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Baryon Spectrum: Hadron Spectrum Collaboration
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Positive Parity Nucleon Spectrum: χQCD (U. Kentucky) Collaboration
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Positive Parity Spectrum: Cypress (Twisted Mass) Collaboration: Feb. ’13
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Positive Parity Spectrum: Cypress (Twisted Mass) Collaboration: Jan. ’14
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Negative Parity Nucleon Spectrum: Cypress
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Outline

Variational Analysis

Understanding and Resolving Discrepancies in the Nucleon Spectrum

Have we seen the Roper?

Wave Functions and Form Factors

Hamiltonian Effective Field Theory Model

The Λ(1405) is a KN Molecule

Conclusion
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Variational Analysis

• Consider a basis of interpolating fields χi

• Construct the correlation matrix

Gij(p; t) =
∑

x
e−i p·x tr ( Γ 〈Ω|χi (x)χj(0) |Ω〉 ) .

• Seek linear combinations of the interpolators {χi } that isolate
individual energy eigenstates, α, at momentum p:

φα = vαi (p)χi , φα = uαi (p)χi .
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Variational Analysis

• When successful, only state α participates in the correlation
function, and one can write recurrence relations

G(p; t0 + δt) uα(p) = e−Eα(p) δt G(p; t0) uα(p)

vαT(p) G(p; t0 + δt) = e−Eα(p) δt vαT(p) G(p; t0)

a Generalised Eigenvalue Problem (GEVP).

• Solve for the left, vα(p), and right, uα(p), generalised eigenvectors
of G(p; t0 + δt) and G(p; t0).
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Eigenstate-Projected Correlation Functions

• Using these optimal eigenvectors, create eigenstate-projected
correlation functions

Gα(p; t) =
∑

x
e−i p·x 〈Ω|φα(x)φα(0)|Ω〉 ,

=
∑

x
e−i p·x 〈Ω|vαi (p)χi (x)χj(0) uαj (p)|Ω〉 ,

= vαT(p) G(p; t) uα(p) .

Gα(p; t) = Aα exp (−Eα(p) t) .

• Here t is different from t0 and δt and can become large.
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Defining the Effective Mass

• At zero momentum, the projected correlator is

Gα(0; t) = Aα exp (−Mα t) .

• Taking the log

ln Gα(0; t) = ln (Aα)−Mα t .

• The effective mass is defined as

Mα
eff(t) =

1
∆t ln

( Gα(t)

Gα(t + ∆t)

)
.

• ∆t = 1 or 2 is common.
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Smeared Source to Point Sink Correlation Functions
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Positive Parity Nucleon - First Excited State - mπ: 296 MeV
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Positive Parity Nucleon - First Excited State - mπ: 296 MeV - χ2
dof : 0.67
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Negative Parity Nucleon - 2nd Excited State - mπ: 156 MeV
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Negative Parity Nucleon - 2nd Excited State - mπ: 156 MeV - χ2
dof : 0.88
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Further Information

• “Roper Resonance in 2+1 Flavor QCD,”
M. S. Mahbub, et al. [CSSM],
Phys. Lett. B 707 (2012) 389
arXiv:1011.5724 [hep-lat],

• “Low-lying Odd-parity States of the Nucleon in Lattice QCD,”
M. Selim Mahbub, et al. [CSSM],
Phys. Rev. D Rapid Comm. 87 (2013) 011501,
arXiv:1209.0240 [hep-lat]

• “Structure and Flow of the Nucleon Eigenstates in Lattice QCD,”
M. S. Mahbub, et al. [CSSM],
Phys. Rev. D 87 (2013) 9, 094506
arXiv:1302.2987 [hep-lat].

• Finn Stokes, et al. [CSSM], In preparation.
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CSSM Simulation Details

Based on the PACS-CS (2 + 1)-flavour ensembles, available through
the ILDG.

S. Aoki et al (PACS-CS Collaboration), Phys. Rev. D 79, 034503 (2009)
• Lattice size of 323 × 64 with β = 1.90. L ' 3 fm.

• 5 pion masses, ranging from 640 MeV down to 156 MeV.
• The strange quark κs is held fixed as the light quark masses vary.
◦ Changes in the strange quark contributions are environmental effects.
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Positive Parity Nucleon Spectrum: CSSM
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States Tracked via Orthogonal Eigenvectors
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Positive Parity Nucleon Spectrum: CSSM
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Comparison: Hadron Spectrum Collaboration (HSC)

• “Excited state baryon spectroscopy from lattice QCD,”
R. G. Edwards, J. J. Dudek, D. G. Richards and S. J. Wallace,
Phys. Rev. D 84 (2011) 074508 arXiv:1104.5152 [hep-ph].
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CSSM & HSC Comparison: Positive Parity CSSM
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CSSM & HSC Comparison: Positive Parity CSSM
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CSSM & HSC Comparison: Positive Parity
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CSSM & HSC Comparison: Negative Parity CSSM
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CSSM & HSC Comparison: Negative Parity
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Positive Parity Nucleon Spectrum: χQCD (U. Kentucky) Collaboration
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Positive Parity Nucleon Spectrum: χQCD (U. Kentucky) Collaboration

• “The Roper Puzzle,”
K. F. Liu, Y. Chen, M. Gong, R. Sufian, M. Sun and A. Li,
PoS LATTICE 2013 (2014) 507
arXiv:1403.6847 [hep-ph].

• Ying Chen’s talk in Tuesday’s Parallel-B 26-2 at 16:30.
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Essence of the Sequential Empirical Bayesian (SEB) Analysis
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Essence of the Sequential Empirical Bayesian (SEB) Analysis
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χQCD & HSC Systematic Comparison - Same Correlators Examined
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Positive Parity Spectrum: Cypress (Twisted Mass) Collaboration: Feb. ’13
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Positive Parity Spectrum: Cypress (Twisted Mass) Collaboration: Jan. ’14
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d-quark probability density in ground state proton: mπ = 156 MeV (CSSM)
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d-quark probability density in first excited proton: mπ = 156 MeV (CSSM)
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Positive Parity Nucleon Spectrum: only small smearing: Cypress
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Positive Parity Nucleon Spectrum: rRMS smearing of 8.6 lu: Cypress
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Athens Model Independent Analysis Scheme (AMIAS)

• “Novel analysis method for excited states in lattice QCD:
The nucleon case,”
C. Alexandrou, T. Leontiou, C. N. Papanicolas and E. Stiliaris,
Phys. Rev. D 91 (2015) 1, 014506
arXiv:1411.6765 [hep-lat].
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Athens Model Independent Analysis Scheme (AMIAS)

• Does not rely on plateau identification of effective masses

• Exploits small time separations where the excited states contribute
and statistical errors are small.

• The Correlation matrix has the spectral decomposition

Gij(t) =
Nstates∑
α=0

Aαi A†αj e−Eα t . i , j = 1, . . . ,Ninterpolators .

• Importance sampling is used to select fit parameters, Aαi and Eα,
with the probability exp(−χ2/2).

◦ A parallel tempering algorithm is used to avoid local minima traps.

• Parameters are determined by fitting a Gaussian to their
probability distributions.

• Increase Nstates until there is no sensitivity to additional
exponentials.
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Determining Nstates ≡ nmax (Cypress)
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Analysis of Correlation Matrix is Essential
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AMIAS applied to positive-parity Cypress results

43 of 124



Lowest-lying positive-parity N∗ Spectrum
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Properties of the Positive Parity Nucleon Spectrum
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d-quark probability density in ground state proton (CSSM)
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d-quark probability density in 1st excited state of proton (CSSM)
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d-quark probability density in N = 3 excited state of proton (CSSM)
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d-quark probability density in N = 4 excited state of proton (CSSM)
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Comparison with the Simple Quark Model - CSSM
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d-quark probability density in 1st excited state of proton (CSSM)
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d-quark probability density in 1st excited state of proton (CSSM)
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d-quark probability density in 1st excited state of proton (CSSM)
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d-quark probability density in 1st excited state of proton (CSSM)
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d-quark probability density in 1st excited state of proton (CSSM)
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d-quark probability density in 1st excited state of proton (CSSM)

56 of 124



d-quark probability density in 1st excited state of proton (CSSM)
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d-quark probability density in 1st excited state of proton (CSSM)
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d-quark probability density in 4th excited state of proton (CSSM)
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Form Factors of positive-parity nucleon excitations
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Charge Radii of the Proton, Delta and “Roper”
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Magnetic Moments of the Proton, Delta and “Roper”
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Magnetic Moments of the odd-parity p∗, and n∗
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• Comparison with quark model result of N. Sharma, et al. (2013).
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Have we seen the Roper?
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Finite-Volume Effect in N = 2 excited state: mπ = 702 MeV
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Finite-Volume Effect in N = 2 excited state: mπ = 570 MeV
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Finite-Volume Effect in N = 2 excited state: mπ = 411 MeV
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Finite-Volume Effect in N = 2 excited state: mπ = 296 MeV
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Finite-Volume Effect in N = 2 excited state: mπ = 156 MeV
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Hamiltonian Effective Field Theory Model

• Consider the Λ(1405).

• The four octet meson-baryon interaction channels of the Λ(1405)
are considered: πΣ, KN, KΞ and ηΛ.

• A single-particle state with bare mass, m0 + α0 m2
π is also included.

• In a finite periodic volume, momentum is quantised to n (2π/L).
• Working on a cubic volume of extent L on each side, it is

convenient to define the momentum magnitudes

kn =
√

n2
x + n2

y + n2
z

2π
L ,

with ni = 0, 1, 2, . . . and integer n = n2
x + n2

y + n2
z .
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Hamiltonian model, H0

Denoting each meson-baryon energy by ωMB(kn) = ωM(kn) + ωB(kn),
with ωA(kn) ≡

√
k2

n + m2
A, the non-interacting Hamiltonian takes the

form

H0 =



m0 + α0 m2
π 0 0 · · ·

0
ωπΣ(k0)

. . .
ωηΛ(k0)

0 · · ·

0 0
ωπΣ(k1)

. . .
ωηΛ(k1)

· · ·

...
...

...
. . .


.
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Hamiltonian model, HI

• Interaction entries describe the coupling of the single-particle state
to the two-particle meson-baryon states.

• Each entry represents the S-wave interaction energy of the
Λ(1405) with one of the four channels at a certain value for kn.

HI =



0 gπΣ(k0) · · · gηΛ(k0) gπΣ(k1) · · · gηΛ(k1) · · ·
gπΣ(k0) 0 · · ·

...
... 0

gηΛ(k0)
. . .

gπΣ(k1)
...

gηΛ(k1)
...


.
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Eigenvalue Equation Form

• The eigenvalue equation corresponding to our Hamiltonian model is

λ = m0 + α0 m2
π −

∑
M,B

∞∑
n=0

g2
MB(kn)

ωMB(kn)− λ
.

with λ denoting the energy eigenvalue.

• As λ is finite, the pole in the denominator of the right-hand side is
never accessed.

• The bare mass m0 + α0 m2
π encounters self-energy corrections that

lead to avoided level-crossings in the finite-volume energy
eigenstates.

• Reference to chiral effective field theory provides the form of
gMB(kn).
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Hamiltonian model solution and fit

• The LAPACK software library routine dgeev is used to obtain the
eigenvalues and eigenvectors of H.

• The bare mass parameters m0 and α0 are determined by a fit to
the lattice QCD results.
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Hamiltonian model fit
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Avoided Level Crossing
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Energy eigenstate, |E 〉, basis |state〉 composition
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Strange Magnetic Form Factor

• Provides direct insight into the possible dominance of a molecular
KN bound state.

• In forming such a molecular state, the Λ(u, d , s) valence quark
configuration is complemented by
◦ A u, u pair making a K−(s, u) - proton (u, u, d) bound state, or
◦ A d , d pair making a K 0(s, d) - neutron (d , d , u) bound state.

• In both cases the strange quark is confined within a spin-0 kaon
and has no preferred spin orientation.

• To conserve parity, the kaon has zero orbital angular momentum.
• Thus, the strange quark does not contribute to the magnetic form

factor of the Λ(1405) when it is in a KN molecule.

81 of 124



Strange Magnetic Form Factor

• Provides direct insight into the possible dominance of a molecular
KN bound state.

• In forming such a molecular state, the Λ(u, d , s) valence quark
configuration is complemented by
◦ A u, u pair making a K−(s, u) - proton (u, u, d) bound state, or
◦ A d , d pair making a K 0(s, d) - neutron (d , d , u) bound state.

• In both cases the strange quark is confined within a spin-0 kaon
and has no preferred spin orientation.

• To conserve parity, the kaon has zero orbital angular momentum.
• Thus, the strange quark does not contribute to the magnetic form

factor of the Λ(1405) when it is in a KN molecule.

81 of 124



Strange Magnetic Form Factor

• Provides direct insight into the possible dominance of a molecular
KN bound state.

• In forming such a molecular state, the Λ(u, d , s) valence quark
configuration is complemented by
◦ A u, u pair making a K−(s, u) - proton (u, u, d) bound state, or
◦ A d , d pair making a K 0(s, d) - neutron (d , d , u) bound state.

• In both cases the strange quark is confined within a spin-0 kaon
and has no preferred spin orientation.

• To conserve parity, the kaon has zero orbital angular momentum.
• Thus, the strange quark does not contribute to the magnetic form

factor of the Λ(1405) when it is in a KN molecule.

81 of 124



Strange Magnetic Form Factor

• Provides direct insight into the possible dominance of a molecular
KN bound state.

• In forming such a molecular state, the Λ(u, d , s) valence quark
configuration is complemented by
◦ A u, u pair making a K−(s, u) - proton (u, u, d) bound state, or
◦ A d , d pair making a K 0(s, d) - neutron (d , d , u) bound state.

• In both cases the strange quark is confined within a spin-0 kaon
and has no preferred spin orientation.

• To conserve parity, the kaon has zero orbital angular momentum.

• Thus, the strange quark does not contribute to the magnetic form
factor of the Λ(1405) when it is in a KN molecule.

81 of 124



Strange Magnetic Form Factor

• Provides direct insight into the possible dominance of a molecular
KN bound state.

• In forming such a molecular state, the Λ(u, d , s) valence quark
configuration is complemented by
◦ A u, u pair making a K−(s, u) - proton (u, u, d) bound state, or
◦ A d , d pair making a K 0(s, d) - neutron (d , d , u) bound state.

• In both cases the strange quark is confined within a spin-0 kaon
and has no preferred spin orientation.

• To conserve parity, the kaon has zero orbital angular momentum.
• Thus, the strange quark does not contribute to the magnetic form

factor of the Λ(1405) when it is in a KN molecule.

81 of 124



GM for the Λ(1405) at Q2 ∼ 0.16 GeV2

light sector strange sector
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Low-lying odd-parity nucleon (N∗) states
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Non-interacting meson-baryon channels considered
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Hamiltonian Model N∗ Spectrum: 3 fm

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
m2
π/GeV2

1200

1400

1600

1800

2000
E
/M

eV

non-int. π-N energy

non-int. η-N energy

matrix Hamiltonian model

CSSM

Lang & Verduci

JLab

Cyprus

85 of 124



Hamiltonian Model N∗ Spectrum: 3 fm
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Hamiltonian Model N∗ Spectrum: 2 fm

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
m2
π/GeV2

1200

1400

1600

1800

2000
E
/M

eV

matrix Hamiltonian model

1st most probable

2nd most probable

3rd most probable

CSSM

Lang & Verduci

JLab

Cyprus

87 of 124



Volume Dependence of the N∗ Spectrum
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Hamiltonian Model N∗ Spectrum: 3 fm
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What about the Roper?
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Non-interacting meson-baryon channels considered
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Hamiltonian Model N ′ Spectrum

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
m2
π/GeV2

1400

1600

1800

2000

2200

2400

2600
E
/M

eV

non-int. π-N energy

non-int. π-∆ energy

non-int. π-N(1440) energy

non-int. σ-N energy

matrix Hamiltonian model

CSSM

JLab

Cyprus

92 of 124



Hamiltonian Model N ′ Spectrum
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Hamiltonian N ′ Spectrum: Increased bare mass slope
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Bare State Strength in the N ′ Spectrum: 3 fm
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Conclusions

• A survey of the current literature resolves discrepancies among
groups exploring the low-lying nucleon spectrum.
◦ Results for low-lying nucleon excitations are forming a consensus.

• The negative parity sector appears to be well understood.

◦ Hamiltonian Effective Field Theory describes the spectrum well.
◦ First results for form factors are consistent with model expectations

• Roper of the Constituent Quark Model has been seen on the
lattice.

◦ Node structure and density is similar to model expectations.

• The structure of the Λ(1405) is dominated by a molecular bound
state of an anti-kaon and a nucleon.

• The Roper of Nature has yet to be seen in the light quark mass
regime.
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Supplementary Information

The following slides provide additional information which may be of
interest.
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Bare State Strength in the N∗ Spectrum: 3 fm
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Bare State Strength in the N ′ Spectrum: 3 fm
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Volume Dependence of the N∗ Spectrum
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Basis Interpolator Superposition for Nucleon Spectrum
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Artistic view of Λ(1405) Structure
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Operators Used in Λ(1405) Analysis

We consider local three-quark operators with the correct quantum
numbers for the Λ channel, including
• Flavour-octet operators

χ8
1 =

1√
6
εabc

(
2(uaCγ5db)sc + (uaCγ5sb)dc − (daCγ5sb)uc

)
χ8

2 =
1√
6
εabc

(
2(uaCdb)γ5sc + (uaCsb)γ5dc − (daCsb)γ5uc

)
• Flavour-singlet operator

χ1 = 2εabc
(

(uaCγ5db)sc − (uaCγ5sb)dc + (daCγ5sb)uc
)
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Operators Used in Λ(1405) Analysis

We also use gauge-invariant Gaussian smearing to increase our
operator basis.
• These results use 16 and 100 sweeps.
◦ Gives a 6× 6 matrix.

• Also considered 35 and 100 sweeps.
◦ Results are consistent with larger statistical uncertainties.
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Flavour structure of the Λ(1405)
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Volume dependence of the odd-parity Λ spectrum
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Infinite-volume reconstruction of the Λ(1405) energy
• Bootstraps are calculated by altering the value of each lattice data

point by a Gaussian-distributed random number, weighted by the
uncertainty.
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Infinite-volume Λ(1405) mass distribution at mphys
π
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Dispersion Relation Test for the Λ(1405)
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GE for the Λ(1405)

When compared to the ground state, the results for GE are consistent
with the development of a non-trivial KN component at light quark
masses.

• Noting that the centre of mass of the K (s, `) N(`, u, d) is nearer
the heavier N,

◦ The anti–light-quark contribution, `, is distributed further out by the
K and leaves an enhanced light-quark form factor.

◦ The strange quark may be distributed further out by the K and thus
have a smaller form factor.
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GE for the Λ(1405)
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GE for the Λ(1405)
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Hamiltonian model, HI

• The form of the interaction is derived from chiral effective field
theory.

gMB(kn) =

(
κMB

16π2f 2
π

C3(n)

4π

(2π
L

)3
ωM(kn) u2(kn)

)1/2

.

• κMB denotes the SU(3)-flavour singlet couplings

κπΣ = 3ξ0, κK̄N = 2ξ0, κKΞ = 2ξ0, κηΛ = ξ0,

with ξ0 = 0.75 reproducing the physical Λ(1405)→ πΣ width.

• C3(n) is a combinatorial factor equal to the number of unique
permutations of the momenta indices ±nx , ±ny and ±nz .

• u(kn) is a dipole regulator, with regularization scale Λ = 0.8 GeV.
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Infinite-volume reconstruction of the Λ(1405) energy
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Excited State Form Factors

• The eigenstate-projected three-point correlation function is

Gµ
α(p′, p; t2, t1) =

∑
x1, x2

e−i p′·x2ei(p′−p)·x1×

× 〈Ω|vαi (p′)χi (x2) jµ(x1)χj(0) uαi (p)|Ω〉

= vαT(p′) Gµ
ij (p′, p; t2, t1) uα(p)

where

Gµ
ij (p′, p; t2, t1) =

∑
x1, x2

e−i p′·x2ei(p′−p)·x1 〈Ω|χi (x2) jµ(x1)χj(0)|Ω〉

is the matrix constructed from the three-point correlation functions
of the original operators {χi }.
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Extracting Form Factors from Lattice QCD

• To eliminate the time dependence of the three-point correlation
function, we construct the ratio

Rµ
α(p′, p; t2, t1) =

(Gµ
α(p′, p; t2, t1) Gµ

α(p, p′; t2, t1)

Gα(p′; t2) Gα(p; t2)

)1/2

• To further simply things, we define the reduced ratio

Rµ
α =

( 2Eα(p)

Eα(p) + mα

)1/2 ( 2Eα(p′)
Eα(p′) + mα

)1/2
Rµ
α
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Current Matrix Element for Spin-1/2 Baryons
The current matrix element for spin-1/2 baryons has the form

〈p′, s ′|jµ|p, s〉 =

(
m2
α

Eα(p)Eα(p′)

)1/2

×

× u(p′)
(

F1(q2) γµ + i F2(q2)σµν
qν

2mα

)
u(p)

• The Dirac and Pauli form factors are related to the Sachs form
factors through

GE(q2) = F1(q2)− q2

(2mα)2 F2(q2)

GM(q2) = F1(q2) + F2(q2)

116 of 124



Current Matrix Element for Spin-1/2 Baryons
The current matrix element for spin-1/2 baryons has the form

〈p′, s ′|jµ|p, s〉 =

(
m2
α

Eα(p)Eα(p′)

)1/2

×

× u(p′)
(

F1(q2) γµ + i F2(q2)σµν
qν

2mα

)
u(p)

• The Dirac and Pauli form factors are related to the Sachs form
factors through

GE(q2) = F1(q2)− q2

(2mα)2 F2(q2)

GM(q2) = F1(q2) + F2(q2)

116 of 124



Sachs Form Factors for Spin-1/2 Baryons
• A suitable choice of momentum (q = (q, 0, 0)) and the (implicit)

Dirac matrices allows us to directly access the Sachs form factors:
◦ for GE: using Γ±

4 for both two- and three-point,

Gα
E (q2) = R4

α(q, 0; t2, t1)

◦ for GM: using Γ±
4 for two-point and Γ±

j for three-point,

|εijk qi | Gα
M(q2) = (Eα(q) + mα) Rk

α(q, 0; t2, t1)

◦ where for positive parity states,

Γ+
j =

1
2

[
σj 0
0 0

]
Γ+

4 =
1
2

[
I 0
0 0

]
and for negative parity states,

Γ−
j = −γ5Γ+

j γ5 = −1
2

[
0 0
0 σj

]
Γ−

4 = −γ5Γ+
4 γ5 = −1

2

[
0 0
0 I

]
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Scattering State Contamination in Projected Correlator: CSSM
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Negative Parity Nucleon: Five-quark Operators: CSSM

1 2 3 4 5 6 7
Basis Number

1

2

3

4

5

6
M

(G
eV

)
1 → χ1 + χ2
2 → χ1 + χ2 + χ5
3 → χ1 + χ2 + χ′5
4 → χ1 + χ2 + χ5 + χ′5
5 → χ1 + χ5 + χ′5
6 → χ2 + χ5 + χ′5
7 → χ5 + χ′5

ns = 35 + 200

S-wave N + π
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Negative Parity Nucleon Scattering Thresholds

• “Searching for low-lying multi-particle thresholds in lattice spectroscopy,”
M. S. Mahbub, et al. [CSSM],
Annals Phys. 342, 270 (2014)
arXiv:1310.6803 [hep-lat]

• “Lattice baryon spectroscopy with multi-particle interpolators,”
Adrian Kiratidis, Waseem Kamleh, Derek Leinweber, Benjamin Owen
[CSSM]
Phys. Rev. D 91, 094509 (2015)
arXiv:1501.07667 [hep-lat].
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Negative Parity Nucleon Spectrum: Lang and Verduci
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• Small correlation matrix: χ1 + χ2 × 2 smearings = 4× 4
• Did not construct projected correlators.
• Limited Euclidean time evolution prior to ill conditioning.
• Adding Nπ sufficient but not necessary. cf. Cypress Results. . .
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Common Proton Interpolating Fields

• Many groups (BGR, Cypress, χQCD, CSSM) consider the
following local interpolating fields

χ1(x) = εabc(uTa(x) Cγ5 db(x)) uc(x) ,

χ2(x) = εabc(uTa(x) C db(x)) γ5 uc(x) .
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d-quark density in 1st excited state of proton: Lower Dirac Component
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Hybrid Baryons: Hadron Spectrum Collaboration
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