

Contents of this talk

Hyperon Time Projection Chamber (HypTPC)

- Phyics programs with HypTPC
 - J-PARC E45 : Studies of baryon resonances in (π , 2π) rection
 - J-PARC E42 : Search for H-dibaryon
- Development status of HypTPC
- Summary

J-PARC E45

Studies of Baryon resonances in $(\pi, 2\pi)$ reaction for

- Deeper understanding of non-pertabative QCD
- Preceise measurements of baryon resonance properties
 - Many resonance have not been established experimentally
 - $\pi N \rightarrow \pi \pi N$: "Critical missing piece" for the N* spectroscopy
 - New $\pi N \rightarrow \pi \pi N$ data will provide 1.significant modifications to the current N* mass 2.discovery of new N* states.
- Search for new type baryon states
 - e.g. hybrid baryons (qqqg)

Baryon spectroscopy : Physics of broad and overlapping resonances

- Width: a few hundred MeV.
- ✓ Resonances are highly overlapped in energy except ∆(1232).

→Complicated Partial Wave Analysis to extract hidden resonances

Measure cross sections as a function of

- incident pion energy
- Scattering angle
 In broad range (with fine bins)
 to extract resonance poles

New type baryon states

- Recent Lattice QCD calcurations show a new aspect in the nucleaon resonance spectrum.
 - They predict hybrid baryons (gluonic excitations).

Status of *N**resonance

PDG2014				Status as seen in —							
		Status	3	_							
Particle J^P	overal	$\ln \pi N$	γN	Ι	$N\eta$	$N\sigma$	$N\omega$	ΛK	ΣK	N ho	$\Delta \pi$
$N = 1/2^+$	****										
$N(1440) 1/2^+$	****	****	****	ĸ		***				*	***
$N(1520)3/2^-$	****	****	****	* *	**					***	***
$N(1535) 1/2^-$	****	****	****	* *	***					**	*
$N(1650)1/2^-$	****	****	***	*	**			***	**	**	***
$N(1675)5/2^-$	****	****	***	*				*		*	***
$N(1680) 5/2^+$	****	****	****	* *		**				***	***
N(1685) ??	*										
$N(1700) 3/2^-$	***	***	**	*				*	*	*	***
$N(1710) 1/2^+$	***	***	***	*	**		**	***	**	*	**
$N(1720) 3/2^+$	****	****	***	*	**			**	**	**	*
$N(1860) 5/2^+$	**	**								*	*
$N(1875) 3/2^-$	***	*	***				**	***	**		***
$N(1880) 1/2^+$	**	*	*			**		*			
$N(1895) 1/2^{-}$	**	*	**	*	*			**	*		
$N(1900) 3/2^+$	***	**	***	*	*		**	***	**	*	**
$N(1990) 7/2^+$	**	**	**						*		
$N(2000) 5/2^+$	**	*	**	*	*			**	*	**	
$N(2040) 3/2^+$	*										
$N(2060) 5/2^-$	**	**	**	*					**		
$N(2100) 1/2^+$	*										
$N(2150) 3/2^-$	**	**	**					**			**
$N(2190) 7/2^-$	****	****	***				*	**		*	
$N(2220) 9/2^+$	****	****									
$N(2250)9/2^-$	****	****		m	or	e th	nan	**	* :	15	/45
			_	$toptative \cdot 10/45$							
				10/43							

Many of the nucleon resonances predicted by QM were not found by PWA of old hadronic beam data. "Missing resonance" problem (This has not been solved yet)

Most of the *N* resonance were primary determined from $\pi N \rightarrow \pi N$ data. But, many of high mass resonances has strong coupling to $\pi\pi N$ final states.

Precise new data on phtonproduction is available from (Bonn, Mainz, Jlab, Spring-8,...)

Good data for $\pi N \rightarrow \pi \pi N$ is still highly desirable to search for missing resonances.

Importance of $\pi\pi N$ (Width of *N** resonances)

Over half of the decay branchig fraction goes into 2π channel.

Importance of ππN (Two pion production from CLAS)

The blue dotted curve use only the known resonances from the PDG.

The red solid curve includes extra resonance not seen from the PWA of π N data alone.

Two pion production can see new resonance!!

World's $\pi N \rightarrow \pi \pi N$ data

Only 240K events is abailable at present. These data were taken in bubble-chamber experiments in 1970's.

W (MeV)	$\pi^+\pi^-n$	$\pi^0\pi^-p$	$\pi^0\pi^+p$	$\pi^+\pi^+n$	Total				
1340±20	1664	11	0	0	1675				
1375 ± 15	3893	145	15	2	4055				
1400 ± 10	3646	826	63	15	4550				
1440 ± 10	3790	1339	207	48	5384				
1460 ± 10	2074	971	152	36	3233				
1480 ± 10	7246	3776	537	128	Y				
1500 ± 10	6224	4055	1160	250	-1-1515.				
1520 ± 10	5650	4671	795	· :n0 8	naly 11 259				
1540 ± 10	6230	5320	1110	al binning	12 848				
1565 ± 15	2237	1598	ansi0	nai 481	7020				
1595 ± 15	3065	10 1	ti-dimente	483	8374				
1620 ± 10	0	for mul	4203	621	4824				
1640 ± 10	CF1C1	ent ior	7939	1013	20 566				
1660±10	insullie	4273	4071	752	16 507				
1contics	are in o4	5340	4999	847	19 970				
Statistics	8377	5394	5375	1007	20153				
-13	6265	4594	5679	524	17062				
1755±15	5442	4200	1316	18	10 976				
1790 ± 20	1966	1352	4715	228	8261				
1830 ± 20	3543	2223	2322	0	8088				
1870 ± 20	4342	3382	8190	557	16471				
1910±20	6036	4081	6445	0	16 562				
Total	105 322	63 690	64 866	7336	241 214				

TABLE I. Summary of the number of events analyzed at each energy.

D. Mark Manley et al., Phys. Rev. D 30 904 NSTAR2015

World's $\pi N \rightarrow \pi \pi N$ data

Only 240K events is abailable at present. These data were taken in bubble-chamber experiments in 1970's.

World's $\pi N \rightarrow \pi \pi N$ data

Only 240K events is abailable at present. These data were taken in bubble-chamber experiments in 1970's.

Outputs from E45

Improvement of the world's $\pi N \rightarrow \pi \pi N$ data by factor of 100 times. Uniform coverage of the wide *W* range of the nucleon resonance.

OW, J-PARC 1S
a aply facility
e only facility
at any addraga
at can address
is definionau
is deficiency.
M events / ΔW
12

TABLE I. Summary of the number of events analyzed at each energy

J-PARC E42: Search for H-dibaryon

Stable and compact 6-quark state (uuddss)

NSTAR2015

Experimental search

- Peaks observed at KEK-E224, E522 around $\Lambda\Lambda$ mass threshold
 - Indication of H?
 - Statistics not enough

High statics experiment at J-PARC

J-PARC E42: Search for H-dibaryon

- Weakly-bound : $H \rightarrow \Lambda p\pi$ weak decay Lower Limit: 7 MeV ($_{\Lambda\Lambda}^{6}$ He)
- Virtual state : $\Lambda\Lambda$ threshold effect
- Resonance : Breit-Wigner peak in the $\Lambda\Lambda$ mass spectrum.

R. L. Jaffe, Phys. Rev. Lett. 38, 195 (1977)

Hadron Experimental Facility

E45 HypTPC Spectrometer

Measure $(\pi, 2\pi)$ in large acceptance TPC in dipole magnetic field $\pi p \rightarrow \pi^{+} \pi n, \pi^{0} \pi p$ 2 charged particles + 1 neutral particle $\pi^{+} p \rightarrow \pi^{0} \pi^{+} p, \pi^{+} \pi^{+} n$ \rightarrow missing mass technique

 $\pi N \rightarrow KY$ (2-body reaction) $\pi p \rightarrow K^0 \Lambda$, $\pi^+ p \rightarrow K^+ \Sigma^+$ (I=3/2, Δ^*)

 π^{+-} beam on liquid-H target (p= 0.73 – 2.0 GeV/c W=1.5-2.15 GeV)

LH target: Ф5cm

Superconducting Helmholtz Dipole magnet (1.5 T)

Hyperon Time-Projection-Chamber

3D rendering view of HypTPC

- •GEM amplification (High count rate, 10⁶)
- Large Acceptance (almost 4π)
- Target is inside TPC (Detection of short lived particle)
- High resolution.

position : 300um, $\Delta p/p$: 2-6 % (π ,p)

Long term operation

Missing mass resolution

 σ of MM is ~ 50 MeV/c², (Mass π 0: 134, neutron: 940)

Missing mass technique and coplanarity can identify neutral particles.

Acceptance

Momentum of Proton > 300 MeV/c (energy lose in target is large)

Milestones

1st prototype TPC

2011. 1. Beam test of the prototype TPC at ELPH Stable operation

2011. 11. High rate beam test of the prototype TPC at RCNP

Confirmed high counting rate operation 10⁶

- 2013. 3. Begin of the fabrication of the HypTPC
- 2013. 4. Operation test with B-field at J-PARC (FM magnet)
- 2014. 4. GEM and readout pad were ready.
- 2015. 2. Full readout pad of the HypTPC was ready.
- 2015. 3. 256/5768 ch (5%) readout with 10cm drift volume was ready.
- 2016. 3. 100 % readout with 55cm (full size) drift will be ready.

Configuration of Readout-PAD

Colours show read-out channels for each AsAd board.

Inner pad : 10 layers, 2.1 - 2.7 x 9 mm² Outer pad : 23 layers, 2.3 - 2.4 x 12.5 mm² Read-out pad :5768

Readout PAD and GEM electrode

Number of pads : 5768 Inner PAD : (2.1-2.7) x 9 mm² Outer PAD : (2.3-2.4) x 12.5 mm²

The GEM electrode has a small devision in target section, due to the large multiplicity.

Construction of the HypTPC

•HypTPC is ready with full size of read-out pad

Gain test with an induced charge

Pulse shape of AsAd board, 120fC, 232ns (j) 1200 VDQ 1000 Induced charge to last GEM **220 pC 138 pC** 800 **87 pC 55 pC** 600 **35 pC** 400 200 ∟ 200 220 240 260 280 300 Time cell (ch)

X-ray measurements

X-ray spectrum

The TPC operation is consisted with the prototype TPC!!

Summary

- Phyics programs with HypTPC
 - J-PARC E45 : Studies of baryon resonances in $(\pi, 2\pi)$ rection
 - $\pi p \rightarrow \pi^{+} \pi n, \pi^{0} \pi p, \pi^{+} p \rightarrow \pi^{0} \pi^{+} p, \pi^{+} \pi^{+} n$
 - $\pi N \rightarrow KY (\pi p \rightarrow K^0 \Lambda, \pi^+ p \rightarrow K^+ \Sigma^+)$
 - \rightarrow 100 times improved (π ,2 π) data
 - J-PARC E42 : Search for H-dibaryon ${}^{12}C(K^-,K^+)X$, resonance $H \to \Lambda\Lambda$, bound $H \to \Sigma^- p$, $\Lambda p\pi^ \to 11000 \Lambda\Lambda$ events (1440 H resonance, 1ub/sr) KEK-E522 90 $\Lambda\Lambda$ events
- Spectrometer system including HypTPC will be ready for beams in 2016.