tr}(D_{\mu} \Sigma D^{\mu} \Sigma^{\dagger})$$

$$+ L_{1} \left[\operatorname{Tr}(D_{\mu} \Sigma D^{\mu} \Sigma^{\dagger}) \right]^{2} + L_{2} \operatorname{Tr}(D_{\mu} \Sigma D_{\nu} U^{\dagger}) \operatorname{Tr}(D^{\mu} \Sigma D^{\nu} \Sigma^{\dagger})$$

$$+ L_{3} \operatorname{Tr}(D_{\mu} \Sigma D^{\mu} \Sigma^{\dagger} D_{\nu} \Sigma D^{\nu} \Sigma^{\dagger}) + \cdots$$

Chiral Lagrangian in curved space

$$\mathcal{L} = L_{11}R\text{Tr}(D_{\mu}\Sigma D^{\mu}\Sigma^{\dagger}) + L_{12}R^{\mu\nu}\text{Tr}(D_{\mu}\Sigma D_{\nu}\Sigma^{\dagger}) + L_{13}R\text{Tr}(\chi\Sigma^{\dagger} + \Sigma\chi^{\dagger}) + \cdots$$

The Low-Energy constants can be derived by the Derivative expansion. (small pion momentum, small pion mass)

$$\Theta_1(q^2) = 1 + \frac{2q^2}{f_\pi^2} (4L_{11} + L_{12}) - \frac{16m_\pi^2}{f_\pi^2} (L_{11} - L_{13}) + \dots$$

$$\Theta_2(q^2) = 1 - \frac{2q^2}{f_\pi^2} L_{12} + \dots$$

[J.F. Donoghue and H. Leutwyler, Z.Phys.C(1991) 52, 343]

Derivative expansion in curved space

$$L_{11} = \frac{N_c}{192\pi^2} = 1.6 \times 10^{-3}$$

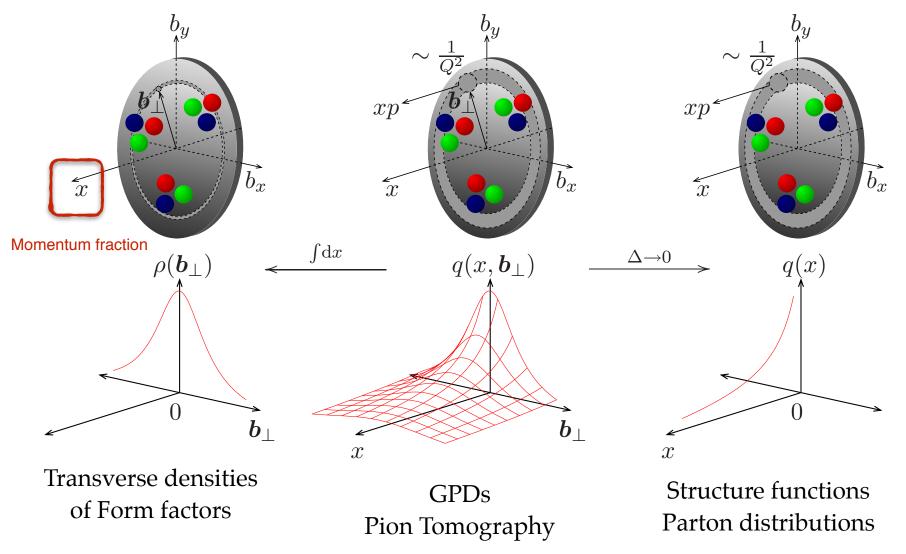
$$L_{12} = -2L_{11} = -3.2 \times 10^{-3}$$

$$L_{13} = -\frac{N_c}{96\pi^2} \frac{M}{B_0} \Gamma\left(0, \frac{M^2}{\Lambda^2}\right) = 0.84 \times 10^{-3}$$

	L_{11}	L ₁₂	L ₁₃
Present Work	1.6*10-3	-3.2*10-3	0.84*10-3
SQM*	1.6*10-3	-3.2*10 ⁻³	0.3*10-3
XPT**	1.4*10-3	-2.7 *10 ⁻³	0.9*10-3

[*Megias *et al.* PRD **70**, 034031 (2004)] [**J.F. Donoghue and H. Leutwyler, Zeit. PC **52**, 343 (1991)]

Pion Tomography

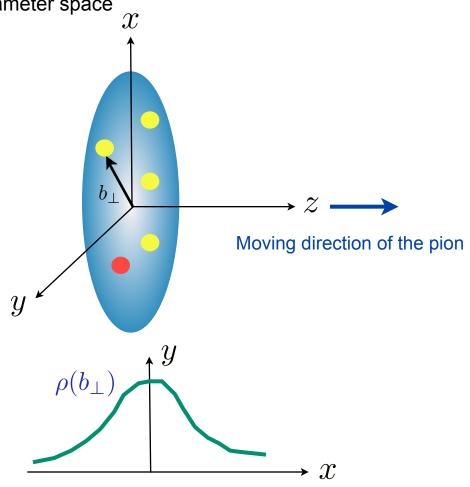


Transverse charge densities

Why transverse charge densities?

2-D Fourier transform of the GPDs in impact-parameter space

$$q(x,b) = \int \frac{d^2}{(2\pi)^2} e^{i\mathbf{q}\cdot\mathbf{b}} H_{\pi}^q(x,0,t)$$



Transverse charge densities

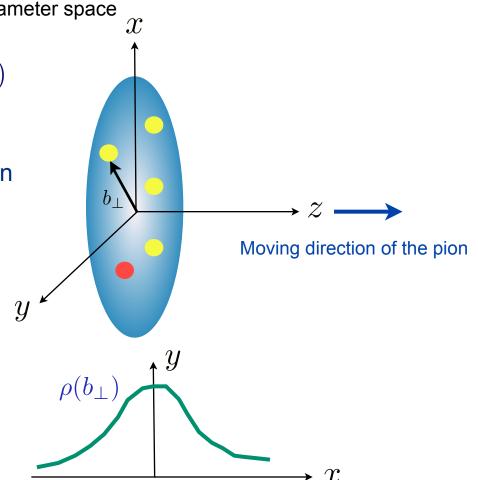
Why transverse charge densities?

2-D Fourier transform of the GPDs in impact-parameter space

$$q(x,b) = \int \frac{d^2}{(2\pi)^2} e^{i\mathbf{q}\cdot\mathbf{b}} H_{\pi}^q(x,0,t)$$

It can be interpreted as the probability distribution of a quark in the transverse plane.

M. Burkardt, PRD **62**, 071503 (2000); Int. J. Mod. Phys. A **18**, 173 (2003).



Transverse charge densities

Why transverse charge densities?

2-D Fourier transform of the GPDs in impact-parameter space

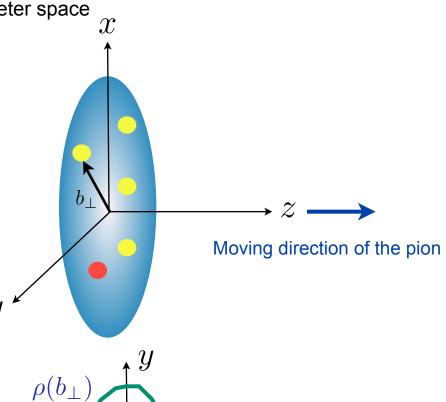
$$q(x,b) = \int \frac{d^2}{(2\pi)^2} e^{i\mathbf{q}\cdot\mathbf{b}} H_{\pi}^q(x,0,t)$$

It can be interpreted as the probability distribution of a quark in the transverse plane.

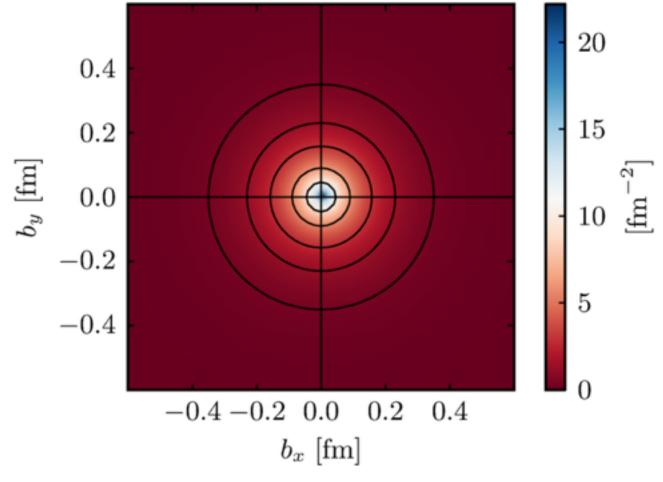
M. Burkardt, PRD **62**, 071503 (2000); Int. J. Mod. Phys. A **18**, 173 (2003).

Pion transverse charge densities

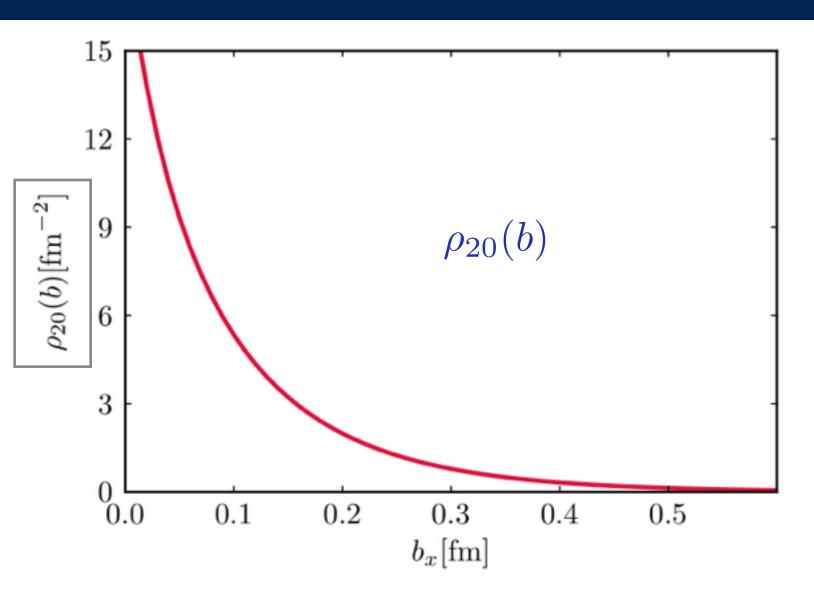
$$\rho_{ni}(\mathbf{b}) := \int \frac{d^2q}{(2\pi)^2} A_{ni}(t) e^{i\mathbf{q}\cdot\mathbf{b}}$$

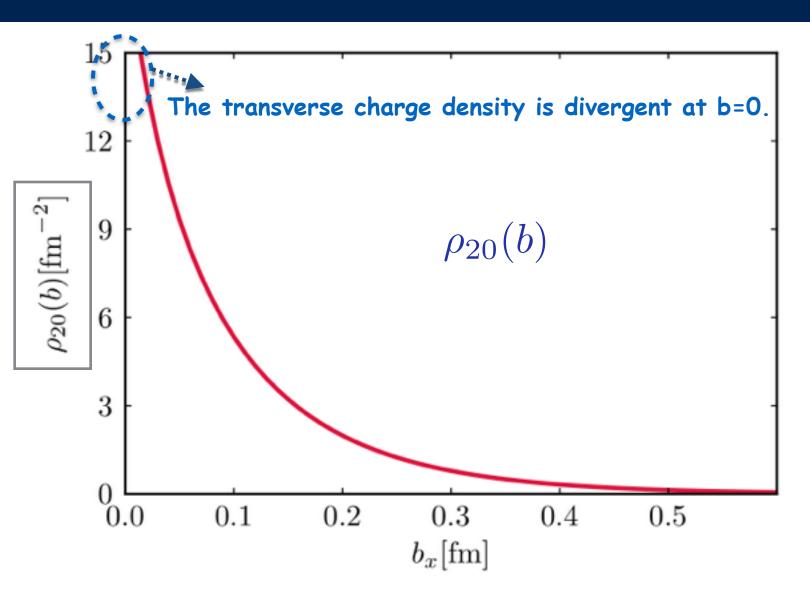


$$\rho_{20}(b) = \int_0^\infty \frac{QdQ}{2\pi} J_0(bQ)\Theta_2(t)$$

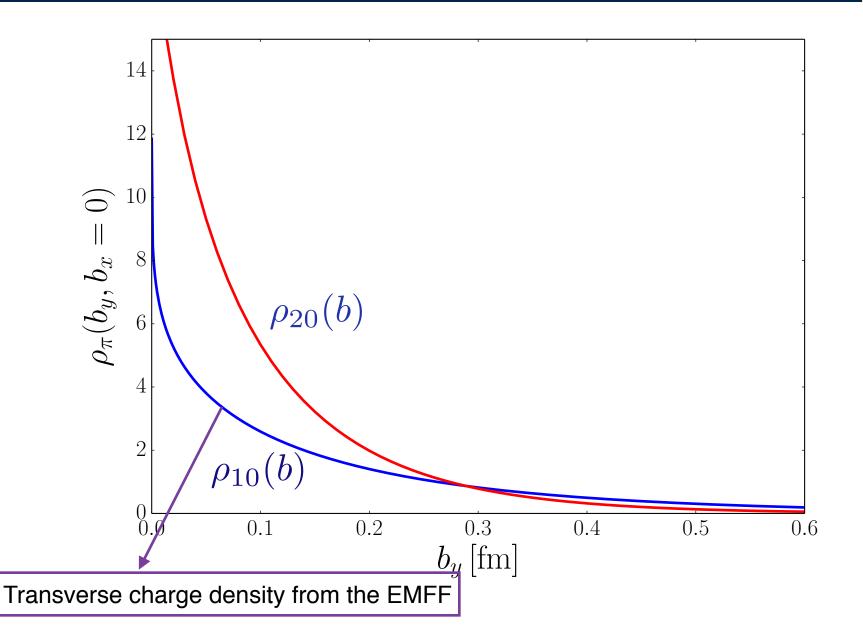


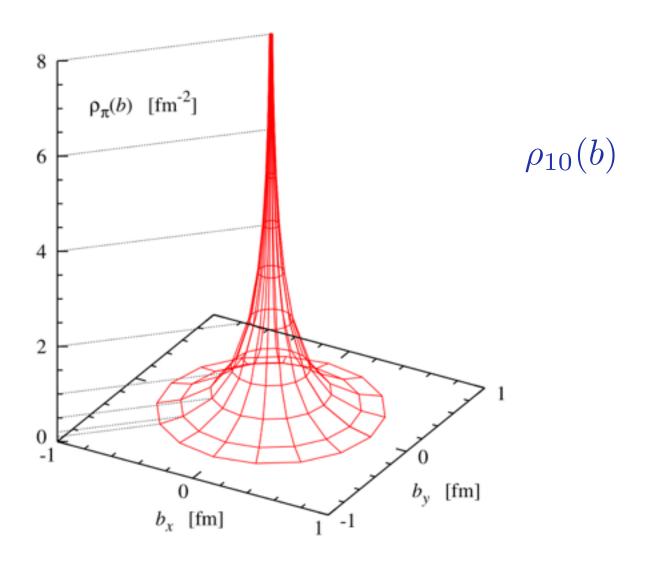
20

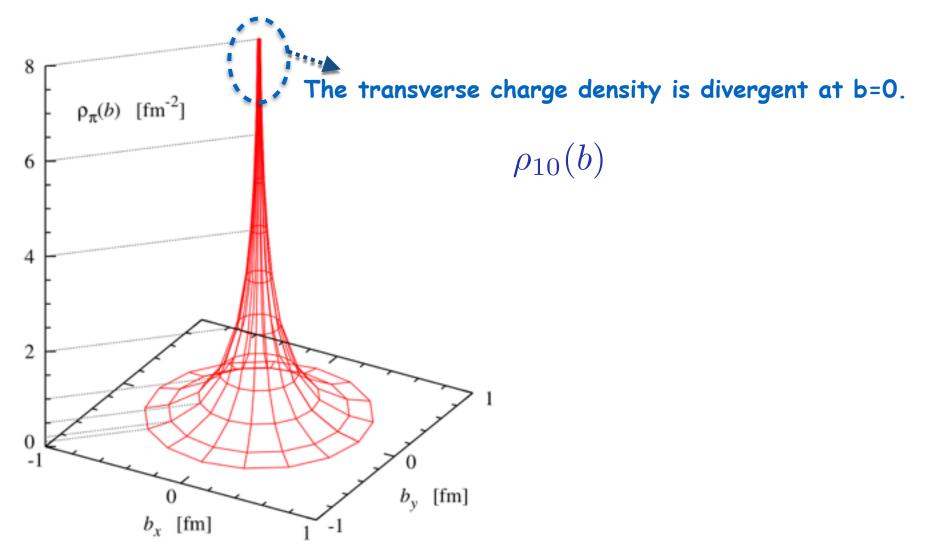












Summary

- We also showed the energy-momentum tensor form factors of the pion. The stability of the pion beyond the chiral limit was shown to be secured by the Gell-Mann-Oakes-Renner relation, which implies that the stability of the pion is deeply related to the spontaneous breakdown of chiral symmetry and the pattern of chiral symmetry breaking.
- We also discussed the low-energy constants for the effective chiral Lagrangian in curved space, and the transverse charge densities of the pion in the transverse plane.

Though this be madness, yet there is method in it.

Hamlet Act 2, Scene 2

Thank you very much!