

PRD 91 (2015) 057101

Pentaquark Θ^+ search at HERMES

Siguang WANG School of Physics, Peking University

on behalf of the HERMES Collaboration

NSTAR2015, May 25-28, 2015, Osaka, Japan

- Significances of Θ^+ (if seen)
- HERMES experiment
- Previous and present results from deuterium target
- Results from hydrogen target
- Summary

Group	Reaction	Mode	Upper limit	Confidence
CLAS	$\gamma d \rightarrow p K^- K^+ n$	K^+n	$\sigma < 0.3 \; { m nb}$	95%
	$\gamma d \rightarrow \Lambda K^+ n$	K^+n	$\sigma < 5 \text{ nb}$	95%
	$\gamma p \rightarrow \overline{K}^0 K^+ n$	K^+n	$\sigma < 0.8 \text{ nb}$	95%
			$N(\Theta^+)/N(\Lambda(1520)) < 0.22\%$	95%
	$\gamma p \rightarrow \overline{K}^{0}K^{0}p$	$K_S^0 p$	$\sigma < 1.5 \text{ nb}$	95%
COSY-TOF	$pp \rightarrow \Sigma^+ K^0 p$	$K_{S}^{0}p$	$\sigma < 0.15 \ \mu b$	95%
FOCUS	$\gamma BeO \rightarrow pK_S^0 X$	$K_{S}^{0}p$	$\sigma(\Theta^+)\mathcal{B}(pK_S^0)/\sigma(K(892)^+) < 0.13\%$	95%
			$\sigma(\Theta^+)\mathcal{B}(pK_S^0)/\sigma(\Sigma(1385)^{\pm}) < 2.3\%$	95%
NOMAD	$\nu_{\mu}A \rightarrow K_{S}^{0}pX$	$K_{S}^{0}p$	$N(\Theta^{+})/N_{\rm events} < 2.13 \times 10^{-3}$	90%
BES	$\psi(2S), J/\psi$ decays	K^+n, K^0_Sp	see Eq.(2)	90%
BaBar	$e^+e^- \rightarrow \Upsilon(4S) \rightarrow pK^0_S X$	$K^0_S p$	$N(\Theta^+)/N_{\text{events}} < 1.8 \times 10^{-4}$	95%
	$e^+e^- \rightarrow q\bar{q} \rightarrow pK^0_S X$	$K_{S}^{0}p$	$N(\Theta^{+})/N_{\rm events} < 5.0 \times 10^{-5}$	95%
	$B^0 \rightarrow p\bar{p}K_S^0$	$K_{S}^{0}p$	$\mathcal{B}(\Theta^+) \cdot \mathcal{B}(pK_S^0) < 0.5 \times 10^{-7}$	95%
Belle	$B^0 \rightarrow p\bar{p}K_S^0$	$K_{S}^{0}p$	$\mathcal{B}(\Theta^+) \cdot \mathcal{B}(pK_S^0) < 2.3 \times 10^{-7}$	90%
	$KN \rightarrow pK_S^0X$	$K_{S}^{0}p$	$N(\Theta^+)/N(\Lambda(1520)) < 2.5\%$	90%
	$K^+n \rightarrow pK_S^0$	$K_{S}^{0}p$	$\Gamma < 0.64 { m ~MeV}$	90%
ALEPH	$Z \rightarrow pK_S^0 X$	$K_{S}^{0}p$	$N(\Theta^+)/N_{\text{events}} < 2.5 \times 10^{-3}$	95%
DELPHI	$Z \rightarrow pK_S^0X$	$K_{S}^{0}p$	$N(\Theta^+)/N_{\text{events}} < 2.0 \times 10^{-3}$	95%
L3	$\gamma \gamma \rightarrow p(\bar{p})K_S^0 X$	$K_{S}^{0}p$	$N(\Theta^+)/N_{\text{events}} < 4.7 \times 10^{-3}$	95%
H1	$ep \rightarrow ep(\bar{p})K_S^0$	$K_{S}^{0}p$	$\sigma < 120 - 360 \text{ pb}$	95%
COSY-Jülich	$pp \rightarrow pK^0\pi^+\Lambda$	K^0p	$\sigma < 58 \text{ nb}$	95%
NA49	$pp \rightarrow pK_S^0 X$	$K_{S}^{0}p$	not observed	_
CDF	$p\bar{p} \rightarrow pK_{S}^{0}X$	$K_{S}^{0}p$	$N(\Theta^{+}) < 89,76$	90%
HERA-B	$pC \rightarrow pK_S^0X$	$K_{S}^{0}p$	$N(\Theta^+)/N(\Lambda(1520)) < 2.7\%$	95%
SPHINX	$pN \rightarrow nK^+K^0_SN$	K^+n	$\sigma < 26 \text{ nb}$	90%
	$pN \rightarrow pK_S^0K_L^0N$	$K_{S}^{0}p$	$\sigma < 42$ nb	90%
	$pN \rightarrow pK_L^0 K_S^0 N$	$K_L^0 p$	$\sigma < 39$ nb	90%
	$pN \rightarrow pK_S^0K_S^0N$	$K_{S}^{0}p$	$\sigma < 52$ nb	90%
PHENIX	$dAu \rightarrow K^- \bar{n}X$	$K^-\bar{n}$	not observed	-
HyperCP	$p(\pi^+, K^+)$ Cu $\rightarrow p(\bar{p})K_S^0 X$	$K_{S}^{0}p$	$N(\Theta^+)/N_{\text{events}} < 0.3\%$	90%
LASS	$K^+p \rightarrow K^+n\pi^+$	$K^+ n$	no narrow resonance	-
WA89	$\Sigma^- C(Cu) \rightarrow pK_S^0$	$K_{S}^{0}p$	$\sigma < 7.2 \ \mu b$	99%
E559	$K^+p \rightarrow \pi^+X$	_	$d\sigma/d\Omega < 3.5 \ \mu { m b/sr}$	90%
J-PARC	$\pi^- p \rightarrow K^- X$	_	$d\sigma/d\Omega < 0.26 \ \mu {\rm b/sr}$	90%

Reviewed by Tianbo Liu, Yajun Mao, and Bo-Qiang Ma, Int. J. Mod. Phys. A 29 (2014) 1430020

NSTAR2015

HERA @ DESY

Hadron-Elektron-Ringanlage @ Deutsches Elektronen-Synchrotron

HERMES@HERA

The HERMES Spectrometer

→1997:Cherenkov; 1998→:RICH + Muon ID

NSTAR2015

Hadron/Positron separation:

Combining signals from:

TRD(Transition Radiation Detector), Calorimeter, Preshower, RICH

Particle Identification

Improvements in PID reconstruction:

Old (track level): Track-by-track reconstructed,

separately

New(event level): Response pattern of all the tracks present in an event are reconstructed simultaneously, since with multiple tracks Cherenkov rings can overlap and lead to misidentification.

Particle Identification: $\cos\Theta =$ **NSTAR2015**

1998-2000 D-target published in *Physics Letters B 585 (2004) 213*

How about the spectra with new (improved) data?

Old and New Topologies for Θ⁺ Hunting

Main Improvements:

- Event-level RICH particle ID
- Advanced tracking corrections for magnetic fields and detector material based on Kalman-filter algorithm and new alignment

Improved K_S^0

$M(pK_S^0)$ from D-target Data

$M(pK_S^0)$ from H-target Data

no structure found in hydrogen data

an attempt to fit gives "negative peak"

- With the improved HERMES original data set taken in 1998-2000 and also the additional 2006-2007 data on deuterium target, the K⁰_S is obtained with significantly less background and better mass resolution.
- The potential resonance structure in the $M(pK_S^0)$ spectrum near the 1521.8±4.3MeV has a significance ~2 σ while it was 3.7 σ at 1528.0±2.6MeV in the old analysis.
- Drop in significance in spite of twice the number of events for the data from a deuterium target does not support the presence of a positive Θ⁺ signal at HERMES.
- For the hydrogen data, there is no indication of the existence of an enhancement in the region of interest.
 Thanks! 谢谢!

siguang@pku.edu.cn

NSTAR2015

16

Backup

hermes

$M(pK_S^0)$ from D- & H-target Data

CLAS and COSY-TOF Results

FIG. 5. Comparison of the previously published [8] result (points) with the current result (histogram) normalized (by a factor of 1/5.92) to get the same total number of counts.

CLAS, PRL 96, 212001 (2006)

Fig. 5. Invariant mass of the pK^0 spectrum of the previous measurement together with a band representing the shape of the new measurement. The height of the band is adjusted in the mass range indicated by the two vertical lines.

COSY-TOF, Physics Letters B 649(2007) 252-257

NSTAR2015

LEPS (2009)

Evidence for the Θ^+ in the $\gamma d \to K^+ K^- pn$ reaction by detecting $K^+ K^-$ pairs

T. NAKANO et al.

PHYSICAL REVIEW C 79, 025210 (2009)

FIG. 14. Comparison of the fits with the RMM distributions (solid line) and a second-order polynomial functions (dashed line): (a) in the region of 1.43 GeV/ $c^2 < M(nK^+) < 1.65$ GeV/ c^2 without the Θ^+ contribution; (b) with the Θ^+ contribution; (c) in the region of 1.47 GeV/ $c^2 < M(nK^+) < 1.65$ GeV/ c^2 without the Θ^+ contribution; (d) with the Θ^+ contribution.

NSTAR2015

Observation of a narrow baryon resonance with positive strangeness formed in K⁺Xe collisions

arXiv:1307.1653v3 [nucl-ex] 18 Apr 2014

Figure 7: Shown in (a) and (b) are the pK^0 effective-mass spectra under the selections $\Theta_K, \Theta_p < 100^0$ and $p_L > 120$ MeV plus the common selections $p_T < 300$ MeV and $445 < p(K^+) < 535$ MeV. The signal and null fits are shown by the solid and dashed lines, respectively.

NSTAR2015