Baryonic spectroscopy at BESIII

Fang Liu

(for the BESIII Collaboration)

Institute of High Energy Physics

The 10th International Workshop on the Physics of Excited Nucleons, Suita Campus, Osaka University, Osaka, Japan May 25-28, 2015

- **Status of BEPCII/BESIII**
- Baryonic spectroscopy
 - \checkmark Two hyperons in $\psi(3686) \rightarrow K^-\Lambda \Xi^+$
 - ✓ Two new baryonic excited states in $\psi(3686) \rightarrow p \ p\pi^0$
 - \checkmark N(1535) in ψ (3686) \rightarrow p p η
 - \checkmark Excited strange baryons in $\psi(3686) \rightarrow \Lambda \ \overline{\Sigma}^+ \pi^-$
- Summary and perspective

The BEPCII Collider

BEMS (beam energy measurement system): *based on Compton backscattering*

The BESIII detector

Solenoid Magnet: 1 T Super conducting

The new BESIII detector is hermetic for neutral and charged particle with excellent resolution, PID, and large coverage.

- The established baryons are described to 3-quark (qqq) configurations
- Non-relativistic quark model is successful in interpreting of the excited baryons
- Also provides an explicit classification for light baryons in terms of group symmetry
- Predicts more excited stated and the number of observed baryons is significantly small ("miss resonance problem")
- Are the states missing because our models do not capture the correct degrees of freedom?
- Or have the resonances simply escaped detection?

- 4100~4400 MeV: 0.5/fb coarse scan
- 3850~4590 MeV: 0.5/fb fine scan

.

In 2015, we are doing energy scan at 2000~3000 MeV

High statistics of charmonium @BESIII provide an opportunity to study the baryon

JLab, ELSA, MAMI, ESRF, Spring-8,

 $J/\psi(\psi') \rightarrow \overline{B}BM \Rightarrow N^*, \Lambda^*, \Sigma^*, \Xi^*$

✓ Pure isospin 1/2 filter ⇒easier analysis

✓ Missing N* with small couplings to πN & γN, but large coupling to gggN : $ψ → N\overline{N}π/η/η'/ω/φ$, $\overline{p}Σπ$, $\overline{p}ΛK$...

✓ Interference between N* and N*bar bands in ψ → $N\overline{N}\pi$ Dalitz plots may help to distinguish some ambiguities in PWA of πN **Not only N*, but also \Lambda^*, \Sigma^*, \Xi^* @BESIII**

Charmonium decays can give novel insights into baryons and give complementary information to other experiments 7

Observation of two hyperons $\Xi^{-}(1690)$ and $\Xi^{-}(1820)$ in $\psi(3686) \rightarrow K^{-}\Lambda \ \Xi^{+}+c.c.$

	$\Xi(1690)^{-}$	$\Xi(1820)^{-}$
$M(MeV/c^2)$	$1687.7 \pm 3.8 \pm 1.0$	$1826.7 \pm 5.5 \pm 1.6$
$\Gamma(MeV)$	$27.1 \pm 10.0 \pm 2.7$	$54.4 \pm 15.7 \pm 4.2$
Event yields	74.4 ± 21.2	136.2 ± 33.4
Significance(σ)	4.9	6.2
Efficiency(%)	32.8	26.1
$B(10^{-6})$	$5.21{\pm}1.48{\pm}0.57$	$12.03{\pm}2.94{\pm}1.22$
$M_{\rm PDG}({\rm MeV}/c^2)$	1690 ± 10	1823 ± 5
$\Gamma_{\rm PDG}({\rm MeV})$	<30	24^{+15}_{-10}

- Two hyperons $\Xi^{-}(1690)$ and $\Xi^{-}(1820)$ are observed in $\psi(3686) \rightarrow K^{-}$ $\Lambda \overline{\Xi}^{+}+c.c$
- Resonance parameters consist with PDG

Observation of two hyperons $\Xi^{-}(1690)$ and $\Xi^{-}(1820)$ in $\psi(3686) \rightarrow K^{-}\Lambda \ \Xi^{+}+c.c.$

$B(\psi(3686) \rightarrow K^{-}\Lambda \ \Xi^{+}+c.c.) = (3.86 \pm 0.27 \pm 0.32) \times 10^{-5}$

Measurement of the branching fraction for the first time

Measurement of $\psi(3686) \rightarrow \gamma K^{-}\Lambda \Xi^{+}+c.c.$

Observation of two new baryonic excited states in ψ (3686) \rightarrow p p π^0

2-body decay: $\psi(2S) \rightarrow X\pi^0, X \rightarrow p\bar{p}$ $\psi(2S) \rightarrow p\bar{N}^*, \bar{N}^* \rightarrow \bar{p}\pi^0 + \text{c.c.}$

isospin conservation $\frac{7}{6}$

Phys.Rev.Lett. 110 (2013) 022001

Observation of two new baryonic excited states N(2300) and N(2570) in ψ (3686) \rightarrow p p π^0

Phys.Rev.Lett. 110 (2013) 022001

most likely is due to interference of N* intermediate resonance

Observation of N(1535) in \psi(3686)\rightarrowp p\eta

data sample: $106 \times 10^6 \psi'$

PR D 88, 032010 (2013)

Observation of N(1535) in \psi(3686)\rightarrowp p\eta

For <u>N(1535) with its</u>

mass close to the threshold of its dominant decay channel $N\eta$, the approximation of a constant width is not very good. Thus, a phase-space-dependent width for N(1535) is also used

$$BW(s) = \frac{1}{M_{N^*}^2 - s - iM_{N^*}\Gamma_{N^*}(s)}.$$

The phase-space-dependent widths can be written as

$$\Gamma_{N^*}(s) = \Gamma_{N^*}^0 \left(0.5 \frac{\rho_{N\pi}(s)}{\rho_{N\pi}(M_{N^*}^2)} + 0.5 \frac{\rho_{N\eta}(s)}{\rho_{N\eta}(M_{N^*}^2)} \right),$$

where $\rho_{N\pi}$ and $\rho_{N\eta}$ are the phase space factors for the $N\pi$ and $N\eta$ final states, respectively,

$$\rho_{NX}(s) = \frac{2q_{NX}(s)}{\sqrt{s}}$$
$$= \frac{\sqrt{(s - (M_N + M_X)^2)(s - (M_N - M_X)^2)}}{(M_N - M_X)^2}$$

Observation of N(1535) in ψ (3686) \rightarrow p p η

- N(1535) and PHSP(1/2-) are dominant
- No evidence for a ppbar resonance

explained by interference between N(1535) and phase space

PR D 88, 032010 (2013)

Mass and width of N(1535)• $M = 1524 \pm 5^{+10}_{-4} \text{ MeV}/c^2$ $\Gamma = 130^{+27+57}_{-24-10} \text{ MeV}/c^2$ PDG value: • M = 1525 to 1545 MeV/ c^2 \sim $\Gamma = 125$ to 175 MeV/ c^2 Branching fraction: • $B(\psi' \to N(1535)\overline{p}) \times B(N(1535) \to p\eta) + c.c.$ $= (5.2 \pm 0.3^{+3.2}_{-1.2} \times 10^{-5})$

Observation of excited strange baryons Λ^* and Σ^* in $\psi(3686) \rightarrow \Lambda \ \overline{\Sigma}^+ \pi^- + \text{c.c.}$

Summary and perspective

- **BESIII** collected 0.5×10⁹ ψ (2S) and 1.3×10⁹ J/ ψ events.
- **Many baryonic states are presented:**
 - > $\Xi^{-}(1690)$ and $\Xi^{-}(1820)$ in $\psi(3686) \rightarrow K^{-}\Lambda \overline{\Xi}^{+}+c.c.$
 - ▶ baryon excited states N(2300) and N(2570) in ψ (3686)→p \overline{p} π^0
 - > N(1535) in ψ (3686) \rightarrow p p η
 - ▶ excited strange baryons Λ^* and Σ^* in $\psi(3686) \rightarrow \Lambda \overline{\Sigma}^+ \pi^- + c.c.$
- Charmonium decays have proven to be a good lab for studying not only excited nucleon states, but also excited hyperons.
 - provide complementary information to other experiment
- **Expect more results from BESIII.**

Back up

• Are the states missing in the predicted spectrum because our models do not capture the correct degrees of freedom?

Nearly all existing data result from πN experiments

Observation of two new baryon excited states N(2300) and N(2570) in ψ (3686) \rightarrow p p π^0

Selection of p $\bar{p} \pi^0$

- Proton and anti-proton are identified
- using dE/dx and TOF information

 $\begin{array}{l} Pt > 300 MeV/c^2 \\ |cos(\theta)| < 0.8 \end{array} ({\rm for} \ p, \bar{p}) \end{array} \label{eq:pt_eq}$

• 4C-kinematic fit:

 $\chi^2_{4C}(\gamma\gamma p\bar{p}) < 20$

• $|M_{\gamma\gamma} - M_{\pi^0}| < 15 MeV/c^2$ $|M_{p\bar{p}} - M_{J/\Psi}| > 0.04 GeV/c^2$

Phys.Rev.Lett. 110 (2013) 022001

data sample: $1.06 \times 10^8 \psi'$

Measurement of $\psi(3686) \rightarrow K^{-}\Lambda \Xi^{+}+C.C.$

$$\begin{split} \psi(3686) \to \mathsf{K}^{-}\Lambda \ \overline{\Xi}^{+} + \mathsf{C}.\mathsf{C}. \\ \Lambda \to \mathsf{p} \ \pi^{-} \\ \overline{\Xi}^{+} \to \ \overline{\Lambda}\pi^{+}, \ \overline{\Lambda} \to \ \overline{\mathsf{p}} \ \pi^{+} \end{split}$$

PWA of $\psi' \rightarrow \pi^0 p \bar{p}$

N(940) into virtual proton + pi0

are also considered. According to the framework of soft π meson theory [22], the off-shell decay process is needed in this channel. Thus, N(940) with a mass of 940 MeV/ c^2 and zero width is included. The N(940) represents a virtual proton, which could emit a π^0 . The Feynman diagram of

this process can be found in Ref. [15].

[15] M. Ablikim *et al.* (BES Collaboration), Phys. Rev. D 80, 052004 (2009).

In summary, we studied the intermediate resonances, including their masses, widths, and spin parities, in the decay $\psi(3686) \rightarrow p\bar{p}\pi^0$. Two new N^* resonances are observed, in addition to five well-known N^* resonances. The masses and widths as well as the spin parities of the two new N^* states have been measured. The branching fractions of $\psi(3686) \rightarrow p\bar{p}\pi^0$ and the product branching fractions through each intermediate N^* state are measured. No clear evidence for N(1885) or N(2065) has been found. The hypothetical $p\bar{p}$ resonance has a significance of less than 4σ , indicating that the threshold enhancement most likely is due to interference of N^* intermediate resonances.